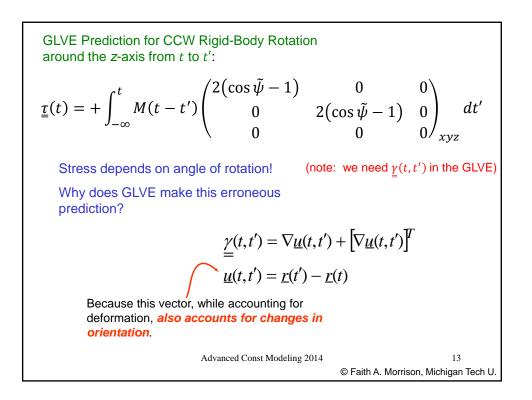
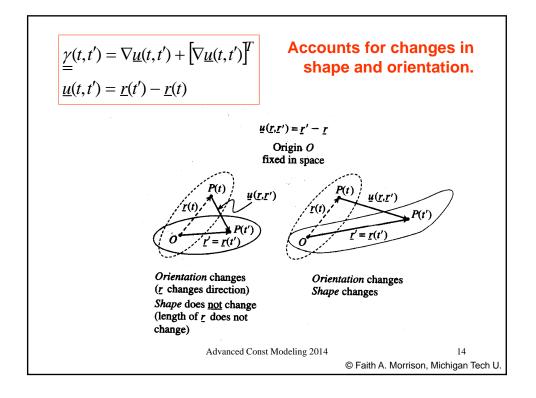
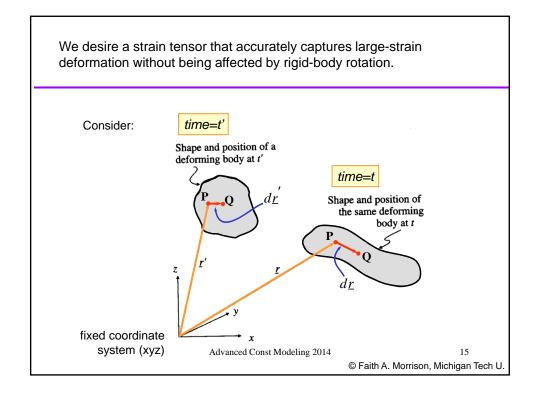


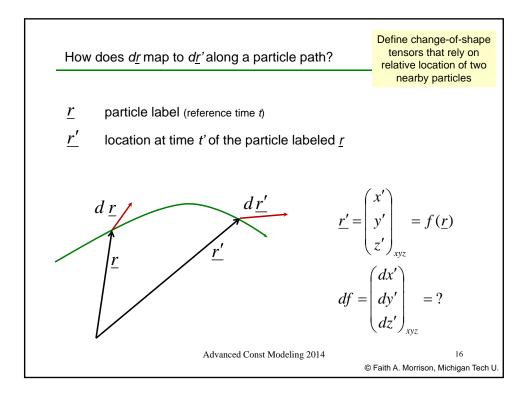
What does the GLVE Predict for CCW Rigid-Body
Rotation around the z-axis from t to t'?

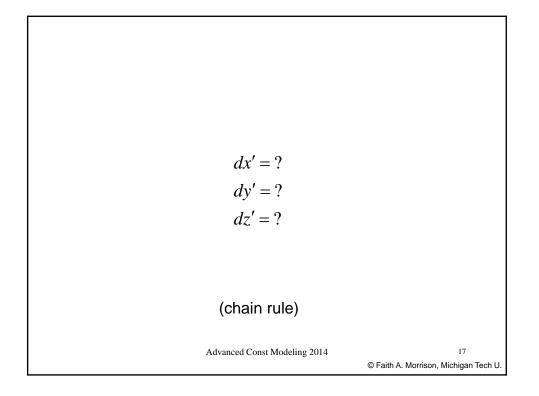
$$y = \bar{r} \sin \beta \qquad \text{From geometry} \\ x = \bar{r} \cos \beta \qquad \text{From trigonometry} \\ y' = \bar{r} \sin(\beta + \tilde{\psi}) = \bar{r}(\sin\beta\cos\tilde{\psi} + \sin\tilde{\psi}\cos\beta) \\ = y\cos\tilde{\psi} + x\sin\tilde{\psi} \\ x' = \bar{r}\cos(\beta + \tilde{\psi}) = \bar{r}(\cos\beta\cos\tilde{\psi} - \sin\beta\sin\tilde{\psi}) \\ = x\cos\tilde{\psi} - y\sin\tilde{\psi} \\ z = z' \qquad \text{From definition} \\ \underline{u} = \bar{r}' - \bar{r} = \begin{pmatrix} x\cos\tilde{\psi} - y\sin\tilde{\psi} - x \\ y\cos\tilde{\psi} + x\sin\tilde{\psi} - y \\ 0 \end{pmatrix}_{xyz} \\ \underline{\gamma}(t, t') = \nabla \underline{u} + (\nabla \underline{u})^T = \\ \text{Advanced Const Modeling 2014} \qquad 12 \\ @ Faith A. Morrison, Michigan Tech U. \end{cases}$$

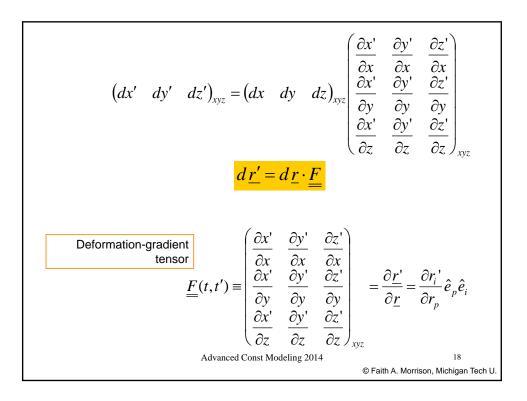


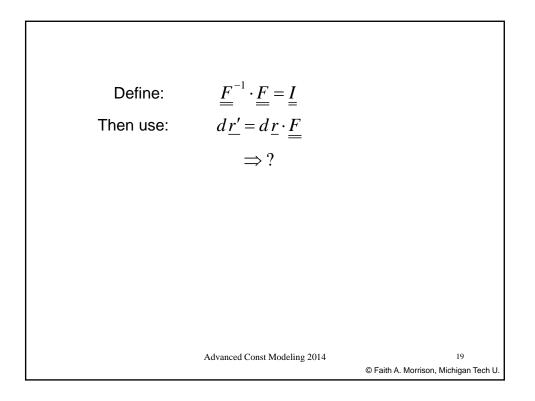






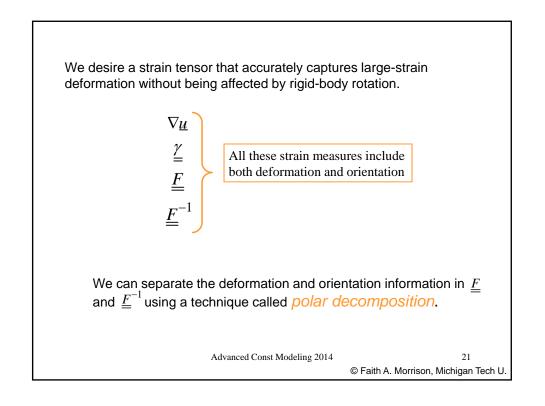


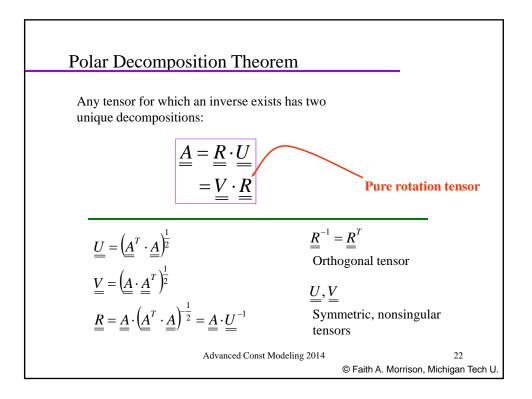


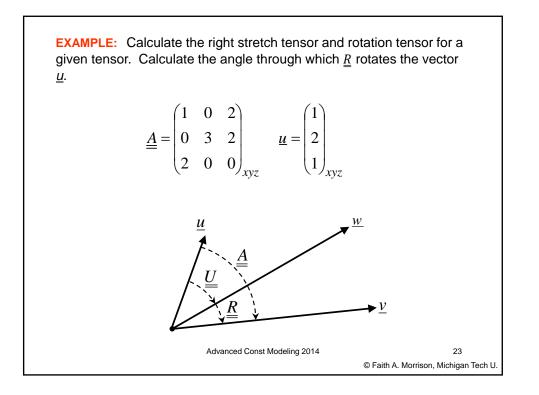


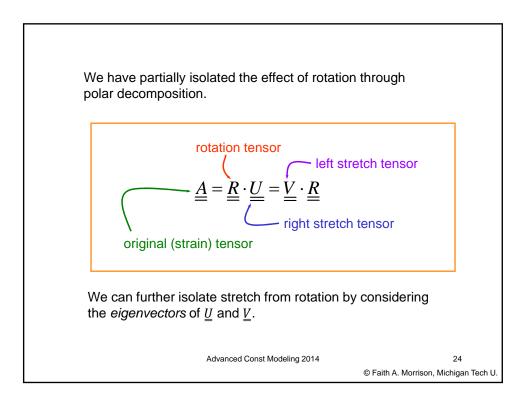
$$\begin{split} \begin{array}{l} \begin{array}{c} \text{Deformation-gradient}\\ \text{tensor} \\ d\underline{r}' = d\underline{r} \cdot \underline{F} \\ \hline \underline{F}(t,t') = \begin{pmatrix} \frac{\partial x'}{\partial x} & \frac{\partial y'}{\partial x} & \frac{\partial z'}{\partial x} \\ \frac{\partial x'}{\partial x} & \frac{\partial y'}{\partial y} & \frac{\partial z'}{\partial y} \\ \frac{\partial x'}{\partial z} & \frac{\partial y'}{\partial z} & \frac{\partial z'}{\partial z} \\ \frac{\partial x'}{\partial z} & \frac{\partial y'}{\partial z} & \frac{\partial z'}{\partial z} \\ \end{pmatrix}_{xyz} \\ \end{split} = \frac{\partial \underline{r}'}{\partial \underline{r}} = \frac{\partial r_i'}{\partial r_p} \hat{e}_p \hat{e}_i \\ \hline \frac{\partial x}{\partial z} & \frac{\partial y'}{\partial z} & \frac{\partial z'}{\partial z} \\ \frac{\partial x'}{\partial x'} & \frac{\partial y}{\partial x'} & \frac{\partial z}{\partial z'} \\ \frac{\partial x'}{\partial y'} & \frac{\partial y'}{\partial y'} & \frac{\partial z}{\partial z'} \\ \frac{\partial y'}{\partial z'} & \frac{\partial y}{\partial y'} & \frac{\partial z}{\partial z'} \\ \frac{\partial x}{\partial z'} & \frac{\partial y}{\partial y'} & \frac{\partial z}{\partial z'} \\ \frac{\partial x}{\partial z'} & \frac{\partial y}{\partial z'} & \frac{\partial z}{\partial z'} \\ \end{pmatrix}_{xyz} \\ \end{array} = \frac{\partial \underline{r}}{\partial \underline{r}'} = \frac{\partial r_m}{\partial r_j'} \hat{e}_j \hat{e}_m \\ \end{array}$$

