

• To understand the accuracy of our numbers, we need to determine a confidence interval.

• The Standard error e_s for a measured quantity is the largest of:

• e_s determined by replicates $e_s = s/\sqrt{n}$ or

• e_s by estimate of reading error $e_s = e_R/\sqrt{3}$ or

• e_s by estimate of calibration error $e_s = max = max$

© Faith A. Morrison, Michigan Tech U.

From Lecture 4—Error Propagation:

From Lecture 4—Error Propagation:

Error Propagation

We use an analysis based on the Taylor series expansion of a nonlinear function.

Taylor series:

(higher order terms)

$$f(x_1, x_2, x_3) = f^0 + \frac{\partial f}{\partial x_1} x_1 + \frac{\partial f}{\partial x_2} x_2 + \frac{\partial f}{\partial x_3} x_3 + h. o. t.$$

A calculation of the function $f(x_1, x_2, x_3)$ from uncertain values of x_1, x_2, x_3 is a random variable of mean \bar{f} and variance σ_f^2 :

$$\sigma_f^2 = \left(\frac{\partial f}{\partial x_1}\right)^2 \sigma_{x_1}^2 + \left(\frac{\partial f}{\partial x_2}\right)^2 \sigma_{x_2}^2 + \left(\frac{\partial f}{\partial x_3}\right)^2 \sigma_{x_3}^2 + \text{Covariance terms, if } x_i \text{ are correlated}$$

3

© Faith A. Morrison, Michigan Tech U.

From Lecture 4—Error Propagation:

Error Propagation

We use an analysis based on the Taylor series expansion of a nonlinear function.

Taylor series:

(higher order terms)

$$f(x_1, x_2, x_3) = f^0 + \frac{\partial f}{\partial x_1} x_1 + \frac{\partial f}{\partial x_2} x_2 + \frac{\partial f}{\partial x_3} x_3 + h. o. t.$$

A calculation of the function $f(x_1, x_2, x_3)$ from uncertain values of x_1, x_2, x_3 is a random variable of mean \bar{f} and variance σ_f^2 :

$$\sigma_f^2 = \left(\frac{\partial f}{\partial x_1}\right)^2 \sigma_{x_1}^2 + \left(\frac{\partial f}{\partial x_2}\right)^2 \sigma_{x_2}^2 + \left(\frac{\partial f}{\partial x_3}\right)^2 \sigma_{x_3}^2 + \text{Covariance terms if } x_i \text{ are correlated}$$

Note: covariance terms are not always zero or small; but they often are. For now, this is fine.

Erro CM32 Prof. I	in Technological Universities of of Cherical Engineering r Propagation 15 Fundamentals Faith Morrison , x ₂ , x ₃ , x ₄ , x ₅):	of Chemical Engir	neering Lab	of a quantity f x_1, x_2, x_3, x_4 ar deviations σ_i o and these unce given below. N	(x ₁ , x ₂ , x ₃ , x ₄ , x ₅) th dx x ₅ . The x ₁ are su r the reading errors ertainties are propagate stote: if standard errors able, use the larger of	at is call bject to e_{R_i} for e sated to or e_{x_i} es if the tw	e determination of the standar culated from measured quanti random errors. The replicate random errors. The replicate cache variable x_i must be deter determine e_j using the relati- stimates via both replicates an co. L. of f : $(f \pm 2e_{sf})$ de units)	ties standard mined first, onship	Handy worksheet fo
	Measured quar	ntities, X _i		∂f	e. =		(Af > 2		propagation
x_i	Symbol	Representative value		$\frac{\partial f}{\partial x_i}$	$e_{x_i} = \frac{\sigma_i}{\sqrt{N}} \text{ or } \frac{e_{x_i}}{\sqrt{3}} \text{ o}$	r e _s	$\left(\frac{\partial f}{\partial x_i}\right)^2 e_{x_i}^2$		
<i>x</i> ₁									
<i>x</i> ₂									
<i>x</i> ₃									
<i>x</i> ₄									
<i>x</i> ₅									
	$e_{s_f}^2 = \left(\frac{\partial f}{\partial x_1}\right)^2 e_s$	$e_{x_1}^2 + \left(\frac{\partial f}{\partial x_2}\right)^2 e_{x_2}^2 +$	$\left(\frac{\partial f}{\partial x_3}\right)^2 e_{x_3}^2$	$+\left(\frac{\partial f}{\partial x_4}\right)^2 e_{x_4}^2 +$	$+\left(\frac{\partial f}{\partial x_{S}}\right)^{2}e_{x_{S}}^{2}$		$e_{s_f}^2 = e_{s_f} = egin{array}{c} & & & & & & & & & & & & & & & & & & &$	Standard error of calculated	
these ci	rcumstances it is reaso		the reported u	ncertainty is ±1.96e	. For example, if w	lume is	given as $100.00 \pm 0.04ml$. In given as $100.00 \pm 0.04ml$, Bacon, Boston, 1987.	quantity f	

