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CM4650 
Polymer Rheology 
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rei – Greek for flow

Rhe-

= the study of deformation 
and flow.

Rheology

What is rheology anyway?

“What is Rheology Anyway?” Faith A. 
Morrison, The Industrial Physicist, 
10(2) 29-31, April/May 2004.
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Chapter 1:  Introduction
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1. What is rheology, anyway?

2. Newtonian versus non-Newtonian

3. Key features of non-Newtonian 

behavior: Nonlinearity and Memory
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What is rheology anyway?

To the layperson, rheology is:

•Mayonnaise does not flow even under stress for a 
long time; honey always flows

•Silly Putty bounces (is elastic) but also flows (is 
viscous)

•Dilute flour-water solutions are easy to work with 
but doughs can be quite temperamental

•Corn starch and water can display strange behavior 
– poke it slowly and it deforms easily around your 
finger; punch it rapidly and your fist bounces off of 
the surface

3
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•Yield stresses

•Viscoelastic effects

•Memory effects

•Shear thickening and shear 
thinning

For both the layperson and the technical person, rheology is a 
set of problems or observations related to how the stress in a 
material or force applied to a material is related to deformation 

(change of shape) of the material.
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What is rheology anyway?

To the scientist, engineer, or 
technician, rheology is
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•Processing (design, costs, 
production rates)

What is rheology anyway?

Rheology affects:

•End use (food texture, 
product pour, motor-oil 
function)

•Product quality (surface 
distortions, anisotropy, 
strength, structure 
development)

www.math.utwente.nl/ 
mpcm/aamp/examples.html 

www.corrugatorman.com/ 
pic/akron%20extruder.JPG 

Pomar et al. 
JNNFM 54 
143 1994 
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Goal of the scientist, engineer, 
or technician:

How
do we reach 
these goals?

•Understand the kinds of flow and 
deformation effects exhibited by 
complex systems 

•Apply qualitative rheological 
knowledge to diagnostic, design, or 
optimization problems

•In diagnostic, design, or optimization 
problems, use or devise quantitative
analytical tools that correctly capture 
rheological effects

6
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By learning 
which 

quantitative 
models 
apply in 

what 
circum-
stances

By making 
calculations 

with models in 
appropriate 
situations

By observing the behavior 
of different systems

© Faith A. Morrison, Michigan Tech U.

•Understand the kinds of flow and 
deformation effects exhibited by 
complex systems 

How?

7

•Apply qualitative rheological 
knowledge to diagnostic, design, or 
optimization problems

•In diagnostic, design, or optimization 
problems, Use or devise quantitative
analytical tools that correctly capture 
rheological effects

© Faith A. Morrison, Michigan Tech U.

Learning Rheology (bibliography)

Quantitative Rheology

Morrison, Faith, Understanding Rheology (Oxford, 2001)
Bird, R., R. Armstrong, and O. Hassager, Dynamics of Polymeric Liquids, 
Volume 1 (Wiley, 1987)

Polymer Behavior

Larson, Ron, The Structure and Rheology of Complex Fluids (Oxford, 1999)
Ferry, John, Viscoelastic Properties of Polymers (Wiley, 1980)

Descriptive Rheology

Barnes, H., J. Hutton, and K. Walters, An Introduction to Rheology
(Elsevier, 1989)

Suspension Behavior

Mewis, Jan and Norm Wagner, Colloidal Suspension (Cambridge, 2012)
Macosko, Chris, Rheology:  Principles, Measurements, and Applications (VCH 
Publishers, 1994)

Industrial Rheology

Dealy, John and Kurt Wissbrun, Melt Rheology and Its Role in Plastics 
Processing (Van Nostrand Reinhold, 1990)

8
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The Physics Behind Rheology:

1. Conservation laws
mass
momentum
energy

2. Mathematics

differential equations
vectors
tensors

3. Constitutive law = law that relates stress to 
deformation for a particular fluid

Cauchy Momentum Equation

9

Polymer Rheology

© Faith A. Morrison, Michigan Tech U.
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1
21 dx

dv
 

Non-Newtonian Fluid Mechanics

Newton’s Law of Viscosity

material parameterNewtonian fluids: (fluid 
mechanics)

•This is an empirical law 
(measured or observed)

•May be derived theoretically for 
some systems

Non-Newtonian fluids: 
(rheology)

Need a new law or new 
laws

•These laws will also either be 
empirical or will be derived 
theoretically

deformation

10
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Non-Newtonian Fluid Mechanics

Newtonian fluids: (shear 
flow only)

Non-Newtonian fluids: (all 
flows)

stress tensor

non-linear function (in 
time and position)

Rate-of-
deformation 
tensor

Constitutive Equation

11

ഭ߬ ൌ ݂ ሶഭߛ

߬ଶଵ ൌ െ
ଵݒ݀
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Introduction to Non-Newtonian Behavior

Rheological Behavior of Fluids, National 
Committee on Fluid Mechanics Films, 1964

Type of fluid Momentum balance Stress –Deformation 
relationship (constitutive 

equation)

Inviscid 
(zero viscosity, )

Euler equation (Navier-
Stokes with zero viscosity)

Stress is isotropic

Newtonian 
(finite. constant viscosity, 

)

Navier-Stokes (Cauchy 
momentum equation with 
Newtonian constitutive 

equation)

Stress is a function of the 
instantaneous velocity 

gradient 

Non-Newtonian (finite, 
variable viscosity  plus 

memory effects)

Cauchy momentum 
equation with memory 
constitutive equation

Stress is a function of the 
history of the velocity 

gradient

Velocity gradient tensor ߛሶഭ

12
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Rheological Behavior of Fluids - Newtonian

1.  Strain response to 
imposed shear stress 

t

dt

d  =constant

2.  Pressure-driven flow in 
a tube (Poiseuille flow)

•shear rate is constant
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3.  Stress tensor in shear 
flow
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•viscosity is 
constant

•only two components 
are nonzero
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Rheological Behavior of Fluids – non-Newtonian

1.  Strain response to 
imposed shear stress

•shear rate is variable

3.  Stress tensor in shear 
flow

P

Q

•viscosity is variable •all 9 components are 
nonzero
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2.  Pressure-driven flow in 
a tube (Poiseuille flow)
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Rheological Behavior of Fluids – non-Newtonian

1.  Strain response to 
imposed shear stress

•shear rate is variable

P

Q

•viscosity is variable •all 9 components are 
nonzero
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2.  Pressure-driven flow in 
a tube (Poiseuille flow)
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Examples from the film of . . . .