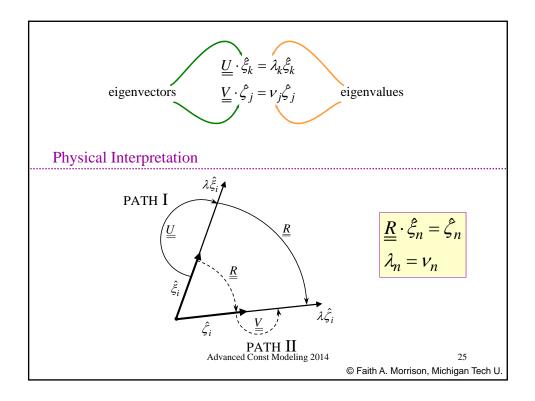
$$Advanced Const Modeling 2014 \qquad 20 \\ \text{@ Faith A. Morrison, Michigan Tech U.} \end{split}$$

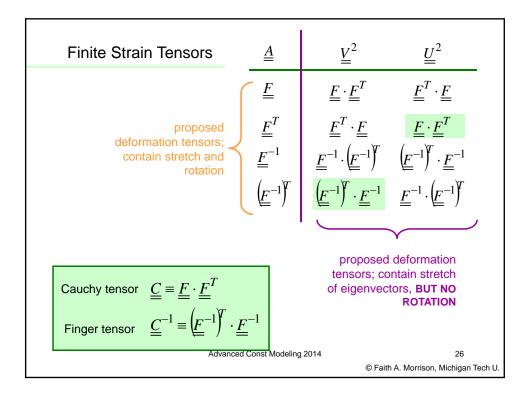


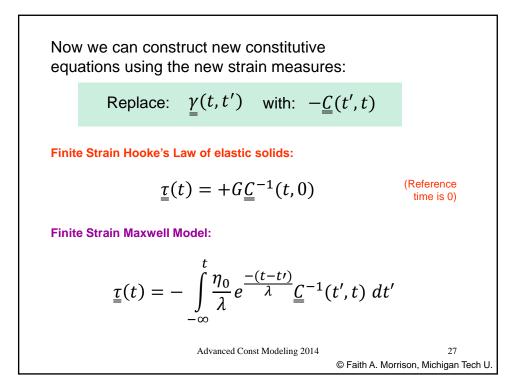












Now we can construct new constitutive
equations using the new strain measures:

$$\mathbb{R}eplace: \quad \underline{\gamma}(t,t') \quad \text{with}: \quad -\underline{\mathcal{G}}(t',t)$$
Finite Strain Hooke's Law of elastic solids:

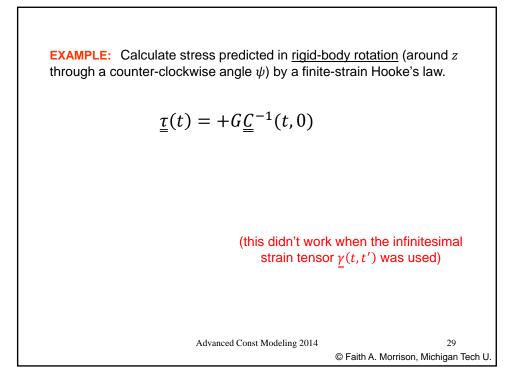
$$\underline{\underline{r}}(t) = +G\underline{\underline{C}}^{-1}(t,0)$$
Time to
take these
out for a
spin

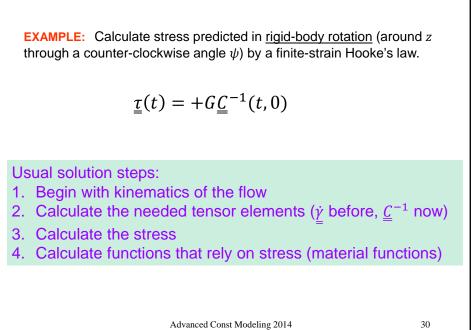
$$\underline{\underline{r}}(t) = -\int_{-\infty}^{t} \frac{\eta_0}{\lambda} e^{\frac{-(t-t')}{\lambda}} \underline{\underline{C}}^{-1}(t',t) dt'$$

$$Advanced Const Modeling 2014$$

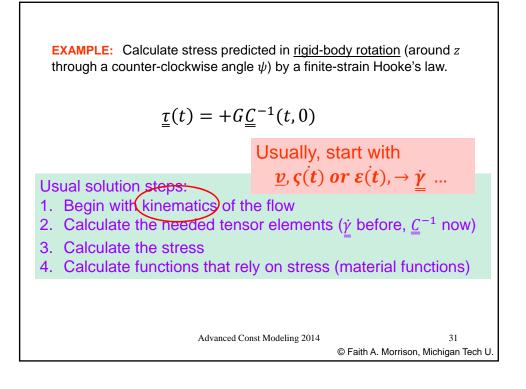
$$28$$

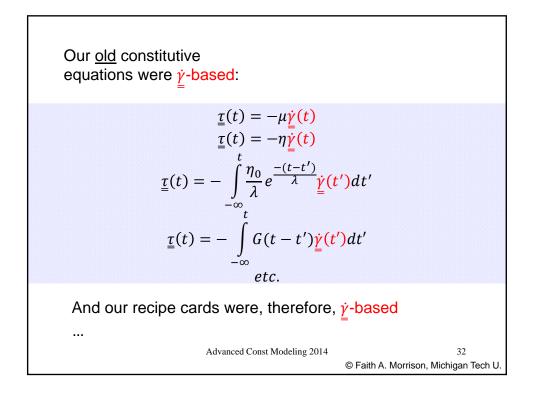
$$(Faith A. Morrison, Michigan Tech U.)$$

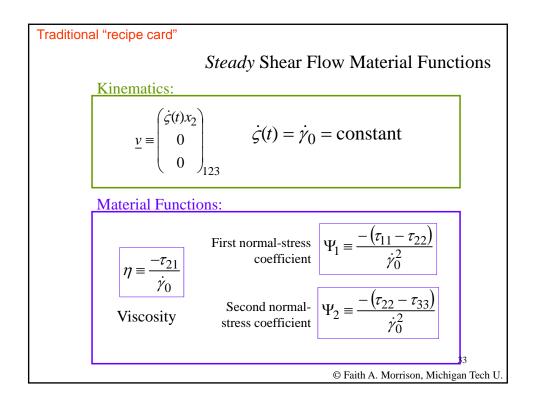


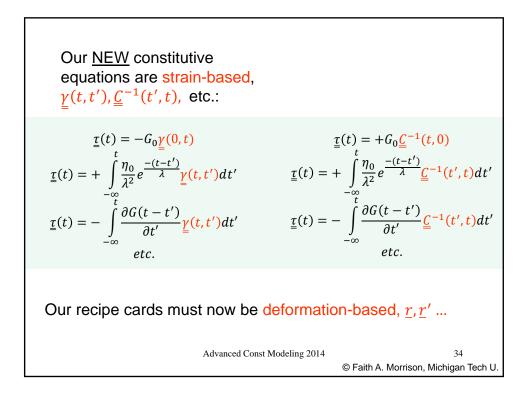


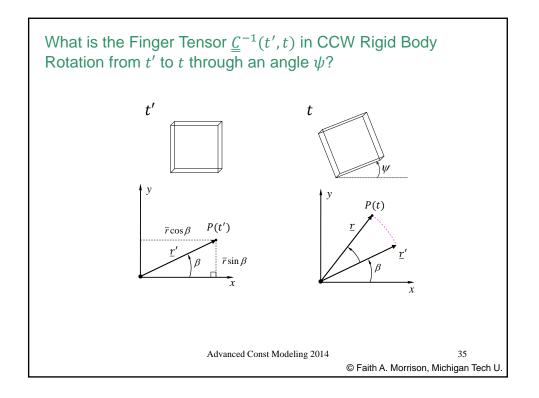
© Faith A. Morrison, Michigan Tech U.