From	Lecture 4—	-Error Propaga	ation:						
Exa	Example 1: What is the uncertainty (95% confidence interval) in $\rho_{bluefluid}$ determined in the lab?								
CM3215 F	Error Propagation Worksheet CM3215 Fundamentals of Chemical Engineering Lab								
		Formula for $f:M_F$	$-M_E$	Representative valu (include units)	e of <i>f</i> :		C.I. of f : $(f \pm 2e_{sf})$ de units)		
$f(x_1)$	(x_2, x_3, x_4, x_5)): $\rho_{BF} = \frac{1}{\sqrt{1}}$	рус	1.739 g/1	nl	1.7	$739 \pm 0.007 \ g/ml$		
	Measured quantities, x_i ∂f $e_{x_i} = \left(\partial f \right)^2$								
x_i	Symbol	Representative value		$\frac{\partial f}{\partial x_i}$	$e_{x_i} = \frac{s_i}{\sqrt{N}} \text{ or } \frac{e_{R_i}}{\sqrt{3}} \text{ or } e_{s_i}$		$\left(\frac{\partial f}{\partial x_i}\right)^2 e_{x_i}^2$		
<i>x</i> ₁	M_F	30.800 g	1/	V_{pyc}	5.8 × 10 ⁻¹	^{5}g	$3.3 \times 10^{-11} \ g^2/ml^2$		
<i>x</i> ₂	M_E	13.410 g	$-1/V_{pyc}$		5.8 × 10 ⁻¹	⁵ <i>g</i>	$3.3 \times 10^{-11} g^2/ml^2$		
<i>x</i> ₃	V_{pyc}	10.00 ml	$-(M_F -$	$M_E)/V_{pyc}^2$	0.02 ml		$1.21 \times 10^{-5} \ g^2/ml^2$		
<i>x</i> ₄				0		_			
<i>x</i> ₅	x_5								
	$\left(\frac{\partial f}{\partial s}\right)^{2} = \left(\frac{\partial f}{\partial s}\right)^{2} $								
	$e_{s_f}^2 = \left(\frac{\partial f}{\partial x_1}\right)^2 e_{x_1}^2 + \left(\frac{\partial f}{\partial x_2}\right)^2 e_{x_2}^2 + \left(\frac{\partial f}{\partial x_3}\right)^2 e_{x_3}^2 + \left(\frac{\partial f}{\partial x_4}\right)^2 e_{x_4}^2 + \left(\frac{\partial f}{\partial x_5}\right)^2 e_{x_5}^2$ $e_{s_f} = \frac{1.21 \times 12}{0.0035} \frac{g}{g/ml} standsterror of each of eac$								
					©	Faith	n A. Morrison, Michigar	quantity, f Tech U	

From Lecture 4—Error Propagation: **Example 1:** What is the uncertainty (95% confidence interval) in $\rho_{bluefluid}$ as determined in the lab? Excel is an excellent tool for error propagation **Error propagation Worksheet** g/ml $f(x_1,x_2,x_3)$ 1.739 g/ml 2es 0.007 e_{xi}^{2} $(df/dx_i)^2 e_{xi}^2$ df/dxi $(df/dx_i)^2$ $\mathbf{X}_{\mathbf{i}}$ value g^2/ml^2 Μc 30.800 0.10 0.010 5.8E-05 3.3E-09 3.33E-11 X_1 13.410 5.8E-05 3.3E-09 3.33E-11 g^2/ml^2 M_{E} -0.10 0.010 $\mathbf{x_2}$ 10.000 ml -0.1740.0302 0.02 4.0E-04 1.210E-05 g^2/ml^2 X_3 $e_s^{\overline{2}}$ g^2/ml^2 1.21E-05 0.0035 g/ml \mathbf{e}_{s} © Faith A. Morrison, Michigan Tech U.