Dependence on the history of the deformation gradient

Non-linearity of the function

•Polymer fluid pours, but springs back
•Elastic ball bounces, but flows if given enough time
•Steel ball dropped in polymer solution “bounces”
•Polymer solution in concentric cylinders – has fading memory
•Quantitative measurements in concentric cylinders show memory 
and need a finite time to come to steady state

•Polymer solution draining from a tube is first slower, then faster 
than a Newtonian fluid
•Double the static head on a draining tube, and the flow rate does 
not necessarily double (as it does for Newtonian fluids); sometimes 
more than doubles, sometimes less
•Normal stresses in shear flow
•Die swell

16
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Show NCFM Film on 
Rheological Behavior 

of Fluids
17

• Search for “NCFMF”
• web.mit.edu/hml/ncfmf.html
• Also on YouTube

Chapter 2:  Mathematics Review

© Faith A. Morrison, Michigan Tech U.
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CM4650 
Polymer Rheology 

Michigan Tech

1. Vector review

2. Einstein notation

3. Tensors
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19

Newtonian fluids: • Linear
• Instantaneous
• ഭ߬ሺݐሻ ൌ െߛߤሶഭሺݐሻ

Non-Newtonian fluids:

• Non-linear
• Non-instantaneous
• ഭ߬ ݐ ൌ?

ߩ
പݒ߲
ݐ߲

൅ പݒ ⋅ പݒߘ ൌ െ݌ߘ െ ߘ ⋅ ഭ߬ ൅ ഫ݃ߩ

Motivation: We will be solving the momentum balance:

© Faith A. Morrison, Michigan Tech U.
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Newtonian fluids: • Linear
• Instantaneous
• ഭ߬ሺݐሻ ൌ െߛߤሶഭሺݐሻ

Non-Newtonian fluids:

• Non-linear
• Non-instantaneous
• ഭ߬ ݐ ൌ?

ߩ
പݒ߲
ݐ߲

൅ പݒ ⋅ പݒߘ ൌ െ݌ߘ െ ߘ ⋅ ഭ߬ ൅ ഫ݃ߩ

Motivation: We will be solving the momentum balance:

We’re going to be trying 
to identify the constitutive 

equation ഭ߬ ݐ for non-
Newtonian fluids.
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Newtonian fluids: • Linear
• Instantaneous
• ഭ߬ሺݐሻ ൌ െߛߤሶഭሺݐሻ

Non-Newtonian fluids:

• Non-linear
• Non-instantaneous
• ഭ߬ ݐ ൌ?

ߩ
പݒ߲
ݐ߲

൅ പݒ ⋅ പݒߘ ൌ െ݌ߘ െ ߘ ⋅ ഭ߬ ൅ ഫ݃ߩ

Motivation: We will be solving the momentum balance:

We’re going to be trying 
to identify the constitutive 

equation ഭ߬ ݐ for non-
Newtonian fluids.

We’re going to need to 
calculate how different 

guesses affect the 
predicted behavior.

© Faith A. Morrison, Michigan Tech U.
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Newtonian fluids: • Linear
• Instantaneous
• ഭ߬ሺݐሻ ൌ െߛߤሶഭሺݐሻ

Non-Newtonian fluids:

• Non-linear
• Non-instantaneous
• ഭ߬ ݐ ൌ?

ߩ
പݒ߲
ݐ߲

൅ പݒ ⋅ പݒߘ ൌ െ݌ߘ െ ߘ ⋅ ഭ߬ ൅ ഫ݃ߩ

Motivation: We will be solving the momentum balance:

We’re going to be trying 
to identify the constitutive 

equation ഭ߬ ݐ for non-
Newtonian fluids.

We’re going to need to 
calculate how different 

guesses affect the 
predicted behavior.

We need to understand 
and be able to 
manipulate this 

mathematical notation.
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1. Scalar – a mathematical entity that has magnitude only

temperature T
speed v
time t
density r

e.g.:

– scalars may be constant or may be variable

Laws of Algebra for 
Scalars:

yes commutative

yes associative

yes distributive

ab = ba

a(bc) = (ab)c

a(b+c) = ab+ac

23

– vectors may be constant or may be variable

Mathematics Review

© Faith A. Morrison, Michigan Tech U.

Polymer Rheology

2. Vector – a mathematical entity that has magnitude and direction

force on a surface f
velocity v

e.g.:

Definitions

magnitude of a vector – a scalar associated with a vector

unit vector – a vector of unit length

ffvv 

v
v

v
ˆ

a unit vector in the 
direction of v

24
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Polymer Rheology

Laws of Algebra for 
Vectors:

1. Addition

a

b

a+b

2. Subtraction

a

b

a+(-b)

25
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Laws of Algebra for Vectors (continued):

3. Multiplication by scalar v

yes commutative

yes associative

yes distributive

 vv 

    vvv  

  wvwv  

4. Multiplication of vector by vector
4a. scalar (dot) (inner) product

cosvwwv  v

wNote:  we can find 
magnitude with dot 
product

vvvv

vvvvv



 20cos

26
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Laws of Algebra for Vectors (continued):

yes commutative

NO associative

yes distributive

vwwv 

zwv 

  wzvzwvz 

4a. scalar (dot) (inner) product (con’t)

evwwv ˆsin

v

w

no such operation

4b. vector (cross) (outer) product

ê is a unit vector 
perpendicular to 
both v and w
following the 
right-hand rule

27
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Laws of Algebra for Vectors (continued):

NO commutative

NO associative

yes distributive

vwwv 

   v w z v w z v w z       

     wzvzwvz 

4b. vector (cross) (outer) product (con’t)

28
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Polymer Rheology

Coordinate Systems

•Allow us to make actual calculations with vectors

Rule:  any three vectors that are non-zero and linearly
independent (non-coplanar) may form a coordinate basis

Three vectors are linearly dependent if a, b, and g can 
be found such that:

0,,

0







for

cba

If ܽ, ߚ, and ߛ are found to be zero, the vectors are 
linearly independent.