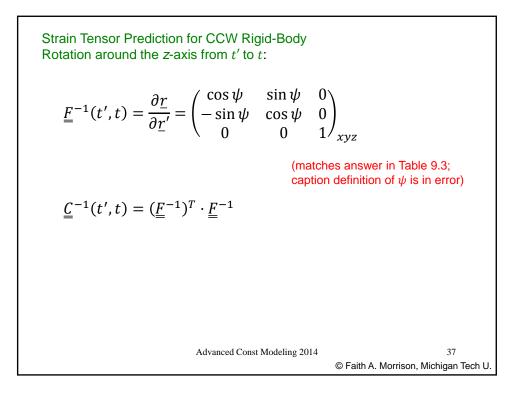
Strain Tensor Prediction for CCW Rigid-Body
Rotation around the z-axis from t' to t:

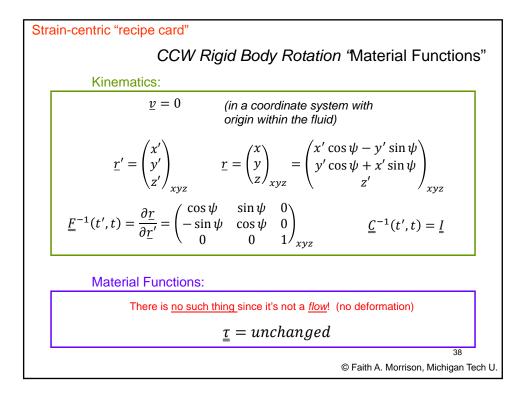
$$\begin{aligned} x' &= \bar{r} \cos \beta & \text{From geometry} \\ y' &= \bar{r} \sin \beta & \text{From trigonometry} \end{aligned}$$

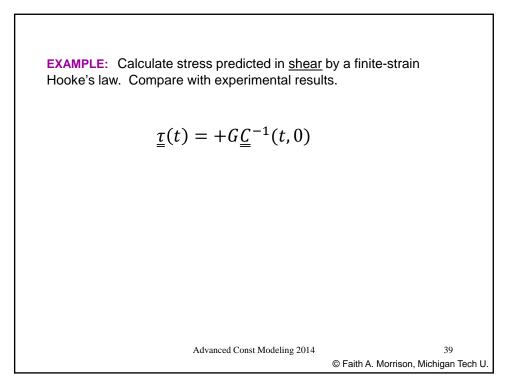
$$rem trigonometry$$

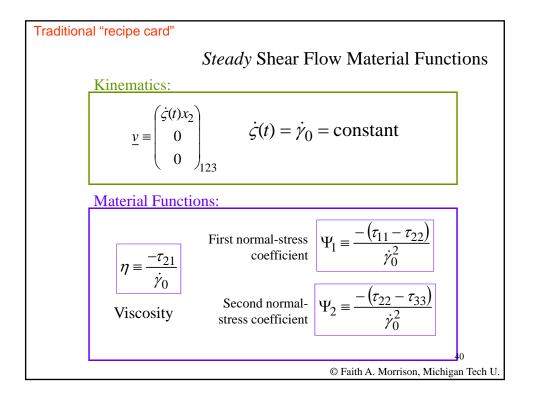
$$x &= \bar{r} \cos(\beta + \psi) = \bar{r} (\cos \beta \cos \psi - \sin \beta \sin \psi) \\ = x' \cos \psi - y' \sin \psi \\ y &= \bar{r} \sin(\beta + \psi) = \bar{r} (\sin \beta \cos \psi + \sin \psi \cos \beta) \\ = y' \cos \psi + x' \sin \psi \\ z &= z' \end{aligned}$$
From definition:

$$\underbrace{F}_{=}^{-1}(t', t) = \frac{\partial r}{\partial t'} = \dots$$
Advanced Const Modeling 2014 36
(a Faith A. Morrison, Michigan Tech U.

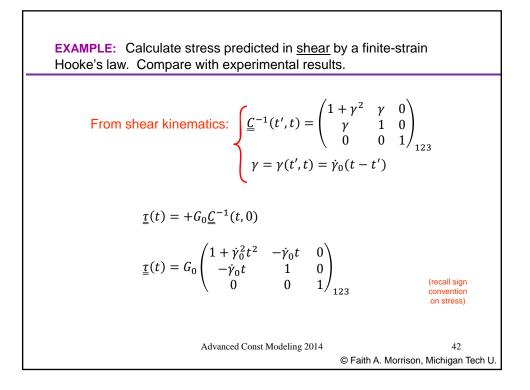


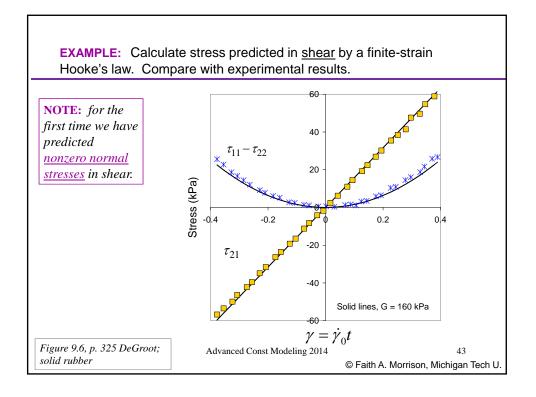






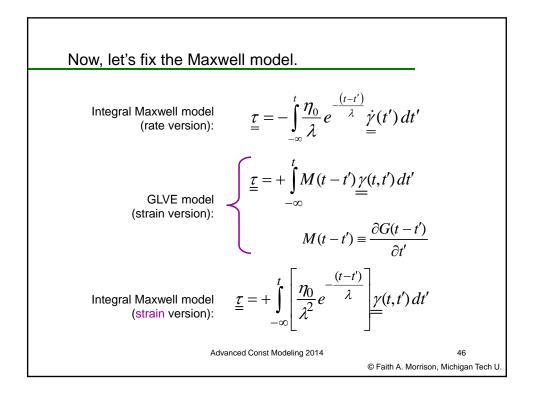
Strain-centric "recipe card"	
Kinematics:	Steady Shear Flow Material Functions
$\underline{v} \equiv \begin{pmatrix} \dot{\varsigma}(t)x_2 \\ 0 \\ 0 \end{pmatrix}_{123}$	$\dot{\varsigma}(t) = \gamma_0 = \text{constant}$
$\underline{r}' = \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}_{123}$	$\underline{r} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}_{123} = \begin{pmatrix} x' + \dot{\gamma}_0(t - t') \\ y' \\ z' \end{pmatrix}_{123}$
$\underline{\underline{F}}^{-1}(t',t) = \begin{pmatrix} 1 & 0 & 0 \\ \gamma & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}_{123} \underline{\underline{f}}$	$\underline{\underline{C}}^{-1}(t',t) = \begin{pmatrix} 1+\gamma^2 & \gamma & 0\\ \gamma & 1 & 0\\ 0 & 0 & 1 \end{pmatrix}_{123} \gamma = \dot{\gamma}_0(t-t')$
Material Functions:	
Viscosity F	First normal-stress Second normal-stress coefficient coefficient
$\eta \equiv \frac{-\tau_{21}}{\dot{\gamma}_0} \qquad \Psi$	$ _{1} \equiv \frac{-(\tau_{11} - \tau_{22})}{\dot{\gamma}_{0}^{2}} \qquad \Psi_{2} \equiv \frac{-(\tau_{22} - \tau_{33})}{\dot{\gamma}_{0}^{2}} $
	© Faith A. Morrison, Michigan Tech U.