Now, how do we determine *uncertainty* from numbers that we obtain as parameters in a curve-fit?

$$y = mx + b$$

© Faith A. Morrison, Michigan Tech U.

CM3215

Michiganiech

Fundamentals of Chemical Engineering Laboratory

Uncertainty in Least Squares Curve Fitting: Excel's LINEST

Professor Faith Morrison

Department of Chemical Engineering Michigan Technological University

Reference:

- www.chem.mtu.edu/~fmorriso/cm3215/Unc ertaintySlopeInterceptOfLeastSquaresFit.pdf
- 1. Quick start—Replicate error
- 2. Reading Error
- 3. Calibration Error
- 4. Error Propagation
- 5. Least Squares Curve Fitting

Solution:

- Assume you know the x_i with certainty ("ordinary" least squares)
- Guess a line, $\hat{y} = mx + b$
- Create a measure of the error between the guess and the data (error measure should always be positive, so square it)
- Add these individual error measures to calculate a sum of squared errors, SS_E
- Use *calculus* to find the values of *m* and *b* that result in the **least** sum of squared error.

$$SS_E \equiv \sum_{i=1}^n (y_i - \hat{y}_i)^2$$

i	x_i	y_i	\hat{y}_i
1	x_1	y_1	\hat{y}_1
2	x_2	y_2	\hat{y}_2
:	:	:	:
n	x_n	y_n	$\hat{\mathcal{V}}_n$
			511

$$\hat{y}_i = mx_i + b$$

12

Regression

Result:

$$\widehat{m} = \frac{n \sum_{i=1}^{n} x_i y_i - (\sum_{i=1}^{n} x_i) (\sum_{i=1}^{n} y_i)}{n \sum_{i=1}^{n} x_i^2 - \left(\sum_{i=1}^{n} x_i\right)^2}$$

$$\hat{b} = \frac{(\sum_{i=1}^{n} x_i)^2 (\sum_{i=1}^{n} y_i) - (\sum_{i=1}^{n} x_i y_i) (\sum_{i=1}^{n} x_i)}{n \sum_{i=1}^{n} x_i^2 - \left(\sum_{i=1}^{n} x_i\right)^2}$$

$$y = \widehat{m}x + \widehat{b}$$

Least squares slope = \widehat{m} Least squares intercept = \widehat{b} In Excel:

 $\widehat{m} = \text{SLOPE}(y\text{-range}, x\text{-range})$

 $\hat{b} = INTERCEPT(y-range,x-range)$

© Faith A. Morrison, Michigan Tech U.

Ordinary, Least Squares, Linear

Regression

Result:

$$\widehat{m} = \frac{n \sum_{i=1}^{n} x_i y_i - (\sum_{i=1}^{n} x_i) (\sum_{i=1}^{n} y_i)}{n \sum_{i=1}^{n} x_i^2 - (\sum_{i=1}^{n} x_i)^2}$$

$$\hat{b} = \frac{(\sum_{i=1}^{n} x_i)^2 (\sum_{i=1}^{n} y_i) - (\sum_{i=1}^{n} x_i y_i) (\sum_{i=1}^{n} x_i)}{n \sum_{i=1}^{n} x_i^2 - \left(\sum_{i=1}^{n} x_i\right)^2}$$

But, what are the error limits on \widehat{m} and \widehat{b} ?