29

Mathematics Review
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Polymer Rheology

How can we do actual calculations with vectors?

























3

1

332211

ˆ

ˆˆˆ

ˆˆˆ

j
jj

xyzz

y

x

zzyyxx

ea

eaeaea

a

a

a

eaeaeaa

coefficient of a in the 
direction 

yê

Rule:  any vector may be expressed as the linear combination 
of three, non-zero, non-coplanar basis vectors

any vector

30
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Polymer Rheology

   
 

 
 

333322331133

332222221122

331122111111

33221133

33221122

33221111

332211332211

ˆˆˆˆˆˆ

ˆˆˆˆˆˆ

ˆˆˆˆˆˆ

ˆˆˆˆ

ˆˆˆˆ

ˆˆˆˆ

ˆˆˆˆˆˆ

ebeaebeaebea

ebeaebeaebea

ebeaebeaebea

ebebebea

ebebebea

ebebebea

ebebebeaeaeaba












Trial calculation:  dot product of two vectors

If we choose the basis to be orthonormal - mutually perpendicular 
and of unit length - then we can simplify.

31

Mathematics Review
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Polymer Rheology


0ˆˆ
0ˆˆ
1ˆˆ

31

21

11





ee
ee
ee

If we choose the basis to be orthonormal - mutually perpendicular 
and of unit length, then we can simplify.

332211

333322331133

332222221122

331122111111

ˆˆˆˆˆˆ
ˆˆˆˆˆˆ

ˆˆˆˆˆˆ

bababa
ebeaebeaebea

ebeaebeaebea
ebeaebeaebeaba







We can generalize this operation with a technique called Einstein notation.

32
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Polymer Rheology

Einstein Notation

a system of notation for vectors and tensors that allows for the 
calculation of results in Cartesian coordinate systems.

mmjj

j
jj

eaea

ea

eaeaeaa

ˆˆ

ˆ

ˆˆˆ
3

1

332211










•the initial choice of subscript letter is arbitrary

•the presence of a pair of like subscripts implies a 
missing summation sign

33

Mathematics Review
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Polymer Rheology

Einstein Notation (con’t)

The result of the dot products of basis vectors can be 
summarized by the Kronecker delta function


0ˆˆ
0ˆˆ
1ˆˆ

31

21

11





ee
ee
ee








pi
pi

ee ippi 0
1

ˆˆ 

Kronecker delta

34
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Polymer Rheology

Einstein Notation (con’t)

To carry out a dot product of two arbitrary vectors . . . 

   

332211

333322331133

332222221122

331122111111

332211332211

ˆˆˆˆˆˆ
ˆˆˆˆˆˆ

ˆˆˆˆˆˆ
ˆˆˆˆˆˆ

bababa
ebeaebeaebea

ebeaebeaebea
ebeaebeaebea

ebebebeaeaeaba








jj

mjmj

mmjj

ba

ba

ebeaba









ˆˆ

Einstein NotationDetailed Notation

35

Mathematics Review
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Polymer Rheology

3. Tensor – the indeterminate vector product of two (or more) vectors

stress
velocity gradient 

e.g.:

– tensors may be constant or may be variable

Definitions

dyad or dyadic product – a tensor written explicitly as the 
indeterminate vector product of two vectors

da
general representation 
of a tensor




A

dyad

36
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Mathematics Review
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Polymer Rheology

Laws of Algebra for Indeterminate 
Product of Vectors:

NO commutative

yes associative

yes distributive

avva 

    vabvabvab 

  wavawva 

37

Mathematics Review
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Polymer Rheology

How can we represent tensors with respect to a chosen 
coordinate system?

  





 

 











3

1

3

1

3

1

3

1

333322331133

332222221122

331122111111

332211332211

ˆˆ

ˆˆ

ˆˆˆˆˆˆ

ˆˆˆˆˆˆ

ˆˆˆˆˆˆ

ˆˆˆˆˆˆ

k w
wkwk

k w
wwkk

eema

emea

emeaemeaemea

emeaemeaemea

emeaemeaemea

emememeaeaeama

Just follow the rules of tensor algebra

Any tensor may be written as the 
sum of 9 dyadic products of basis 

vectors

38
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Mathematics Review
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Polymer Rheology

What about ܣമ?


 


3

1

3

1
ˆˆ

i j
jiij eeAA

Same.

Einstein notation for tensors:  drop the summation sign; every 
double index implies a summation sign has been dropped.

kppkjiij eeAeeAA ˆˆˆˆ 

Reminder: the initial choice of subscript 
letters is arbitrary

39

Mathematics Review
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How can we use Einstein Notation to calculate dot products 
between vectors and tensors?

It’s the same as between vectors.






Ab
vua

ba

40
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Summary of Einstein Notation

1.  Express vectors, tensors, (later, vector operators) in a Cartesian 
coordinate system as the sums of coefficients multiplying basis 
vectors - each separate summation has a different index

2.  Drop the summation signs

3.  Dot products between basis vectors result in the Kronecker delta 
function because the Cartesian system is orthonormal.

Note:

•In Einstein notation, the presence of repeated indices implies 
a missing summation sign

•The choice of initial index (݅, ݉, ݌, etc.) is arbitrary - it merely 
indicates which indices change together

41
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3. Tensor – (continued)

Definitions

Scalar product of two tensors

mkkmpiip eeMeeAMA ˆˆ:ˆˆ: 

carry out the dot 
products indicatedmkpikmip eeeeMA ˆˆ:ˆˆ

  

kmmk

impkkmip

mikpkmip

MA

MA

eeeeMA









ˆˆˆˆ

“p” becomes “k”
“i” becomes “m”
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But, what is a tensor really?

32)( 2  xxxfyscalar function:

A tensor is a handy representation of a Linear Vector Function

a mapping of values of x onto values of y

)(vfw vector function:

a mapping of vectors of v into vectors w

How do we express a 
vector function?

43

Multiplying vectors and tensors is a 
convenient way of representing the 
actions of a linear vector function

(as we will now show).
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What is a linear function?