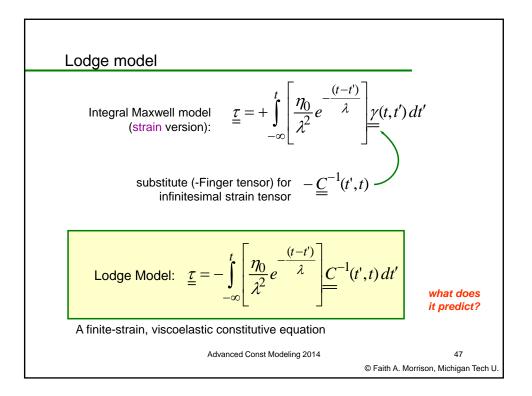


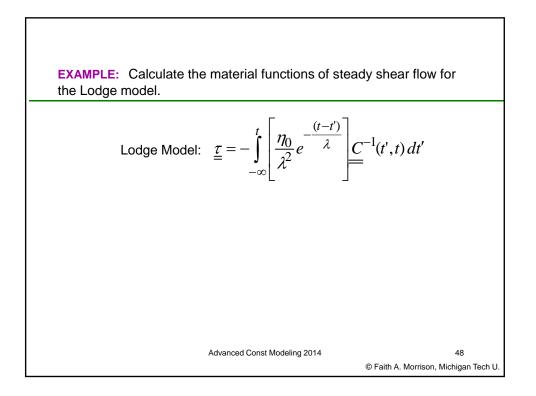


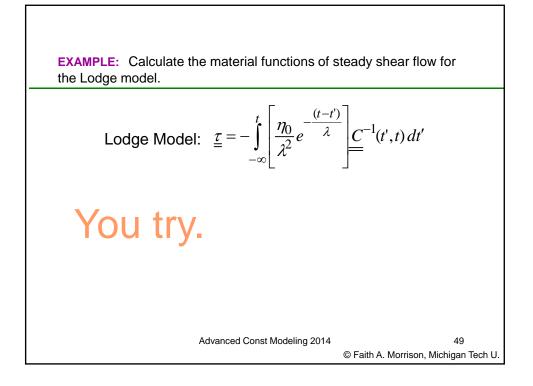
tensor	shear in 1-direction with gradient in 2-direction	uniaxial clongation in 3-direction	ccw rotation around \hat{e}_{3}	Table 9.3 has strain tensors for
$\underline{\underline{F}}(t, t')$	$\left(\begin{array}{rrr} 1 & 0 & 0 \\ -\gamma & 1 & 0 \\ 0 & 0 & 1 \end{array}\right)_{123}$	$\left(\begin{array}{ccc} e^{\frac{\epsilon}{5}} & 0 & 0 \\ 0 & e^{\frac{\epsilon}{3}} & 0 \\ 0 & 0 & e^{-\epsilon} \end{array}\right)_{123}$	$ \begin{pmatrix} \cos\psi & -\sin\psi & 0\\ \sin\psi & \cos\psi & 0\\ 0 & 0 & 1 \end{pmatrix}_{123}$	standard flows
$\underline{F}^{-1}(t',t)$	$\left(\begin{array}{rrrr} 1 & 0 & 0 \\ \gamma & 1 & 0 \\ 0 & 0 & 1 \end{array}\right)_{123}$	$ \begin{pmatrix} e^{-\frac{\epsilon}{2}} & 0 & 0 \\ 0 & e^{-\frac{\epsilon}{2}} & 0 \\ 0 & 0 & e^{\epsilon} \end{pmatrix}_{123} $	$ \left(\begin{array}{ccc} \cos\psi & \sin\psi & 0 \\ -\sin\psi & \cos\psi & 0 \\ 0 & 0 & 1 \end{array} \right)_{123} \label{eq:phi}$	
$\underline{\underline{C}}(t, t')$	$ \begin{pmatrix} 1 & -\gamma & 0 \\ -\gamma & 1+\gamma^2 & 0 \\ 0 & 0 & 1 \end{pmatrix}_{123} $	$\left(\begin{array}{ccc} e^{\epsilon} & 0 & 0 \\ 0 & e^{\epsilon} & 0 \\ 0 & 0 & e^{-2\epsilon} \end{array}\right)_{123}$	Ī	
$\underline{C}^{-1}(t',t)$	$\left(\begin{array}{ccc} 1+\gamma^2 & \gamma & 0 \\ \gamma & 1 & 0 \\ 0 & 0 & 1 \end{array}\right)_{123}$	$ \begin{pmatrix} e^{-\epsilon} & 0 & 0 \\ 0 & e^{-\epsilon} & 0 \\ 0 & 0 & e^{2\epsilon} \end{pmatrix}_{123} \\$	Ī	
$\underline{\gamma}^{[o]}(t, t')$	$\left(\begin{array}{ccc} 0 & -\gamma & 0 \\ -\gamma & \gamma^2 & 0 \\ 0 & 0 & 1 \end{array}\right)_{123}$	$\left(\begin{array}{ccc} e^{\epsilon}-1 & 0 & 0 \\ 0 & e^{\epsilon}-1 & 0 \\ 0 & 0 & e^{-2\epsilon}-1 \end{array}\right)_{123}$	<u>0</u>	(Note there is a typo in the definition of ψ in the
$\underline{\underline{\gamma}}_{ioi}(t, t')$	$\left(\begin{array}{ccc} -\gamma^2 & \gamma & 0 \\ \gamma & 0 & 0 \\ 0 & 0 & 0 \end{array}\right)_{123}$	$\left(\begin{array}{ccc} e^{-\epsilon}-1 & 0 & 0 \\ 0 & e^{-\epsilon}-1 & 0 \\ 0 & 0 & e^{2\epsilon}-1 \end{array}\right)_{123}$	Q	caption of Table 9.3; there is says from \underline{r} to \underline{r}' , which is backwards.)
	$\gamma(t',t) = \int_{t'}^{t} \dot{\varsigma}(t'')$		gle from \underline{r}' to \underline{r} in our d \hat{e}	Ccw This is correct
$\epsilon = \epsilon$	$\epsilon(t',t) = \int_{t'}^{t} \dot{\epsilon}(t'')$	dt'' Advanced Const Mod	L	44
	•		© Faith	A. Morrison, Michigan Tech U.

Name	This Text	Larson [138]	DPL [26]	Macosko [162]	Middleman [179
Stress tensor	$\underline{\underline{\Pi}} = \underline{\underline{\tau}} + p\underline{\underline{I}}$	$-\underline{\underline{T}} = -\underline{\underline{\sigma}} + p\underline{\underline{I}}$	$\underline{\underline{\Pi}} = \underline{\underline{\tau}} + p \underline{\underline{I}}$	$-\underline{\underline{T}} = -\underline{\underline{\tau}} + p\underline{\underline{I}}$	$-\underline{\underline{T}} = -\underline{\underline{\tau}} + p\underline{\underline{I}}$
Gradient of a vector	$\nabla \underline{w} = \frac{\partial w_p}{\partial x_k} \hat{e}_k \hat{e}_p$	$\nabla \underline{w} = \frac{\partial w_p}{\partial x_k} \hat{e}_k \hat{e}_p$	$\nabla \underline{w} = \frac{\partial w_p}{\partial x_k} \hat{e}_k \hat{e}_p$	$\tilde{\nabla}\underline{w} = \frac{\partial w_p}{\partial x_k} \hat{e}_p \hat{e}_k$	$\tilde{\nabla}\underline{w} = \frac{\partial w_p}{\partial x_k} \hat{e}_p \hat{e}_k$
Deformation-gradient tensor	<u>F</u>	<u>F</u>	$\underline{\Delta}^{T}$	$(\underline{\mathbb{E}}^{-1})^T$	-
Inverse deformation-gradient tensor	<u>F</u> ⁻¹	$\underline{\underline{F}}^{-1}$	$\underline{\underline{E}}^{T}$	Ē	· — .
Cauchy tensor	<u>C</u>	<u>⊆</u>	$\underline{\underline{B}}^{-1}$	<u>B</u> ⁻¹	
Finger tensor	$\underline{\underline{C}}^{-1}$	$\underline{\underline{C}}^{-1}$	<u>B</u>	<u>B</u>	
Finite strain based on Cauchy	<u><u></u><i>Y</i>^[0]</u>	<u>⊆</u> – <u>I</u>	<u>×</u> ^[0]	$\underline{\underline{B}}^{-1} - \underline{\underline{I}}$	_
Finite strain based on Finger	<u>γ</u> ≕[0]	$\underline{I} - \underline{\underline{C}}^{-1}$	¥_[0]	- <u>Ē</u>	_
Rate-of-strain tensor	<u>Ý</u>	2 <u>D</u>	<u>Ý</u>	2 <u>₽</u>	≙
Green tensor	$\underline{\underline{F}}^{-1} \cdot (\underline{\underline{F}}^{-1})^T$	$\underline{\underline{F}}^{-1} \cdot (\underline{\underline{F}}^{-1})^T$	$\underline{\underline{E}}^T \cdot \underline{\underline{E}}$	Ē	_
		ed Const Modeli			45

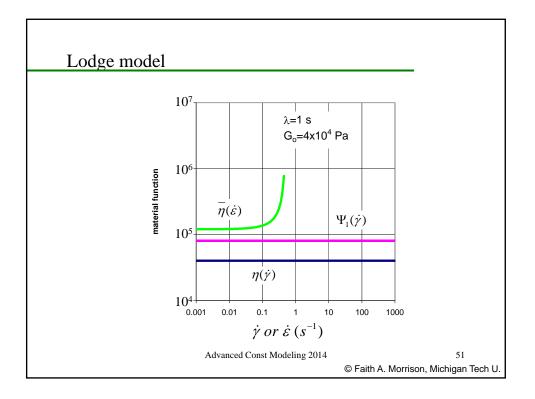


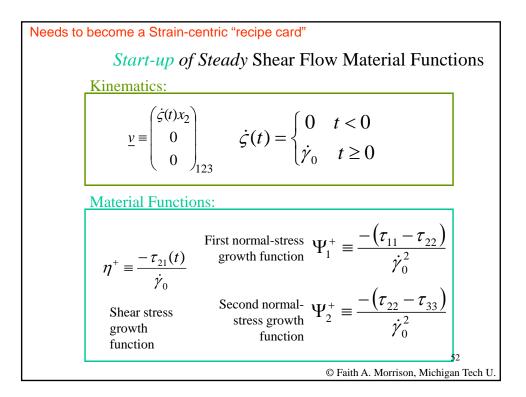


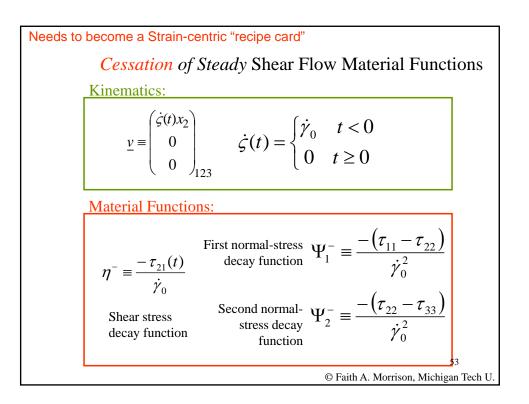


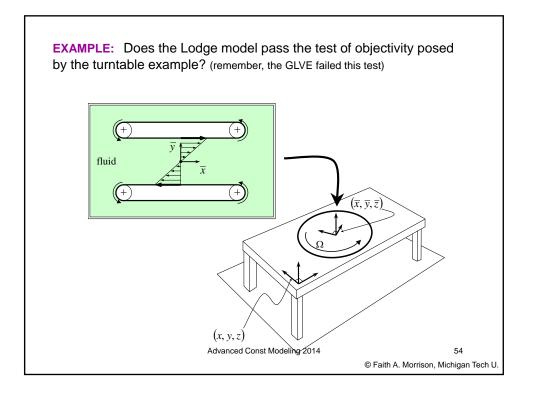


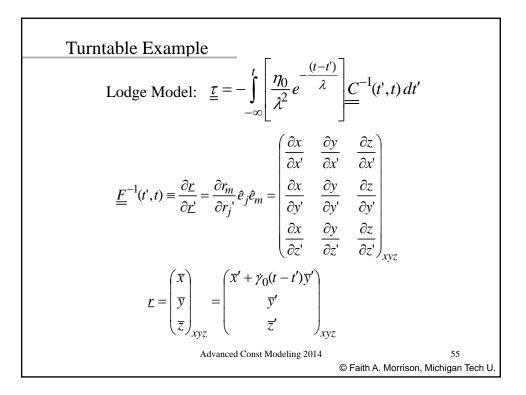
Strain-centric "recipe card"	
Kinematics:	Steady Shear Flow Material Functions
$\underline{v} \equiv \begin{pmatrix} \dot{\varsigma}(t)x_2 \\ 0 \\ 0 \end{pmatrix}_{123}$	$\dot{\varsigma}(t) = \gamma_0 = \text{constant}$
$\underline{r}' = \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}_{123}$	$\underline{r} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}_{123} = \begin{pmatrix} x' + \dot{\gamma}_0(t - t') \\ y' \\ z' \end{pmatrix}_{123}$
$\underline{\underline{F}}^{-1}(t',t) = \begin{pmatrix} 1 & 0 & 0 \\ \gamma & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}_{123}$	$\underline{\underline{C}}^{-1}(t',t) = \begin{pmatrix} 1+\gamma^2 & \gamma & 0\\ \gamma & 1 & 0\\ 0 & 0 & 1 \end{pmatrix}_{123} \gamma = \dot{\gamma}_0(t-t')$
Material Functions:	
Viscosity	First normal-stress Second normal-stress coefficient coefficient
$\eta \equiv \frac{-\tau_{21}}{\dot{\gamma}_0} \qquad \Psi$	$\Psi_1 \equiv \frac{-(\tau_{11} - \tau_{22})}{\dot{\gamma}_0^2} \qquad \Psi_2 \equiv \frac{-(\tau_{22} - \tau_{33})}{\dot{\gamma}_0^2} \qquad _{50}$
	© Faith A. Morrison, Michigan Tech U.