$$y = \widehat{m}x + \widehat{b}$$

Least squares slope $= \widehat{m}$ Least squares intercept $= \widehat{b}$

14

Michiga Departm Errol CM32	15 Fundamental	2	neering Lab	of a quantity f x_1, x_2, x_3, x_4 at deviations σ_i of and these uno- given below. I	$(x_1, x_2, x_3, x_4, x_5)$ to dx_5 . The x_i are so or the reading errors ertainties are propa	hat is calc ibject to e_{R_i} for ea gated to e_{R_i}	determination of the standar culated from measured quanti andom errors. The replicate: ach variable \mathbf{x}_i must be deter determine \mathbf{e}_{xy} using the relati- timates via both replicates an o.	ties standard mined first, onship	\
	Faith Morrison $, x_2, x_3, x_4, x_5)$	Formula for f:		Representative v (include units)	alue of f:	95% C.I (include	I. of $f\colon (f\pm 2e_{zf})$ le units)		
	Measured qua	intities, X _i		ðf.	$e_{x_i} =$	Т	$(\partial f)^2$	1	
xi	Symbol	Representative value		$\frac{\partial x_i}{\partial x_i}$	$\begin{array}{c} e_{x_i} = \\ \frac{\sigma_i}{\sqrt{N}} \ or \ \frac{e_{x_i}}{\sqrt{3}} \ o \end{array}$	or e _s	$\left(\frac{\partial f}{\partial x_i}\right) e_{x_i}^2$		
<i>x</i> ₁								1	
<i>x</i> ₂									
<i>x</i> ₃								1	
<i>x</i> ₄									
x ₅									
	or some quantities, y		ertainty; for exa	mple the volume of	a volumetric flask r	may be giv	$e_{sf}^2 =$ e_{sf} wen as $100.00 \pm 0.04ml$. in given as $100.00 \pm 0.04ml$.	Standard error of calculated quantity f	17

	Error lir	nits on $\widehat{m{m}}$	1					
	Ordinary, Le opagation Worksheet undamentals of Chemical Engin Morrison	$e_{\scriptscriptstyle S}=e_{\scriptscriptstyle Sf}$						
$f(x_1)$	(x_2, x_3, x_4, x_5)	$\widehat{m} = \frac{n \sum_{i=1}^{n} x_i y_i - n}{n \sum_{i=1}^{n} x_i^2}$	Representative value (include units) $\widehat{(\Sigma_{i=1}^n x_i)(\Sigma_{i=1}^n y_i)} \widehat{m} = -\left(\sum_{i=1}^n x_i\right)^2$	(in	% C.I. of $f: (f \pm 2e_{sf})$ clude units) $\widehat{m} = \pm (2)(s_m)$			
	Measured qua		∂f	$e_{x_l} =$	$(\partial f)^2$			
x_i	Symbol	Representative value	$\overline{\partial x_i}$	$e_{x_i} = \frac{s_i}{\sqrt{N}} \text{ or } \frac{e_{R_i}}{\sqrt{3}} \text{ or } e_s$	$\left(\frac{\partial f}{\partial x_i}\right)^2 e_{x_i}^2$			
<i>x</i> ₁	y_1		$\frac{\partial \widehat{m}}{\partial y_1}$	$S_{y,x}$	$\left(\frac{\partial \widehat{m}}{\partial y_1}\right)^2 s_{y,x}^2$			
x_2	y_2		$\frac{\partial \widehat{m}}{\partial y_2}$	$s_{y,x}$	$\left(\frac{\partial \widehat{m}}{\partial y_2}\right)^2 s_{y,x}^2$			
<i>x</i> ₃	y_3		$\frac{\partial \widehat{m}}{\partial y_3}$	$s_{y,x}$	$\left(\frac{\partial \widehat{m}}{\partial y_3}\right)^2 s_{y,x}^2$			
<i>x</i> ₄	y_4		$rac{\partial \widehat{m}}{\partial y_4}$	$s_{y,x}$	$\left(\frac{\partial \widehat{m}}{\partial y_4}\right)^2 s_{y,x}^2$			
<i>x</i> ₅	÷		:	÷	:			
	$e_{s_f}^2 = \left(\frac{\partial f}{\partial x_*}\right)^2 e_{x_1}^2 + \left(\frac{\partial f}{\partial x_2}\right)^2 e_{x_2}^2 + \left(\frac{\partial f}{\partial x_*}\right)^2 e_{x_3}^2 + \left(\frac{\partial f}{\partial x_*}\right)^2 e_{x_4}^2 + \left(\frac{\partial f}{\partial x_*}\right)^2 e_{x_5}^2$ $e_{s_f}^2 = \left(\frac{\partial f}{\partial x_*}\right)^2 e_{x_1}^2 + \left(\frac{\partial f}{\partial x_2}\right)^2 e_{x_2}^2 + \left(\frac{\partial f}{\partial x_*}\right)^2 e_{x_3}^2 + \left(\frac{\partial f}{\partial x_*}\right)^2 e_{x_4}^2 + \left(\frac{\partial f}{\partial x_*}\right)^2 e_{x_5}^2$ units							
	$\epsilon_{s_f} - \left(\frac{\partial}{\partial x_1}\right)$	$e_{x_1} + (\partial x_2) e_{x_2} +$	$(\partial x_3)^{\epsilon_{x_3}} + (\partial x_4)^{\epsilon_{x_4}} + (\partial x_4)^{\epsilon_{x_4}}$		$e_{s_f} = s_m$ units			
				© Faith A. M	orrison, Michigan Tech U.			