Linear, in this usage, has  a precise, mathematical definition.

Linear functions (scalar and vector) have the 
following two properties:

)()()(

)()(

wfxfwxf

xfxf


 

It turns out . . . 
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Tensors are Linear Vector Functions

Let f(a) = b be a  linear vector function.

We can write a in Cartesian coordinates.

beaeaeafaf

eaeaeaa




)ˆˆˆ()(

ˆˆˆ

332211

332211

Using the linear properties of  f, we can distribute the function action:

befaefaefaaf  )ˆ()ˆ()ˆ()( 332211

These results are just vectors, we will 
name them v, w, and m.

45
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Tensors are Linear Vector Functions (continued)

befaefaefaaf  )ˆ()ˆ()ˆ()( 332211

Now we note that the coefficients ai may be written as,

v w m

bmawavaaf  321)(

332211 ˆˆˆ eaaeaaeaa 

Substituting,
The 

indeterminate 
vector product 
has appeared!
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Using the distributive law, we can factor out the dot product with a:

This is just a tensor 
(the sum of dyadic 

products of vectors)
  Mmeweve  321 ˆˆˆ

bMaaf )(

Tensor operations 
are convenient to 
use to express linear 
vector functions.

CONCLUSION:
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3. Tensor – (continued)

More Definitions

Identity Tensor

123

332211

100
010
001

ˆˆˆˆˆˆˆˆ
















 eeeeeeeeI ii

A
eeA

eeA
eeeeAIA

kiik

kpkiip

kkpiip







ˆˆ
ˆˆ

ˆˆˆˆ

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3. Tensor – (continued) More Definitions

Zero Tensor

123
000
000
000

0 














Magnitude of a Tensor

  
kmmk

mikpkmip

mkkmpiip

AA
eeeeAA

eeAeeAAA

AA
A








ˆˆˆˆ
ˆˆ:ˆˆ:

2

:

products 
across the 
diagonal

49

Note that the book has a 
typo on this equation:  the 
“2” is under the square root.
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3. Tensor – (continued) More Definitions

Tensor Transpose

  ikik
T

kiik
T eeMeeMM ˆˆˆˆ 

Exchange the 
coefficients across 
the diagonal

CAUTION:

     
 

ijpjip

T
jipjip

T
kpjipjik

T
jppjkiik

T

eeCA
eeCA

eeCAeeCeeACA

ˆˆ
ˆˆ

ˆˆˆˆˆˆ




 

It is not equal to:    
jijppi

T
jipjip

T

eeCA
eeCACA

ˆˆ
ˆˆ




I recommend you always 
interchange the indices 
on the basis vectors 
rather than on the 
coefficients.
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3. Tensor – (continued) More Definitions

Symmetric Tensor                      e.g.

kiik

T

MM
MM



123
653
542
321















Antisymmetric Tensor                  e.g.

kiik

T

MM
MM



123
053
502
320
















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3. Tensor – (continued) More Definitions

Tensor order

Scalars, vectors, and tensors may all be considered to 
be tensors (entities that exist independent of coordinate 
system).  They are tensors of different orders, however.

order = degree of complexity

scalars 

vectors 

tensors

higher-
order 
tensors

0th -order tensors

1st -order tensors

2nd -order tensors

3rd -order tensors

30

31

32

33

Number of 
coefficients 
needed to 
express the 
tensor in 3D 
space
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3. Tensor – (continued) More Definitions

Tensor Invariants

vv 

Scalars that are associated with tensors; these are 
numbers that are independent of coordinate system.

vectors: The magnitude of a vector is a 
scalar associated with the 
vector

It is independent of coordinate 
system, i.e. it is an invariant.

tensors: There are three invariants 
associated with a second-order 
tensor.

A

53
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Tensor Invariants

AtrAtraceIA 

For the tensor written in Cartesian coordinates:

332211 AAAAAtrace pp 

 

  hpjhpjA

kppkA

AAAAAAtraceIII

AAAAAAtraceII



 :

Note:  the definitions of invariants written in terms of 
coefficients are only valid when the tensor is written in 
Cartesian coordinates.
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4. Differential Operations with Vectors, Tensors

Scalars, vectors, and tensors are differentiated to determine 
rates of change (with respect to time, position)

123

3

2

1


































t

w
t

w
t

w

t

w

•To carryout the differentiation with respect to a single variable, 
differentiate each coefficient individually.

123

333231

232221

312111






















































t

B

t

B

t

B
t

B

t

B

t

B
t

B

t

B

t

B

t

B

t


•There is no change in order (vectors remain vectors, scalars 
remain scalars, etc.
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4. Differential Operations with Vectors, Tensors  (continued)

p
p

p p
p x

e
x

e

x

x

x

x
e

x
e

x
e
























































ˆˆ

ˆˆˆ

3

1

3

2

1

3
3

2
2

1
1

123

•To carryout the differentiation with respect to 3D
spatial variation, use the del (nabla) operator.

•This is a vector operator

•Del may be applied in three different ways

•Del may operate on scalars, vectors, or tensors

This is written in 
Cartesian 

coordinates

Einstein notation for del

Del Operator
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4. Differential Operations with Vectors, Tensors  (continued)

p
p x

e

x

x

x

x
e

x
e

x
e



























































ˆ

ˆˆˆ

123
3

2

1

3
3

2
2

1
1

This is written in 
Cartesian 
coordinates

A.  Scalars - gradient

Gibbs 
notation

Gradient of a 
scalar field

•gradient operation increases the order of the 
entity operated upon

The gradient of 
a scalar field is a 

vector The gradient operation 
captures the total spatial 

variation of a scalar, vector, 
or tensor field.
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4. Differential Operations with Vectors, Tensors  (continued)

 

 

 

3

3
33

3

2
23

3

1
13

2

3
32

2

2
22

2

1
12

1

3
31

1

2
21

1

1
11

332211
3

3

332211
2

2

332211
1

1

3
3

2
2

1
1

ˆˆˆˆˆˆˆˆˆˆ

ˆˆˆˆˆˆˆˆ

ˆˆˆˆ

ˆˆˆˆ

ˆˆˆˆ

ˆˆˆ

x

w
ee

x

w
ee

x

w
ee

x

w
ee

x

w
ee

x

w
ee

x

w
ee

x

w
ee

x

w
ee

ewewew
x

e

ewewew
x

e

ewewew
x

e

w
x

ew
x

ew
x

ew



































































 This is all written in 
Cartesian 
coordinates (basis 
vectors are 
constant)