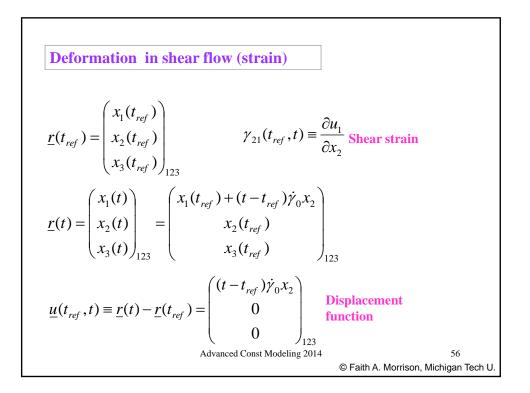


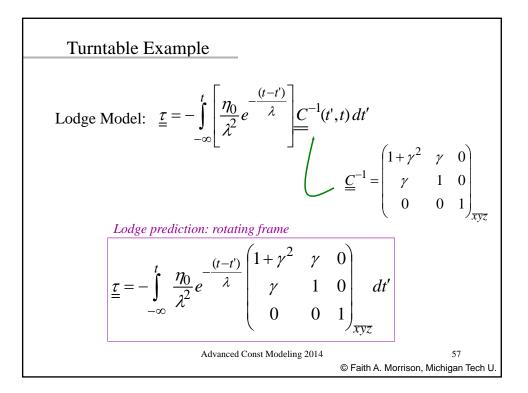












Lodge turntable - from stationary frame

$$\begin{aligned}
\mathbf{r} &= \begin{pmatrix} x \\ y \\ z \end{pmatrix}_{xyz} = \begin{pmatrix} x_0 + (y' - y_0) \begin{bmatrix} -SC' + CS' + CC'\gamma \end{bmatrix} + (x' - x_0) \begin{bmatrix} SS' + CC' - CS'\gamma \end{bmatrix} \\
y_0 + (y' - y_0) \begin{bmatrix} C'C + S'S + SC'\gamma \end{bmatrix} + (x' - x_0) \begin{bmatrix} -CS' + SC' - SS'\gamma \end{bmatrix} \\
y_0 + (y' - y_0) \begin{bmatrix} C'C + S'S + SC'\gamma \end{bmatrix} + (x' - x_0) \begin{bmatrix} -CS' + SC' - SS'\gamma \end{bmatrix} \\
z' \end{aligned}$$

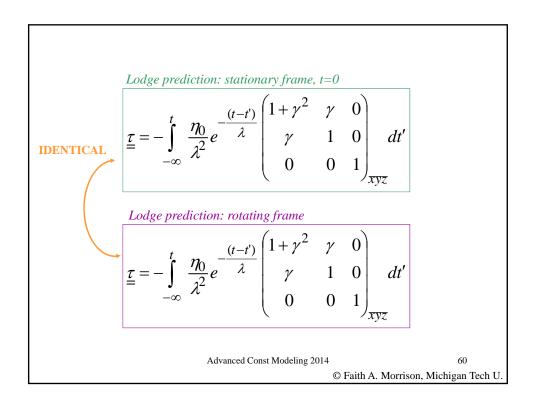
$$\begin{aligned}
S &= \sin \Omega t \\
S' &= \sin \Omega t \\
C &= \cos \Omega t \\
C' &= \cos \Omega t \\
C' &= \cos \Omega t' \\
\gamma &= \dot{\gamma}_0(t - t')
\end{aligned}$$

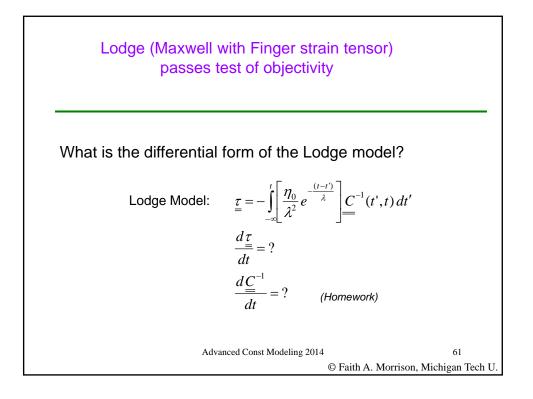
$$\underbrace{\mathbf{F}^{-1}(t', t) = \frac{\partial t'}{\partial t'} = \frac{\partial t''_m}{\partial t'_j} e_j e_m = \begin{pmatrix} \frac{\partial x}{\partial x'} & \frac{\partial y}{\partial x'} & \frac{\partial z}{\partial x'} \\
\frac{\partial x}{\partial y'} & \frac{\partial y}{\partial y'} & \frac{\partial z}{\partial y'} \\
\frac{\partial x}{\partial z'} & \frac{\partial y}{\partial z'} & \frac{\partial z}{\partial z'} \\
\frac{\partial x}{\partial z'} & \frac{\partial y}{\partial z'} & \frac{\partial z}{\partial z'} \\
\frac{\partial x}{\partial z'} & \frac{\partial y}{\partial z'} & \frac{\partial z}{\partial z'} \\
\frac{\partial x}{\partial z'} & \frac{\partial y}{\partial z'} & \frac{\partial z}{\partial z'} \\
\frac{\partial x}{\partial z'} & \frac{\partial y}{\partial z'} & \frac{\partial z}{\partial z'} \\
\frac{\partial x}{\partial z'} & \frac{\partial y}{\partial z'} & \frac{\partial z}{\partial z'} \\
\frac{\partial x}{\partial z'} & \frac{\partial y}{\partial z'} & \frac{\partial z}{\partial z'} \\
\frac{\partial x}{\partial z'} & \frac{\partial y}{\partial z'} & \frac{\partial z}{\partial z'} \\
\frac{\partial x}{\partial z'} & \frac{\partial y}{\partial z'} & \frac{\partial z}{\partial z'} \\
\frac{\partial x}{\partial z'} & \frac{\partial y}{\partial z'} & \frac{\partial z}{\partial z'} \\
\frac{\partial x}{\partial z'} & \frac{\partial y}{\partial z'} & \frac{\partial z}{\partial z'} \\
\frac{\partial x}{\partial z'} & \frac{\partial y}{\partial z'} & \frac{\partial z}{\partial z'} \\
\frac{\partial x}{\partial z'} & \frac{\partial y}{\partial z'} & \frac{\partial z}{\partial z'} \\
\frac{\partial x}{\partial z'} & \frac{\partial y}{\partial z'} & \frac{\partial z}{\partial z'} \\
\frac{\partial x}{\partial z'} & \frac{\partial y}{\partial z'} & \frac{\partial z}{\partial z'} \\
\frac{\partial x}{\partial z'} & \frac{\partial y}{\partial z'} & \frac{\partial z}{\partial z'} \\
\frac{\partial x}{\partial z'} & \frac{\partial y}{\partial z'} & \frac{\partial z}{\partial z'} \\
\frac{\partial x}{\partial z'} & \frac{\partial y}{\partial z'} & \frac{\partial z}{\partial z'} \\
\frac{\partial x}{\partial z'} & \frac{\partial y}{\partial z'} & \frac{\partial z}{\partial z'} \\
\frac{\partial x}{\partial z'} & \frac{\partial y}{\partial z'} & \frac{\partial z}{\partial z'} \\
\frac{\partial x}{\partial z'} & \frac{\partial y}{\partial z'} & \frac{\partial z}{\partial z'} \\
\frac{\partial x}{\partial z'} & \frac{\partial y}{\partial z'} & \frac{\partial z}{\partial z'} \\
\frac{\partial x}{\partial z'} & \frac{\partial y}{\partial z'} & \frac{\partial z}{\partial z'} \\
\frac{\partial x}{\partial z'} & \frac{\partial y}{\partial z'} & \frac{\partial z}{\partial z'} \\
\frac{\partial x}{\partial z'} & \frac{\partial y}{\partial z'} & \frac{\partial z}{\partial z'} \\
\frac{\partial x}{\partial z'} & \frac{\partial y}{\partial z'} & \frac{\partial z}{\partial z'} \\
\frac{\partial x}{\partial z'} & \frac{\partial y}{\partial z'} & \frac{\partial z}{\partial z'} \\
\frac{\partial x}{\partial z'} & \frac{\partial z}{\partial z'} & \frac{\partial z}{\partial z'} \\
\frac{\partial x}{\partial z'} & \frac{\partial z}{\partial z'} & \frac{\partial z}{\partial z'} \\
\frac{\partial x}{\partial z'} & \frac{\partial z}{\partial z'} & \frac{\partial z}{\partial z'} \\
\frac{\partial z}{\partial z'} & \frac{\partial z}{\partial z'} & \frac{\partial z}{\partial z'} \\
\frac{\partial z}{\partial z'} & \frac{\partial z}{\partial z'} & \frac{\partial z}{\partial z'} \\
\frac{\partial z}{\partial z'} & \frac{\partial z}{\partial z'} & \frac{\partial z}{\partial$$