	Error limits on \widehat{m}								
	Ordinary opagation Works undamentals of Chemi	$e_{\scriptscriptstyle S}=e_{\scriptscriptstyle Sf}$							
	Formula for f:				(include units)			C.I. of f : $(f\pm 2e_{sf})$ ude units)	
$f(x_1)$	$, x_2, x_3, x_4$, x ₅):	$\widehat{m} = \frac{n \sum_{i=1}^{n} x_i y_i - (\sum_{i=1}^{n} n \sum_{i=1}^{n} x_i^2 - (\sum_{i=1}^{n} x_i^2 - (\sum$	$\frac{x_i)(\sum_{i=1}^n y_i)}{\sum_{i=1}^n x_i^2}$	$\widehat{m} =$		ń	$\hat{n} = \pm (2)(s_m)$	
		d qu 🤇	Only the y_i are		$\frac{\partial f}{\partial x_i}$	$e_{x_i} = \frac{s_i}{\sqrt{N}} \text{ or } \frac{e_{R_i}}{\sqrt{3}} \text{ or } \frac{e_{R_i}}{\sqrt{3}}$		$\left(\frac{\partial f}{\partial x_i}\right)^2 e_{x_i}^2$	
x_i	Symbo	ı	variables; we		∂x_i	$\frac{1}{\sqrt{N}}$ or $\frac{N_1}{\sqrt{3}}$ or	re_{s_i}	∂x_i	
<i>x</i> ₁	y_1		assumed we knew the x_i		$\frac{\partial \widehat{m}}{\partial y_1}$	$s_{y,x}$		$\left(\frac{\partial \widehat{m}}{\partial y_1}\right)^2 s_{y,x}^2$	
<i>x</i> ₂	y_2	<u></u>	with certainty	,	$\frac{\partial \widehat{m}}{\partial y_2}$	$s_{y,x}$		$\left(\frac{\partial \widehat{m}}{\partial y_2}\right)^2 s_{y,x}^2$	
<i>x</i> ₃	y_3			$\frac{\partial \widehat{m}}{\partial y_3}$		$s_{y,x}$		$\left(\frac{\partial \widehat{m}}{\partial y_3}\right)^2 s_{y,x}^2$	
<i>x</i> ₄	y_4			$\frac{\partial \hat{m}}{\partial y_4}$				$\left(\frac{\partial \widehat{m}}{\partial y_4}\right)^2 s_{y,x}^2$	
<i>x</i> ₅	<u> </u>				:	:		:	
	$e_{s_f}^2 = \left(\frac{\partial f}{\partial x_s}\right)^2 e_{x_1}^2 + \left(\frac{\partial f}{\partial x_s}\right)^2 e_{x_2}^2 + \left(\frac{\partial f}{\partial x_s}\right)^2 e_{x_3}^2 + \left(\frac{\partial f}{\partial x_s}\right)^2 e_{x_4}^2 + \left(\frac{\partial f}{\partial x_s}\right)^2 e_{x_5}^2$ $e_{s_f}^2 = \left(\frac{\partial f}{\partial x_s}\right)^2 e_{x_1}^2 + \left(\frac{\partial f}{\partial x_s}\right)^2 e_{x_2}^2 + \left(\frac{\partial f}{\partial x_s}\right)^2 e_{x_3}^2 + \left(\frac{\partial f}{\partial x_s}\right)^2 e_{x_5}^2$ units								
	$e_{s_f}^2 = \left(\frac{\partial}{\partial s}\right)^2$	$\left(\frac{1}{x_1}\right) e_x^2$	$e_1 + \left(\frac{\partial}{\partial x_2}\right) e_{x_2}^2 + \left(\frac{\partial}{\partial x_2}\right)$	$\left(\frac{1}{x_3}\right) e_{x_3}^2$	$+\left(\frac{\partial}{\partial x_4}\right) e_{x_4}^2 +$	$\left(\frac{\partial}{\partial x_5}\right) e_{x_5}^2$		$e_{s_f} = s_m$	units
	© Faith A. Morrison, Michigan Tech U.								