B. Vectors - gradient

The basis vectors 
can move out of 
the derivatives 

because they are 
constant (do not 

change with 
position)
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4. Differential Operations with Vectors, Tensors  (continued)

kj
j

k

j

k
kj

j k j

k
kj ee

x

w

x

w
ee

x

w
eew ˆˆˆˆˆˆ

3

1

3

1 










 
 

B. Vectors - gradient (continued)

Gradient of a 
vector field

Einstein notation 
for gradient of a 
vector

The gradient of 
a vector field is a 

tensor

constants may appear 
on either side of the 
differential operator
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4. Differential Operations with Vectors, Tensors  (continued)

i

i

i i

i

x

w

x

w
x

w

x

w

x

w

ewewew
x

e
x

e
x

ew















































3

1

3

3

2

2

1

1

332211
3

3
2

2
1

1 ˆˆˆˆˆˆ

C. Vectors - divergence

Divergence of a 
vector field

Einstein notation 
for divergence of a 
vector

The Divergence 
of a vector field 

is a scalar
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4. Differential Operations with Vectors, Tensors  (continued)

j

j

mj
m

j
jm

m

j
jj

m
m

x

w
x

w
ee

x

w
ew

x
ew

















 ˆˆˆˆ

C. Vectors - divergence (continued)

Using Einstein 
notation

constants may appear 
on either side of the 
differential operator

This is all written in 
Cartesian 
coordinates (basis 
vectors are 
constant)

•divergence operation decreases the order of the 
entity operated upon
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4. Differential Operations with Vectors, Tensors  (continued)

 

 

1233

3
2

2

3
2

1

3
2

3

2
2

2

2
2

1

2
2

3

1
2

2

1
2

1

1
2

ˆ

ˆ

ˆˆˆˆˆˆ





























































































x

w

x

w

x

w
x

w

x

w

x

w
x

w

x

w

x

w

ew
xx

ew
xx

eeew
xx

ew
x

e
x

ew

jj
pp

jmpj
pm

jpmj
pm

jj
p

p
m

m



D. Vectors - Laplacian

Using 
Einstein 

notation:

The Laplacian of 
a vector field is a 

vector

•Laplacian operation does 
not change the order of the 
entity operated upon
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4. Differential Operations with Vectors, Tensors  (continued)

E. Scalar - divergence

F. Scalar - Laplacian

G.  Tensor - gradient

H.  Tensor - divergence

I.  Tensor - Laplacian



A

A

A

 (impossible; cannot 
decrease order of a scalar)
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5. Curvilinear Coordinates

These coordinate systems are ortho-normal, but they are not 
constant (they vary with position).

This causes some non-intuitive effects when derivatives are taken.

Cylindrical zr ,, zr eee ˆ,ˆ,ˆ 

Spherical  ,,r  eeer ˆ,ˆ,ˆ

See 
figures 
2.11 and 
2.12
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5. Curvilinear Coordinates (continued)

 

 zzrrzyx

zzrr

zzrr

eveveve
z

e
y

e
x

evevevv

evevevv

ˆˆˆˆˆˆ

ˆˆˆ

ˆˆˆ































First, we need to write this in 
cylindrical coordinates.

zz

yx

yxr

ee

eee

eee

ˆˆ

ˆcosˆsinˆ

ˆsinˆcosˆ













zz

ry

rx








sin

cossolve for 
Cartesian 

basis 
vectors and 
substitute 

above

substitute above 
using chain rule 

(see next slide for 
details)
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


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ˆcosˆsinˆ
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


zz
x

y
ry

yxrrx












1
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tansin
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


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5. Curvilinear Coordinates (continued)

z
e

r
e

r
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e
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e
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e
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
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




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



















ˆ
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ˆˆ
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 

 

 

 zzrrz
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evevev
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e
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e
r

e
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ˆˆˆ
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ˆ

ˆˆˆˆ

ˆˆˆˆ
1

ˆˆ














































Result:

Now, proceed:

(We cannot use 
Einstein notation 
because these are 
not Cartesian 
coordinates)
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5. Curvilinear Coordinates (continued)

 

 

 zzrrz

zzrr

zzrrr

evevev
z

e

evevev
r

e

evevev
r

ev

ˆˆˆˆ

ˆˆˆ
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ˆ

ˆˆˆˆ























 








e

ee

ee
e

yx
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r

ˆ

ˆcosˆsin

ˆsinˆcos
ˆ












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5. Curvilinear Coordinates (continued)

This term is not intuitive, 
and appears because the 

basis vectors in the 
curvilinear coordinate 

systems vary with position.
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5. Curvilinear Coordinates (continued)

Final result for divergence of a vector 
in cylindrical coordinates:

 

 

 

z

v

r

vv

rr

v
v

evevev
z

e

evevev
r

e

evevev
r

ev

rrr

zzrrz

zzrr

zzrrr








































1

ˆˆˆˆ

ˆˆˆ
1

ˆ

ˆˆˆˆ
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5. Curvilinear Coordinates (continued)

Curvilinear Coordinates (summary)

•The basis vectors are ortho-normal

•The basis vectors are non-constant (vary with position)

•These systems are convenient when the flow system 
mimics the coordinate surfaces in curvilinear coordinate 
systems.

•We cannot use Einstein notation – must use Tables in 
Appendix C2 (pp464-468).

71
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6. Vector and Tensor Theorems and 
definitions

In Chapter 3 we review Newtonian fluid 
mechanics using the vector/tensor 
vocabulary we have learned thus far.  We 
just need a few more theorems to prepare 
us for those studies.  These are presented 
without proof.