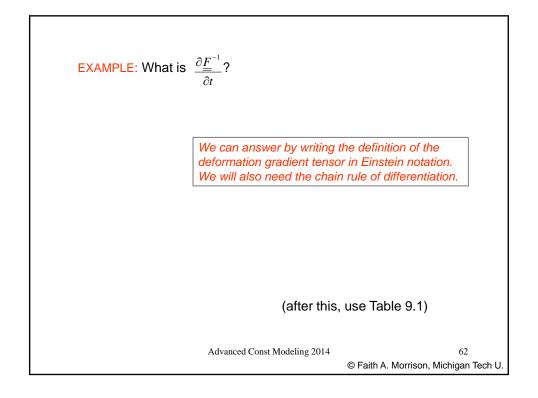
Rheometry CM4650 2014

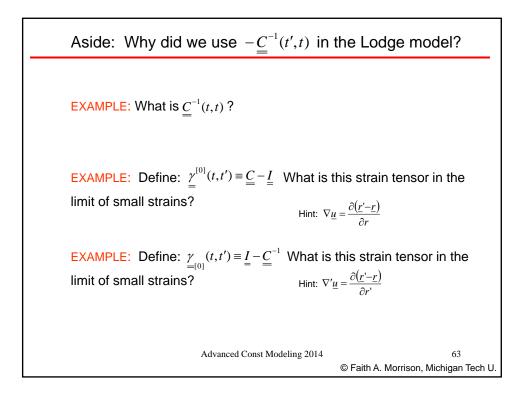
$$\begin{aligned} \mathbf{Result:} \\ \underline{\underline{C}}^{-1}(t',t) &= \begin{pmatrix} 1-2CS\gamma + C^{2}\gamma^{2} & (C^{2}-S^{2})\gamma + SC\gamma^{2} & 0\\ (C^{2}-S^{2})\gamma + SC\gamma^{2} & 1+2CS\gamma + S^{2}\gamma^{2} & 0\\ 0 & 0 & 1 \end{pmatrix}_{xyz} \end{aligned}$$

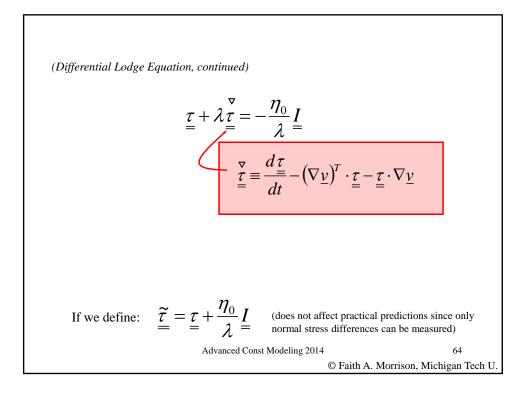
$$\begin{aligned} \mathbf{Lodge Model prediction in stationary frame:} \\ \underline{\underline{\tau}} &= -\int_{-\infty}^{t} \frac{\eta_{0}}{\lambda^{2}} e^{-\frac{(t-t')}{\lambda}} \begin{pmatrix} 1-2CS\gamma + C^{2}\gamma^{2} & (C^{2}-S^{2})\gamma + SC\gamma^{2} & 0\\ (C^{2}-S^{2})\gamma + SC\gamma^{2} & 1+2CS\gamma + S^{2}\gamma^{2} & 0\\ 0 & 0 & 1 \end{pmatrix}_{xyz} dt' \\ \underline{S} &= \sin \Omega t \quad C = \cos \Omega t \\ S' &= \sin \Omega t \quad C' = \cos \Omega t \\ S' &= \sin \Omega t' \quad C' = \cos \Omega t' \\ \gamma &= \gamma_{0}(t-t') \\ Advanced Const Modeling 2014 & 59 \\ (Faith A. Morrison, Michigan Tech U. \end{aligned}$$

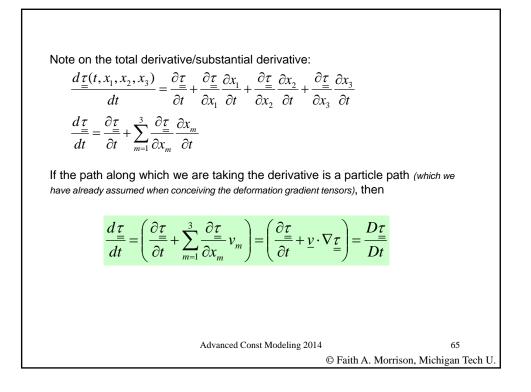








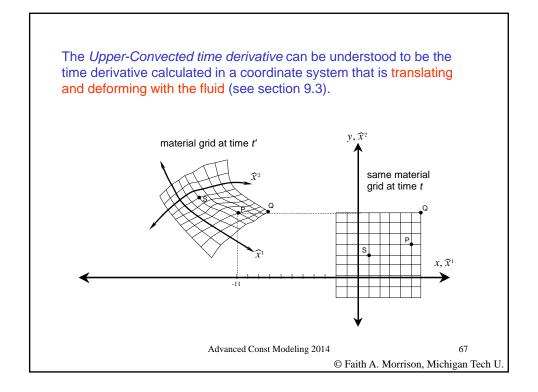




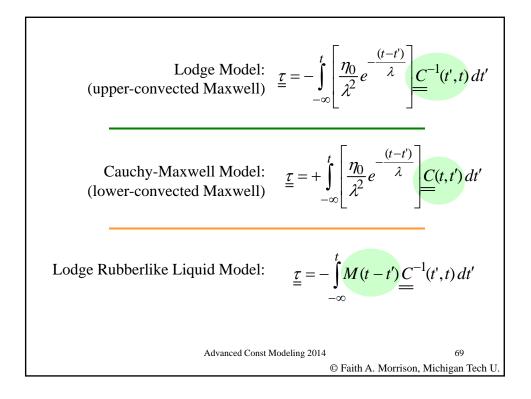
Differential Lodge Equation (Upper Convected Maxwell Model)

$$\begin{split} \vec{\underline{\tau}} + \lambda \vec{\underline{\tau}} = -\eta_0 \dot{\underline{\tau}} \\ \vec{\underline{\tau}} = \frac{D\underline{\tau}}{D\underline{t}} - (\nabla \underline{\nu})^T \cdot \underline{\tau} - \underline{\tau} \cdot \nabla \underline{\nu} \\ \text{upper-convected time derivative} \end{split}$$

$$\begin{split} \frac{D\underline{\tau}}{Dt} = \frac{\partial \underline{\tau}}{\partial t} + \underline{\nu} \cdot \nabla \underline{\tau} \\ \frac{D}{Dt} = \frac{\partial \underline{\tau}}{\partial t} + \underline{\nu} \cdot \nabla \underline{\tau} \end{split}$$

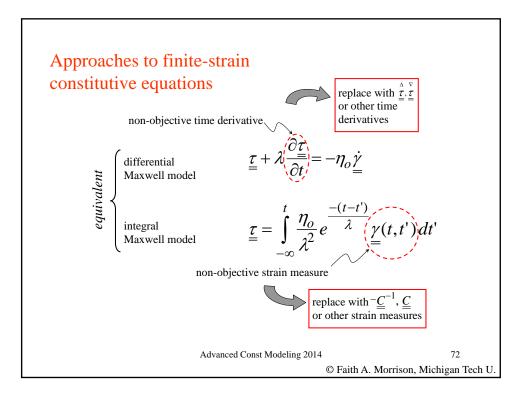


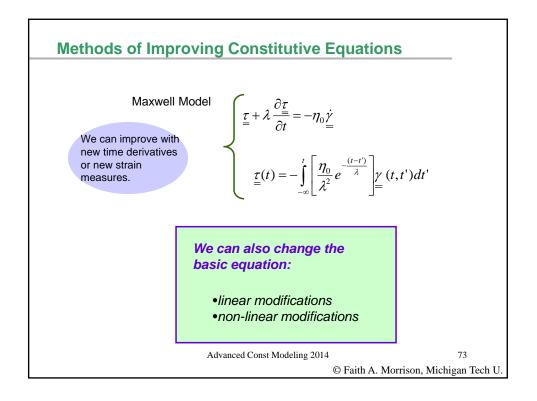
Other Convected Derivatives upper-convected time derivative $\frac{\nabla}{\underline{\tau}} = \frac{D\underline{\tau}}{D\underline{t}} - (\nabla\underline{\nu})^T \cdot \underline{\tau} - \underline{\tau} \cdot \nabla\underline{\nu}$ Iower-convected time derivative $\frac{\underline{A}}{\underline{\tau}} = \frac{D\underline{\tau}}{Dt} + \nabla\underline{\nu} \cdot \underline{\tau} + \underline{\tau} \cdot (\nabla\underline{\nu})^T$ Corotational time derivative $\frac{\underline{P}}{\underline{t}} = \frac{D\underline{\tau}}{Dt} + \frac{1}{2} (\underline{\omega} \cdot \underline{\tau} - \underline{\tau} \cdot \underline{\omega})$ $\underline{\omega} = \nabla\underline{\nu} - (\nabla\underline{\nu})^T$ Advanced Const Modeling 2014