Regression

$$s_{y,x}^2$$

The variance of y, given x

$$s_{y,x}^2 \equiv \left(\frac{1}{n-2}\right) \sum_{i=1}^n (y_i - \hat{y}_i)^2$$

(from the definition of variance)

The variance of the mean value of y at a given x

In Excel:

 $s_{v,x} = STEYX(y-range, x-range)$

© Faith A. Morrison, Michigan Tech U.

Ordinary, Least Squares, Linear

Regression

In Excel:

•
$$s_m^2 = \frac{(\text{STEYX}(\text{y-range}, \text{x-range})^2)}{(\text{DEVSQ}(\text{x-range}))}$$
, or

use LINEST

	Error limits on $y=\widehat{\boldsymbol{m}}x+\widehat{\boldsymbol{b}}$							
	Ordinary, Lea opagation Worksheet undamentals of Chemical Enginee Morrison	$e_S = e_{Sf}$						
f(x.	$,x_{2},x_{3},x_{4},x_{5}):$	Formula for f:	Formula for f : $y_p = \widehat{m}x_p + \widehat{b}$				95% C.I. of $f: (f \pm 2e_{sf})$ (include units) $y_p = \pm (2)(s_{y_p})$	
) (1	, 12, 13, 14, 15).	$y_p = \widehat{m}x_p - \widehat{m}x_p $						
	Measured quar	ntities, x_i		∂f	$\frac{e_{x_i}}{\sqrt{N}}$ or $\frac{e_R}{\sqrt{2}}$	=	$\left(\frac{\partial f}{\partial x_i}\right)^2 e_{x_i}^2$	
x_i	Symbol	Representative value		∂x_i	$\frac{s_i}{\sqrt{N}}$ or $\frac{e_R}{\sqrt{3}}$	or e _{si}	$\left(\frac{\partial x_i}{\partial x_i}\right)^{i} e_{x_i}^{i}$	
<i>x</i> ₁	\widehat{m}			$\frac{\partial y_p}{\partial \widehat{m}} = x_p$	s_m	ļ.	$\left(x_p s_m\right)^2$	
<i>x</i> ₂	x_p			$\frac{\partial y_p}{\partial x_p} = \widehat{m}$	0		0	
<i>x</i> ₃	\widehat{b}			$\frac{\partial y_p}{\partial \hat{b}} = 1$	Sb		s_b^2	
<i>x</i> ₄		But,	\widehat{m} and \widehat{b} ar	e not				
<i>x</i> ₅			independent (both are calculated from the y_i).					
$e_{s_f}^2 = \left(\frac{\partial f}{\partial x_1}\right)^2 e_{x_1}^2 + \left(\frac{\partial f}{\partial x_2}\right)^2 e_{x_2}^2 + \left(\frac{\partial f}{\partial x_3}\right)^2 e_{x_3}^2 + \left(\frac{\partial f}{\partial x_4}\right)^2 e_{x_4}^2 + \left(\frac{\partial f}{\partial x_2}\right)^2 e_{x_5}^2$ $e_{s_f}^2 = \left(\frac{\partial f}{\partial x_2}\right)^2 e_{x_1}^2 + \left(\frac{\partial f}{\partial x_2}\right)^2 e_{x_2}^2 + \left(\frac{\partial f}{\partial x_3}\right)^2 e_{x_3}^2 + \left(\frac{\partial f}{\partial x_4}\right)^2 e_{x_4}^2 + \left(\frac{\partial f}{\partial x_2}\right)^2 e_{x_5}^2$							$e_{s_f}^2 = s_{y_p}^2$	
	$e_{s_f} = \left(\frac{\partial}{\partial x_1}\right) e_{s_f}$	$(\overline{x_1} + (\overline{\partial x_2})) e_{x_2}^2 +$	$\left(\overline{\partial x_3}\right) e_{x_3}^2$	$+\left(\overline{\partial x_4}\right) e_{x_4}^2$	$+\left(\overline{\partial x_5}\right) e_{x_5}^2$		$e_{sf} = s_{y_p}$ units	
					© Fai	th A. Mo	rrison, Michigan Tech U.	