Gauss Divergence Theorem

 
SV

dSbndVb ˆ

This theorem establishes the utility of the 
divergence operation.  The integral of the 

divergence of a vector field over a volume is 
equal to the net outward flow of that property 

through the bounding surface.

outwardly
directed unit 
normal

72
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V

n̂
S

b

dS
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6. Vector and Tensor Theorems (continued)

Leibnitz Rule




























dx
t

txf

dxtxf
dt

d

dt

dI

dxtxfI

),(

),(

),(

for differentiating integrals

constant limits

one 
dimension, 
constant 
limits
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6. Vector and Tensor Theorems (continued)

Leibnitz Rule

),(),(
),(

),(

),(

)(

)(

)(

)(

)(

)(

tf
dt

d
tf

dt

d
dx

t

txf

dxtxf
dt

d

dt

dJ

dxtxfJ

t

t

t

t

t

t





























for differentiating integrals

variable limits

one 
dimension, 
variable
limits
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6. Vector and Tensor Theorems (continued)

Leibnitz Rule

 















)()(

)(

)(

ˆ
),,,(

),,,(

),,,(

tS

surface

tV

tV

tV

dSnvfdV
t

tzyxf

dVtzyxf
dt

d

dt

dJ

dVtzyxfJ

for differentiating integrals

three
dimensions, 
variable limits

velocity of the surface element dS
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6. Vector and Tensor Theorems (continued)

Substantial Derivative ),,,( tzyxf

x-component 
of velocity 
along that path

xyzxytxztyzt

xyzxytxztyzt

t

f

dt

dz

z

f

dt

dy

y

f

dt

dx

x

f

dt

df

dt
t

f
dz

z

f
dy

y

f
dx

x

f
df









































































time rate of 
change of f 
along a chosen 
path

When the chosen path is 
the path of a fluid particle, 
then these are the 
components of the 
particle velocities.

Consider a function

true for any 
path:

choose 
special path:
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6. Vector and Tensor Theorems (continued) Substantial Derivative
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




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

path
particlea

alongdt
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




fv 

fv
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f

Dt

Df

dt
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path
particlea

along










Substantial Derivative

When the chosen 
path is the path of 
a fluid particle, 
then the space 
derivatives are the 
components of the 
particle velocities.
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Done with math 
background.

Let’s use it with 
Newtonian fluids

Chapter 3:  Newtonian Fluids

© Faith A. Morrison, Michigan Tech U.

80

CM4650 
Polymer Rheology 

Michigan Tech

gvpvv
t

v
 



 

 2

Navier-Stokes Equation
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Chapter 3:  Newtonian Fluid Mechanics
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TWO GOALS

•Derive governing equations (mass and momentum balances

•Solve governing equations for velocity and stress fields

81

QUICK START

First, before we get deep into 
derivation, let’s do a Navier-Stokes 
problem to get you started in the 
mechanics of this type of problem 
solving.

x1

x2

x3

H

W V

v1(x2)

x1

x2

x3

H

W V

v1(x2)

EXAMPLE:  Drag flow 
between infinite 
parallel plates

•Newtonian
•steady state
•incompressible fluid
•very wide, long
•uniform pressure

82
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Chapter 3:  Newtonian Fluid Mechanics
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TWO GOALS

•Derive governing equations (mass and momentum balances

•Solve governing equations for velocity and stress fields

Mass Balance


















CVtoinmass

offluxnet

VCinmassof

increaseofrate

Consider an arbitrary control 
volume V enclosed by a surface S

83

Mathematics Review

© Faith A. Morrison, Michigan Tech U.

Polymer Rheology

V

n̂
S

b

dS

84



CM4650 Lectures 1-3:  Intro, Mathematical 
Review

1/14/2015

43

Chapter 3:  Newtonian Fluid Mechanics
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Mass Balance



















V

dV
dt

d

Vinmassof

increaseofrate


Polymer Rheology

(continued) Consider an 
arbitrary 
volume V

enclosed by a 
surface S

 
















S

dSvn

Ssurfacethrough

Vtoinmass

offluxnet

ˆ

outwardly 
pointing unit 
normal
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Mass Balance

Polymer Rheology

(continued)

 

  dVv

dSvndV
t

dSvndV
dt

d

V

SV

SV




























ˆ

ˆ

  0



 




V

dVv
t



Leibnitz 
rule

Gauss 
Divergence 
Theorem
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Mass Balance

Polymer Rheology

(continued)

  0



 




V

dVv
t


Since V is 
arbitrary,

  0



v
t



Continuity equation:  
microscopic mass balance
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Mass Balance

Polymer Rheology

(continued)

 

 

  0

0

0











v
Dt

D

vv
t

v
t







Continuity equation (general fluids)

For =constant (incompressible fluids):

0 v
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Consider an 
arbitrary 

control volume 
V enclosed by 

a surface S


























CVonforces

ofsum

CVtoinmomentum

offluxnet

VCinmomentumof

increaseofrate

Momentum is conserved.

resembles the 
rate term in the 
mass balance

resembles the 
flux term in the 
mass balance

Forces:
body (gravity)

molecular forces

Momentum Balance

89
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V

n̂
S

b

dS

Momentum Balance
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Momentum Balance
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Polymer Rheology(continued)

 

























V

V

dVv
t

dVv
dt

d

Vinmomentumof

increaseofrate





 

  dVvv

dSvvn
Vtoinmomentum

offluxnet

V

S
















ˆ

Leibnitz 
rule

Gauss 
Divergence 
Theorem
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Polymer Rheology(continued)










V

dVg
gtodue

Vonforce


Body Forces (non-contact)

Forces on V
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Polymer Rheology

Molecular Forces  (contact) – this is the tough one

We need an expression for the 
state of stress at an arbitrary 

point P in a flow.

P

dS
dSon
Pat

stress
f


















choose a surface 
through P

the 
force on 
that 
surface

93

Molecular Forces
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(continued)

Think back to the molecular 
picture from chemistry:

The specifics of these forces, 
connections, and interactions 

must be captured by the 
molecular forces term that we 

seek.
94
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Molecular Forces
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(continued)

•We will concentrate on expressing the molecular 
forces mathematically;

•We leave to later the task of relating the resulting 
mathematical expression to experimental observations.

•arbitrary shape
•small

First, choose a 
surface: n̂

f
dS

fdS

dSon

Pat

stress


















What is f ?