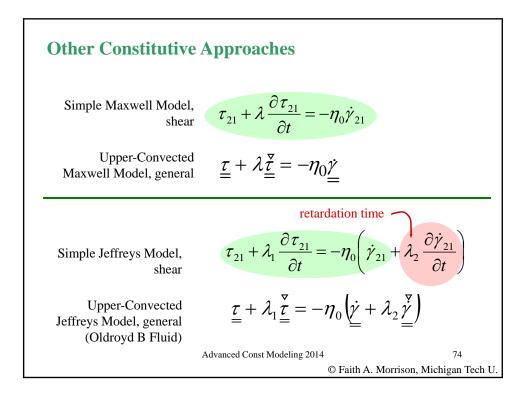


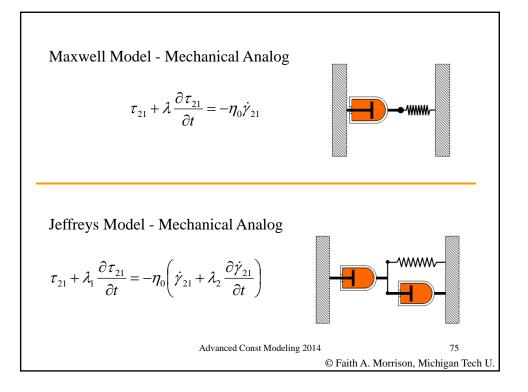
Lodge	1. Shear Startup	$\eta^+(t, \dot{\gamma})$	$\eta_0 \left(1 - e^{-\frac{1}{2}}\right)$	
	Startop	$\Psi_{1}^{+}(t, \dot{\gamma})$	$2\eta_0\lambda\left[1-e^{\frac{\pi i}{2}}\left(1+\frac{f}{\lambda}\right)\right]$	
Equation		$\Psi_2^+(t,\dot{\gamma})$	0	
(UCM)	Steady	$\eta(\dot{y}) = \Psi_1(\dot{y}) = \Psi_2(\dot{y})$	$\eta_0 = G_0 \lambda$ $2G_0 \lambda^2 = 2\eta_0 \lambda$ 0	
	Cessation	$\eta^{-}(t, \dot{y})$ $\Psi_{1}^{-}(t, \dot{y})$ $\Psi_{2}^{-}(t, \dot{y})$	$\eta_{0}e^{\frac{\pi}{2}}$ $2\lambda\eta_{0}e^{\frac{\pi}{2}}$ 0	
	Step shear strain	$G(t, \gamma_0)$ $G_{\Psi_1}(t, \gamma_0)$	$G_0e^{-\frac{1}{2}}$ $G_0e^{-\frac{1}{2}}$	
		$G_{\Psi_2}(t, \gamma_0)$	0	
	2. Extension Startup Uniaxial ($b = 0, \dot{\epsilon}_0 > 0$) or biaxial ($b = 0, \dot{\epsilon}_0 < 0$)	$\bar{\eta}^+(t, \hat{\epsilon}_0)$ or $\bar{\eta}^+_B(t, \hat{\epsilon}_0)$	$\begin{array}{c} \frac{\eta_0}{\mathcal{AB}} \left(3 - 2\mathcal{B}e^{-\frac{i\hbar}{\hbar}} - \mathcal{A}e^{-\frac{i\hbar}{\hbar}} \right) \\ \mathcal{A} = 1 - 2iq_{\lambda} \\ \mathcal{B} = 1 + iq_{\lambda} \end{array}$	
	Planar $(b = 1, \dot{e}_0 > 0)$	$\tilde{\eta}_{P_1}^+(t, \hat{\epsilon}_0)$	$\frac{2\eta_0}{\mathcal{A}C} \begin{pmatrix} 2 - \mathcal{A}e^{-\frac{Q_1}{2}} - Ce^{-\frac{\partial \xi}{2}} \\ \mathcal{A} = 1 - 2i_0\lambda \\ C = 1 + 2i_0\lambda \end{cases}$	
		$\bar{\eta}^+_{P_2}(t, \dot{\epsilon}_0)$	$\frac{2\eta_0}{C}\left(1-e^{-\frac{\Omega}{2}}\right)$	
	Steady Uniaxial ($b = 0$, $\dot{\epsilon}_0 > 0$) or biaxial ($b = 0$, $\dot{\epsilon}_0 < 0$)	$\tilde{\eta}(\hat{e}_0)$ or $\tilde{\eta}_B(\hat{e}_0)$	$\frac{3\eta_0}{(1-2\lambda \hat{e}_0)(1+\lambda \hat{e}_0)} = \frac{3\eta_0}{\mathcal{R}\mathcal{B}}$	
	Planar $(b=1,\dot{e}_0>0)$	$\bar{\eta}_{P_1}(\hat{\epsilon}_0)$	$\frac{4\eta_0}{1-4d_0^2\lambda^2}=\frac{4\eta_0}{\mathcal{R}C}$	
		$\tilde{\eta}_{P_2}(\hat{\epsilon}_0)$	$\frac{2\eta_0}{1+2\dot{\epsilon}_0\lambda} = \frac{2\eta_0}{C}$	

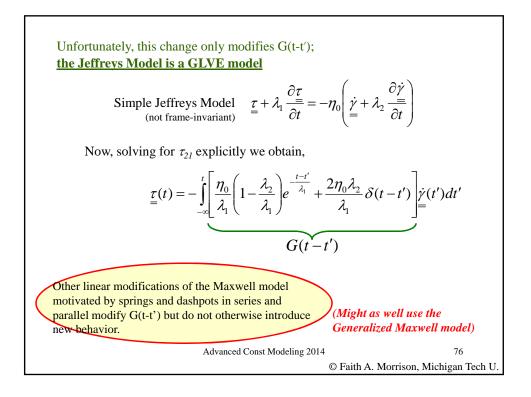
	TABLE D.3 Predictions of Cauchy-Maxwel Extensional Flows	Equation or Lower Co	onvected Maxwell Model in Shear and	
Cauchy-	1. Shear			
	Startup	$\eta^+(t, \dot{\gamma})$	$\eta_0 \left(1 - e^{-\frac{i}{2}}\right)$	
Maxwell		$\Psi_1^+(t, \dot{\gamma})$	$2\eta_0\lambda\left[1-e^{\frac{t}{2}}\left(1+\frac{t}{\lambda}\right)\right]$	
Equation		$\Psi_2^+(t, \dot{\gamma})$	$-\Psi_1^+$	
Lyuation	Steady	$\eta(\dot{y})$	$\eta_0 \equiv G_0 \lambda$	
(LCM)		$\Psi_1(\dot{\gamma})$	$2G_0\lambda^2 = 2\eta_0\lambda$	
		$\Psi_2(\dot{\gamma})$	$-\Psi_1$	
	Cessation	$\eta^{-}(t, \dot{\gamma})$	$\eta_0 e^{\frac{1}{2}}$	
		$\Psi_1^-(t, \dot{\gamma})$	22 moe =	
		$\Psi_2^-(t,\dot{\gamma})$	$-\Psi_1^-$	
	Step shear strain	G(t, yp)	Goe-1	
		G +1 (1. 70)	Goe-1	
		$G_{\Psi_2}(t, \gamma_0)$	$-G_{\Psi_1}$	
	2. Extension			
	Startup		 bot confirmation 	
	Uniaxial $(b = 0, \hat{e}_0 > 0)$ or biaxial $(b = 0, \hat{e}_0 < 0)$	$\bar{\eta}^+(t, \dot{\epsilon}_0)$ or $\bar{\eta}^+_B(t, \dot{\epsilon}_0)$	$\frac{\eta_0}{CD} \left(3 - 2De^{-\frac{i\beta}{2}} - Ce^{-\frac{i\beta}{2}}\right)$	
	or oraxial $(v = 0, e_0 < 0)$	or it get a constant	$C = 1 + 2\dot{\epsilon}_0\lambda$ $D = 1 - \dot{\epsilon}_0\lambda$	
	Planar $(b = 1, \dot{e}_0 > 0)$	$\bar{\eta}_{P_1}^+(t, \hat{\epsilon}_0)$		
			$\frac{-2\eta_0}{\mathcal{A}C} \left(2 - \mathcal{R}e^{-\frac{Q}{2}} - Ce^{-\frac{2\epsilon}{2}} \right) \\ \mathcal{R} = 1 - 2i_0\lambda$	
		$\bar{\eta}_{P_{0}}^{+}(t, \hat{\epsilon}_{0})$	$\frac{-2\eta_0}{3}\left(1-e^{-\frac{3\kappa}{\lambda}}\right)$	
			A	
	Steady Uniaxial ($b = 0, \dot{\epsilon}_0 > 0$)	$\bar{\eta}(\hat{\epsilon}_0)$	3no 3no	
	or biaxial $(b = 0, \dot{\epsilon}_0 < 0)$	or $\tilde{\eta}_B(\hat{\epsilon}_0)$	$\frac{3\eta_0}{(1+2\lambda \ell_0)(1-\lambda \ell_0)} = \frac{3\eta_0}{CD}$	
	Planar $(b = 1, \dot{e}_0 > 0)$	$\bar{\eta}_{P_1}(\hat{e}_0)$	-4n04n0	
			$\frac{-4\eta_0}{1-4\epsilon_0^2\lambda^2} = \frac{-4\eta_0}{\mathcal{A}C}$	
		$\bar{\eta}_{P_2}(\hat{\epsilon}_0)$	$\frac{-2\eta_0}{1-2\hat\epsilon_0\lambda} = \frac{-2\eta_0}{\mathcal{A}}$	
		nced Const Mod		71