	Error lim Ordinary, Lea opagation Worksheet andamentals of Chemical Enginee Morrison	st Squares, Li			Answe	$e_{S}=e_{Sf}$		
$f(x_1$	(x_2, x_3, x_4, x_5) :	Formula for f : $y_p = \widehat{m}x_p$		(include units)		95% C.I. of $f: (f \pm 2e_{sf})$ (include units) $y_p = \pm (2)(s_{y_p})$		
	Measured quar	itities, x_i		∂f	$e_{x_i} =$	$(\partial f)^2$		
x_i	Symbol	Representative value		$\overline{\partial x_i}$	$\frac{s_i}{\sqrt{N}} \text{ or } \frac{e_{R_i}}{\sqrt{3}} \text{ or }$	$\left(\frac{\partial f}{\partial x_i}\right)^2 e_{x_i}^2$		
<i>x</i> ₁	\widehat{m}			$\frac{\partial y_p}{\partial \widehat{m}} = x_p$	s_m	$\left(x_p s_m\right)^2$		
<i>x</i> ₂	x_p			$\frac{\partial y_p}{\partial x_p} = \widehat{m}$	0	0		
<i>x</i> ₃	\hat{b}			$\frac{\partial y_p}{\partial \hat{b}} = 1$	Sb	s_b^2		
<i>x</i> ₄				,				
<i>x</i> ₅				+2	$\left(\frac{\partial y_p}{\partial \widehat{m}}\right) \left(\frac{\partial y_p}{\partial \widehat{b}}\right)$	$Cov(\widehat{m}, \widehat{b})$		
	$e_{s_f}^2 = \left(\frac{\partial f}{\partial x_1}\right)^2 e_{x_1}^2 + \left(\frac{\partial f}{\partial x_2}\right)^2 e_{x_2}^2 + \left(\frac{\partial f}{\partial x_3}\right)^2 e_{x_3}^2 + \left(\frac{\partial f}{\partial x_4}\right)^2 e_{x_4}^2 + \left(\frac{\partial f}{\partial x_5}\right)^2 e_{x_5}^2 $ $\frac{e_{s_f}^2 = s_{y_p}^2}{e_{s_f}^2 = s_{y_p}^2}$ units							
					© Faith A	Morrison, Michigan Tech U.		

Regression

What are the error limits on a value of y obtained from the equation $y = \hat{m}x + b$?

Answer:

at
$$x_p$$
, $y_p = (\widehat{m}x_p + \widehat{b}) \pm 2s_{y_p}$

$$s_{y_p}^2 = s_{y,x}^2 \left(\frac{1}{n} + \frac{(x_p - \bar{x})^2}{SS_{xx}} \right)$$

for $n-2 \le 6$, replace "2" with $t_{0.025,n-2}$

Use this for error limits on the fit (95% CI).

indicated on previous slide see Appendix B of the handout.)

In Excel:

(final result of the algebra

- $s_{y,x} = STEYX(y-range,x-range)$
- $SS_{xx} = DEVSQ(x-range)$

y 1

• $\bar{x} = AVERAGE(x-range)$

© Faith A. Morrison, Michigan Tech U.

Ordinary, Least Squares, Linear

Regression

What are the error limits on a predicted next value of y obtained from the equation $y = \widehat{m}x + b$?

at x_p , we predict a <u>new measurement</u> of y will fall in the prediction interval:

$$y_{\hat{p}} = (\widehat{m}x_p + \widehat{b}) \pm 2e_s$$

Regression

What are the error limits on a predicted next value of y obtained from the equation $y = \widehat{m}x + b$?

Answer:

at x_p , we predict a <u>new measurement</u> of y will fall in the prediction interval:

$$y_{\hat{p}} = \left(\widehat{m}x_p + \widehat{b}\right) \, \pm \, 2e_s$$

The new measurement $y_{\hat{p}}$ will have the same scatter as the source measurements and is less certain than the prediction of the mean value y_p at x_p .