95

P

x3

x2

x1

ab

c

1̂e

2ê
3ê

Consider the forces on 
three mutually 
perpendicular surfaces 
through point P:

© Faith A. Morrison, Michigan Tech U.
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Molecular Forces

© Faith A. Morrison, Michigan Tech U.

(continued)

a is stress on a “1” surface at P

a surface with 
unit normal 1̂e

b is stress on a “2” surface at P

c is stress on a “3” surface at P

We can write these vectors in a 
Cartesian coordinate system:

313212111

332211

ˆˆˆ
ˆˆˆ

eee
eaeaeaa




stress on a “1” 
surface in the 1-
direction
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Molecular Forces
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(continued)

a is stress on a “1” surface at P

b is stress on a “2” surface at P

c is stress on a “3” surface at P

333232131

332211

323222121

332211

313212111

332211

ˆˆˆ
ˆˆˆ

ˆˆˆ
ˆˆˆ

ˆˆˆ
ˆˆˆ

eee
ecececc

eee
ebebebb

eee
eaeaeaa










Stress on a “p” 
surface in the   
k-direction

pkSo far, this is 
nomenclature; next we 

relate these 
expressions to force 

on an arbitrary 
surface.
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© Faith A. Morrison, Michigan Tech U.

(continued)

n̂

f
dS

How can we write f (the force 

on an arbitrary surface dS) in 
terms of the pk?

332211 ˆˆˆ efefeff 
f1 is force on dS in 

1-direction f2 is force on dS in 
2-direction

f3 is force on dS in 
3-direction

There are three pk that relate to 
forces in the 1-direction: 

312111 ,, 
99

Molecular Forces

© Faith A. Morrison, Michigan Tech U.

(continued)

How can we write f (the force on an 
arbitrary surface dS) in terms of the 
quantities  pk?

332211 ˆˆˆ efefeff 

f1 , the force on dS in 1-direction, can be broken into 
three parts associated with the three stress components:
.

312111 ,, 

n̂

f
dS

 

 area
area

force

dSen
surface

theontodA
ofprojection



























 11111 ˆˆ

1

dSen 1̂ˆ 

first part:

100
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Molecular Forces

© Faith A. Morrison, Michigan Tech U.

(continued)

f1 , the force on dS in 1-direction, is composed of THREE parts:

 

 

  dSen
surface

theontodA
ofprojection

dSen
surface

theontodA
ofprojection

dSen
surface

theontodA
ofprojection

33131

22121

11111

ˆˆ
3

ˆˆ
2

ˆˆ
1



























































first part:

second part:

third part:
stress on a 
2 -surface 

in the 1-
direction

the sum of these three = f1

101

© Faith A. Morrison, Michigan Tech U.
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Molecular Forces

© Faith A. Morrison, Michigan Tech U.

(continued)

f1 , the force in the 1-direction on an arbitrary surface dS is 
composed of THREE parts.

dSendSendSenf 3312211111 ˆˆˆˆˆˆ 

appropriate 
area

stress

  dSeeenf 3312211111 ˆˆˆˆ 

Using the distributive law:

Force in the 1-direction on an 
arbitrary surface dS

103

Molecular Forces

© Faith A. Morrison, Michigan Tech U.

(continued)

The same logic applies in the 2-direction and the 3-direction

 
 
  dSeeenf

dSeeenf
dSeeenf

3332231133

3322221122

3312211111

ˆˆˆˆ
ˆˆˆˆ

ˆˆˆˆ





Assembling the force vector:

 
 
  3333223113

2332222112

1331221111

332211

ˆˆˆˆˆ
ˆˆˆˆˆ

ˆˆˆˆˆ

ˆˆˆ

eeeendS
eeeendS

eeeendS

efefeff







104
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Molecular Forces

© Faith A. Morrison, Michigan Tech U.

(continued)

Assembling the force vector:

 
 
 



333332233113

233222222112

133112211111

3333223113

2332222112

1331221111

332211

ˆˆˆˆˆˆ
ˆˆˆˆˆˆ

ˆˆˆˆˆˆˆ

ˆˆˆˆˆ
ˆˆˆˆˆ

ˆˆˆˆˆ

ˆˆˆ

eeeeee
eeeeee

eeeeeendS

eeeendS
eeeendS

eeeendS

efefeff













linear combination of 
dyadic products = tensor 105

Molecular Forces

© Faith A. Morrison, Michigan Tech U.

(continued)

Assembling the force vector:
















 

ndSf

eendS

eendS

eeeeee
eeeeee

eeeeeendSf

mppm

p m
mppm

ˆ

ˆˆˆ

ˆˆˆ

ˆˆˆˆˆˆ
ˆˆˆˆˆˆ

ˆˆˆˆˆˆˆ

3

1

3

1

333332233113

233222222112

133112211111

Total stress tensor
(molecular stresses)

106
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Momentum Balance

© Faith A. Morrison, Michigan Tech U.

Polymer Rheology(continued)

   
forces

molecular
dVgdVvvdVv

t VVV





 

























Vonforces

ofsum

Vtoinmomentum

offluxnet

Vinmomentumof

increaseofrate

 

 


























V

S

S

dV

dSn

dS

onforces

molecular

forces

molecular

ˆ Gauss 
Divergence 
Theorem

107

We use a stress sign 
convention that 
requires a negative 
sign here.

Momentum Balance

© Faith A. Morrison, Michigan Tech U.

Polymer Rheology(continued)

   
forces

molecular
dVgdVvvdVv

t VVV





 

























Vonforces

ofsum

Vtoinmomentum

offluxnet

Vinmomentumof

increaseofrate

 

 


























V

S

S

dV

dSn

dS

onforces

molecular

forces

molecular

ˆ Gauss 
Divergence 
Theorem

UR/Bird choice: 
positive 

compression 
(pressure is 

positive)

108
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Momentum Balance

© Faith A. Morrison, Michigan Tech U.

Polymer Rheology(continued)

     
S S

on dSndSnF
~ˆˆ

UR/Bird 
choice: fluid at 
lesser y exerts 

force on fluid at 
greater y

109

(IFM/Mechanics 
choice: (opposite)

yx
yx~

surface

Momentum Balance

© Faith A. Morrison, Michigan Tech U.