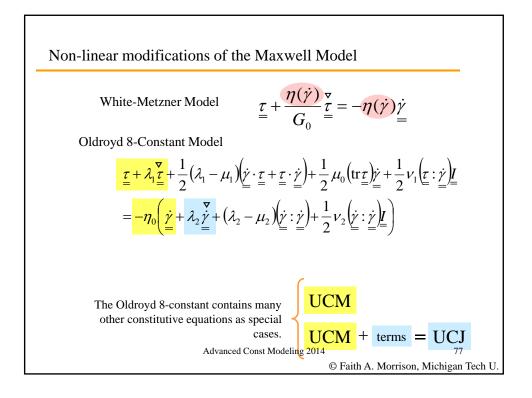






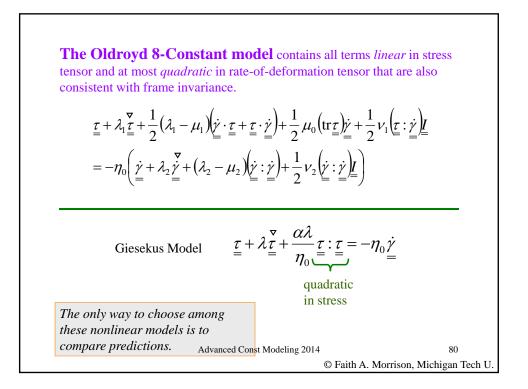


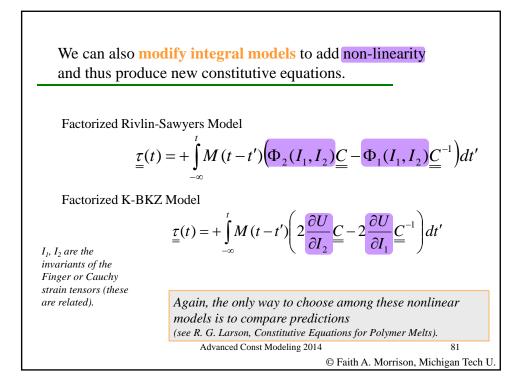




White-				
Metzner				
	TABLE D.5 Predictions of White-Metzne	r Equation in She	ar and Extensional Flows [26]*	
	1. Shear Startup	$\eta^+(t,\dot{\gamma})$	$\eta(\dot{\varphi})\left(1-e^{-\chi_{2}^{\prime}}\right)$	
		$Ψ_1^+(t, \dot{γ})$ $Ψ_2^+(t, \dot{γ})$	$\frac{2\eta(\dot{\gamma})\lambda(\dot{\gamma})\left[1-e^{-\frac{1}{2(\gamma)}}\left(1+\frac{t}{\lambda(\dot{\gamma})}\right)\right]}{0}$	
	Steady	$\eta(\dot{\gamma})$ $\Psi_1(\dot{\gamma})$ $\Psi_2(\dot{\gamma})$	$\eta(\dot{\mathbf{y}})$ $2\eta(\dot{\mathbf{y}})\lambda(\dot{\mathbf{y}})$ 0	
	2. Extension Steady Uniaxial ($b = 0, \dot{\epsilon}_0 > 0$) or biaxial ($b = 0, \dot{\epsilon}_0 < 0$)	$\bar{\eta}(\dot{\epsilon}_0)$ or $\bar{\eta}_B(\dot{\epsilon}_0)$	$ \begin{array}{c} \frac{3\eta(\dot{\gamma})}{\left[1-2\lambda(\dot{\gamma})k_{0}\right]\left[1+\lambda(\dot{\gamma})k_{0}\right]} = \frac{3\eta(\dot{\gamma})}{\mathcal{A}(\dot{\gamma})\mathcal{B}(\dot{\gamma})} \\ \mathcal{A}(\dot{\gamma}) = 1 - 2k_{0}\lambda(\dot{\gamma}) \\ \mathcal{B}(\dot{\gamma}) = 1 + k_{0}\lambda(\dot{\gamma}) \end{array} $	
	Planar $(b=1,\dot{\epsilon}_0>0)$	$\tilde{\eta}_{P_1}(\dot{\epsilon}_0)$	$\frac{4\eta(\dot{y})}{1-4\dot{\epsilon}_{0}^{2}\lambda(\dot{y})^{2}} = \frac{4\eta(\dot{y})}{\mathcal{R}(\dot{y})C(\dot{y})}$ $\frac{\mathcal{R}(\dot{y}) = 1 - 2\dot{\epsilon}_{0}\lambda(\dot{y})}{C(\dot{y}) = 1 + 2\dot{\epsilon}_{0}\lambda(\dot{y})}$	
		$\tilde{\eta}_{P_2}(\hat{\epsilon}_0)$	$\frac{2\eta(\dot{y})}{1+2\dot{e}_0\lambda(\dot{y})} = \frac{2\eta(\dot{y})}{C(\dot{y})}$	
	$\lambda(\dot{\gamma}) = \eta(\dot{\gamma})/G_0$ and $\dot{\gamma} = \dot{\underline{\gamma}} .$			

	TABLE D.4 Predictions of Oldroyd B or	Convected Jef	freys Model in Shear and Extensional Flows [26]		
	1. Shear Startup	$\eta^+(t,\dot{\gamma})$	$\eta_0 \left[\frac{\lambda_2}{\lambda_1} + \left(1 - \frac{\lambda_2}{\lambda_1} \right) \left(1 - e^{-\frac{t}{\lambda_1}} \right) \right]$		
Oldroyd B		$\Psi_1^+(t,\dot{y})$ $\Psi_2^+(t,\dot{y})$	$2\eta_0 \left(\lambda_1 - \lambda_2\right) \left[1 - e^{-\frac{t}{\lambda_1}} \left(1 + \frac{t}{\lambda_1}\right)\right]$		
(Convected Jeffreys)	Steady	$Ψ_2^{-}(\vec{r}, \vec{y})$ $η(\vec{y})$ $Ψ_1(\vec{y})$ $Ψ_2(\vec{y})$	η_0 $2\eta_0 (\lambda_1 - \lambda_2)$ 0		
	Cessation	$\eta^-(t,\dot{\gamma})$	$\eta_0\left(1-\frac{\lambda_2}{\lambda_1}\right)e^{-\frac{t}{\lambda_1}}$		
		$\Psi_1^-(t, \dot{\gamma}) \\ \Psi_2^-(t, \dot{\gamma})$	$2\eta_0 \left(\lambda_1 - \lambda_2\right) e^{-\frac{1}{\lambda_1}}$		
	SAOS	$G'(\omega)$	$\eta_9 rac{(\lambda_1 - \lambda_2)\omega^2}{1 + \lambda_1^2 \omega^2}$		
		$G''(\omega)$	$\eta_0\omega\frac{1+\lambda_1\lambda_2\omega^2}{1+\lambda_1^2\omega^2}$		
	2. Extension Startup				
	Uniaxial $(b = 0, \hat{e}_0 > 0)$ or biaxial $(b = 0, \hat{e}_0 < 0)$	$\tilde{\eta}^+(t, \dot{\epsilon}_0)$ or $\tilde{\eta}^+_B(t, \dot{\epsilon}_0)$	$\begin{array}{c} 3\eta_0 \frac{\lambda_2}{\lambda_1} + \frac{\eta_0}{\mathcal{RB}} \left(1 - \frac{\lambda_2}{\lambda_1}\right) \left(3 - 2\mathcal{B}e^{-\frac{\lambda_1}{\lambda_1}} - \mathcal{A}e^{-\frac{\lambda_1}{\lambda_1}}\right) \\ \mathcal{B} = 1 - 2\dot{c}_0\lambda_1 \\ \mathcal{B} = 1 + \dot{c}_0\lambda_1 \end{array}$		
	Planar ($b = 1, \dot{e}_0 > 0$)	$\bar{\eta}^+_{P_1}(t,\dot{\epsilon}_0)$	$ \begin{array}{l} 4\eta_0 \frac{\lambda_2}{\lambda_1} + \frac{2\eta_0}{\mathcal{A}C} \left(1 - \frac{\lambda_2}{\lambda_1}\right) \left(2 - \mathcal{A}e^{-\frac{\Omega}{\lambda_1}} - Ce^{-\frac{\partial C}{\lambda_1}}\right) \\ \mathcal{A} = 1 - 2e_0\lambda_1 \\ \mathcal{C} = 1 + 2e_0\lambda_1 \end{array} $		
		$\bar{\eta}^+_{P_2}(t,\dot{e}_0)$	$2\eta_0 rac{\lambda_2}{\lambda_1} + rac{2\eta_0}{C} \left(1 - rac{\lambda_2}{\lambda_1} ight) \left(1 - e^{-rac{\Omega_1}{\lambda_1}} ight)$		
	Steady Uniaxial $(b = 0, \hat{\epsilon}_0 > 0)$ or biaxial $(b = 0, \hat{\epsilon}_0 < 0)$	$\tilde{\eta}(\hat{\epsilon}_0)$ or $\tilde{\eta}_B(\hat{\epsilon}_0)$	$3\eta_0\left(\frac{\lambda_2}{\lambda_1}+rac{1-rac{\lambda_1}{\lambda_1}}{\mathcal{AB}} ight)$		
	Planar $(b = 1, \dot{\epsilon}_0 > 0)$	$\bar{\eta}_{P_1}(\hat{\epsilon}_0)$	$4\eta_0\left(rac{\lambda_2}{\lambda_1}+rac{1-rac{\lambda_2}{\lambda_1}}{\mathcal{R}C} ight)$		
	Advanced Co	onst Møde	ling 2014 $_{2\eta_0}\left(\frac{\lambda_2}{\lambda_1}+\frac{1-\frac{\lambda_2}{\lambda_1}}{C}\right)$	79	





Factorized Rivlin- Sawyers	TABLE D.6 Predictions of Factorized I	Rivlin-Saw	yers Model in Shear and Extensional Flows (26)	
Carryono	1. Shear Steady	η(γ΄)	$\int_{0}^{\infty} M(s)s(\Phi_{1} + \Phi_{2}) ds$	
	or any	$\Psi_1(\dot{y})$	$\int_0^{\infty} M(s)s(\Phi_1 + \Phi_2) ds$ $\int_0^{\infty} M(s)s^2(\Phi_1 + \Phi_2) ds$	
		Ψ2(γ)	$\int_{0}^{\infty} M(x)s^{2} \Phi_{2} dx$	
	SAOS	$G'(\omega)$	$\int_{0}^{\infty} M(s)(1-\cos \omega s) ds$	
		$G''(\omega)$	$\int_0^{\infty} M(s) \sin \omega s ds$	
	2. Extension Steady			
	Uniaxial ($b = 0$, $\dot{e}_0 > 0$) or biaxial ($b = 0$, $\dot{e}_0 < 0$)	$\tilde{\eta}(\dot{\epsilon}_0)$ or $\tilde{\eta}_B(\dot{\epsilon}_0)$	$\frac{1}{\hat{\epsilon}_0}\int_0^{\infty} M(s) \left[\Phi_1\left(e^{2\hat{\epsilon}_0 s}-e^{-\hat{\epsilon}_0 s}\right)+\Phi_2\left(e^{\hat{\epsilon}_0 s}-e^{-2\hat{\epsilon}_0 s}\right)\right]ds$	
	Planar ($b = 1, \dot{e}_0 > 0$)	$\tilde{\eta}_{P_1}(\hat{\epsilon}_0)$	$\frac{1}{\hat{\epsilon}_0}\int_0^\infty M(s)\left[\Phi_1\left(e^{2\hat{\epsilon}_0s}-e^{-2\hat{\epsilon}_0s}\right)+\Phi_2\left(e^{2\hat{\epsilon}_0s}-e^{-2\hat{\epsilon}_0s}\right)\right]ds$	
		$\bar{\eta}_{P_1}(\hat{\epsilon}_0)$	$\frac{1}{\dot{\epsilon}_0}\int_0^\infty M(s) \Big[\left(\Phi_1 e^{-\dot{\epsilon}_0 s} + \Phi_2 e^{\dot{\epsilon}_0 s} \right) \left(e^{\dot{\epsilon}_0 s} - e^{-\dot{\epsilon}_0 s} \right) \Big] ds$	
	Advanced	Const	Modeling 2014	82