Solve with same approach as we have been using: write the equation to calculate the quantity, then propagate the error.

(See Appendix B of the handout.)

© Faith A. Morrison, Michigan Tech U.

Ordinary, Least Squares, Linear

Regression

What are the error limits on a predicted next value of y obtained from the equation $y = \widehat{m}x + b$?

Answer:

at x_p , we predict a <u>new measurement</u> of y will fall in the prediction interval:

$$y_{\hat{p}} = (\hat{m}x_p + \hat{b}) \pm 2s_{y_{\hat{p}}}$$
$$s_{y_{\hat{p}}}^2 = s_{y,x}^2 \left(1 + \frac{1}{n} + \frac{(x_p - \bar{x})^2}{SS_{xx}} \right)$$

(See Appendix B of the handout.)

for $n-2 \leq 6$, replace "2" with $t_{0.025,n-2}$

Use this for predicting next likely y (95% PI).

Summary:

Uncertainty Ordinary, Least Squares, Linear Regression

- The Ordinary Least Squares Linear Regression method provides the equations needed to obtain model parameters slope and intercept.
- The equations for the parameters may be used with error propagation to obtain the variances associated with the parameters

- For $n-2 \le 6$, the 95% CI is constructed as $\pm t_{0.025,n-2}e_S$
- We can construct 95% CI on the mean value of y at a chosen x. These CI are used for error range on the fit.
- We can construct 95% prediction intervals (PI) on a next value of y at a chosen x. These are used for bracketing likely observed next values of y.

y = x slope = m intercept = b

i	$ x_i $	y_i	\hat{y}_i
1	x_1	y_1	\hat{y}_1
2	x_2	y_2	\hat{y}_2
:	:	:	:
n	x_n	y_n	\hat{y}_n

© Faith A. Morrison, Michigan Tech U.

Excel Summary:

Uncertainty Ordinary, Least Squares, Linear Regression

- $\bar{x} = AVERAGE(range)$
- $s^2 = VAR.S(range)$
- s = STDEV.S(range)
- n = COUNT(range)
- $SS_{xx} = DEVSQ(x-range)$
- $\widehat{m} = SLOPE(y-range, x-range)$
- $\hat{b} = INTERCEPT(y-range,x-range)$
- $s_{y,x} = STEYX(y-range, x-range)$
- LINEST (see handout)
- LOGEST (look it up)

- $s_m^2 = \frac{s_{y,x}^2}{s_{xx}}$
- $s_b^2 = s_{y,x}^2 \left(\frac{1}{n} + \frac{\bar{x}^2}{s_{S_{xx}}} \right)$

Use for CI error bars on y-values $s_{y_p}^2 = s_{y,x}^2 \left(\frac{1}{n} + \frac{(x_p - \bar{x})^2}{SS_{xx}} \right)$

Use for PI $\left\{ s_{y_{\bar{p}}}^2 = s_{y,x}^2 \left(1 + \frac{1}{n} + \frac{\left(x_p - \bar{x} \right)^2}{SS_{xx}} \right) \right\}$ value of y

Excel Handy List:

Uncertainty Ordinary, Least Squares, Linear Regression

- $\hat{y}(x_p) = \text{TREND}(\text{known-y's, known-x's}, x_p)$ for y and x related by y = mx + b
- $\hat{y}(x_p) = \text{GROWTH}(\text{known-y's, known-x's, } x_p) \text{ for } y \text{ and } x \text{ related by } y = ae^{bx}$

39

© Faith A. Morrison, Michigan Tech U.

One final piece of advice:

Uncertainty Ordinary, Least Squares, Linear Regression

Often, you can **transform** your data to make it linear, allowing you to use linear regression. For example, if you know the y-data vary as the square root of the x-data, then

y versus
$$\sqrt{x}$$

will be linear. If data plotted with log-log scaling (using scatterplot) look quadratic, then

 $\log y$ versus $\log x$

will be quadratic, and we can use trendline to obtain a fit:

$$\log y = a(\log x)^2 + b(\log x) + c$$

Transforming data can greatly broaden our ability to fit empirical models to data.

40