Polymer Rheology(continued)

     



VVVV

dVdVgdVvvdVv
t

























Vonforces
ofsum

Vtoinmomentum
offluxnet

Vinmomentumof
increaseofrate

Final Assembly:

  0



 




V

dVgvv
t

v




  0



gvv
t

v 
Because V is arbitrary, we may conclude:

Microscopic 
momentum 
balance

110
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Momentum Balance

© Faith A. Morrison, Michigan Tech U.

Polymer Rheology(continued)

g
Dt

vD

gvv
t

v











 



Microscopic 
momentum 

balance
  0




gvv
t

v 

After some rearrangement:

Equation of 
Motion

Now, what to do with        ?

111

Momentum Balance

© Faith A. Morrison, Michigan Tech U.

Polymer Rheology(continued)

Now, what to do with        ? Pressure is part of it.

Pressure

definition:  An isotropic force/area of molecular origin.  Pressure is 
the same on any surface drawn through a point and acts normally to 
the chosen surface.

123

332211

00
00
00

ˆˆˆˆˆˆ

















p
p

p
eepeepeepIppressure

Test:  what is the force on a 
surface with unit normal     ?n̂

112
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Momentum Balance

© Faith A. Morrison, Michigan Tech U.

Polymer Rheology(continued)

Now, what to do with        ? Pressure is part of it.

Extra Molecular Stresses

definition:  The extra stresses are the 
molecular stresses that are not isotropic

Ip

Extra stress 
tensor,

There are other, nonisotropic stresses

i.e. everything complicated in 
molecular deformation

Now, what to do with        ? This becomes the central 
question of rheological study

back to our question,

113

Momentum Balance

© Faith A. Morrison, Michigan Tech U.

Polymer Rheology(continued)

Ip

Ip









~~

114

UR/Bird 
choice: fluid at 
lesser y exerts 

force on fluid at 
greater y

(IFM/Mechanics 
choice: (opposite)

Stress sign 
convention affects 
any expressions 
with           or  ~

,  ~,
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Momentum Balance

© Faith A. Morrison, Michigan Tech U.

Polymer Rheology(continued)

Constitutive equations for Stress

•are tensor equations

•relate the velocity field to the stresses 
generated by molecular forces

•are based on observations (empirical) or are 
based on molecular models (theoretical)

•are typically found by trial-and-error

•are justified by how well they work for a 
system of interest

•are observed to be symmetric
Observation: the stress 

tensor is symmetric

)

,(

propertiesmaterial

vf 

115

Momentum Balance

© Faith A. Morrison, Michigan Tech U.

Polymer Rheology(continued)

gvv
t

v
 



 

Microscopic 

momentum 
balance

Equation of 
Motion

gpvv
t

v  



 



In terms of the extra stress tensor:

Equation of 
Motion

Cauchy 
Momentum 
Equation

116

http://www.chem.mtu.edu/~fmorriso/cm310/Navier2007.pdf

Components in three coordinate systems (our sign convention):
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Momentum Balance

© Faith A. Morrison, Michigan Tech U.

Polymer Rheology(continued)

Newtonian Constitutive equation

  Tvv  

•for incompressible fluids (see text for 
compressible fluids)

•is empirical

•may be justified for some systems with 
molecular modeling calculations

117  Tvv  ~Note:

Momentum Balance

© Faith A. Morrison, Michigan Tech U.

Polymer Rheology(continued)

How is the Newtonian 
Constitutive equation related to 
Newton’s Law of Viscosity?

  Tvv  
2

1
21 x

v




 

•incompressible fluids
•rectilinear flow (straight lines)
•no variation in x3-direction

•incompressible fluids

118
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Momentum Balance

© Faith A. Morrison, Michigan Tech U.

Polymer Rheology(continued)

gpvv
t

v  



 

 Equation of 

Motion

  Tvv  

Back to the momentum balance . . . 

We can incorporate the Newtonian 
constitutive equation into the momentum 
balance to obtain a momentum-balance 

equation that is specific to incompressible, 
Newtonian fluids

119

Momentum Balance

© Faith A. Morrison, Michigan Tech U.

Polymer Rheology(continued)

gvpvv
t

v  



 

 2

Navier-Stokes Equation

•incompressible fluids
•Newtonian fluids

120

Note:  The Navier-Stokes is 
unaffected by the stress sign 
convention.
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Momentum Balance

© Faith A. Morrison, Michigan Tech U.

Polymer Rheology(continued)

gvpvv
t

v  



 

 2

Navier-Stokes Equation

121

Newtonian 
Problem 
Solving

x1

x2

x3

H

W V

v1(x2)

EXAMPLE:  Drag flow 
between infinite 
parallel plates

•Newtonian
•steady state
•incompressible fluid
•very wide, long
•uniform pressure

122

ݒ ൌ
ଵݒ
ଶݒ
ଷݒ ଵଶଷ

	

from QUICK START
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EXAMPLE:  Poiseuille 
flow between infinite 
parallel plates

•Newtonian
•steady state
•Incompressible fluid
•infinitely wide, long

x1

x2

x3

W

2H

x1=0
p=Po

x1=L
p=PL

v1(x2)

123

EXAMPLE:  Poiseuille 
flow in a tube

•Newtonian
•Steady state
•incompressible fluid
•long tube

cross-section A:A

r
z

r

z

L
vz(r)

R

fluid

124
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EXAMPLE:  Torsional 
flow between parallel 
plates

•Newtonian
•Steady state
•incompressible fluid
ఏݒ• ൌ ሻݎሺ݂ݖ

r

z

H

cross-sectional
view:

R





125

Chapter 4:  Standard Flows

© Faith A. Morrison, Michigan Tech U.
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CM4650 
Polymer Rheology 

Michigan Tech

fluid

C
O

N
ST

A
N

T
T

O
R

Q
U

E
M

O
T

O
R

t





How can we investigate non-Newtonian behavior?

Newtonian fluids: 

 
non-Newtonian fluids: 

 vs.



CM4650 Lectures 1-3:  Intro, Mathematical 
Review

1/14/2015

64

Chapter 4:  Standard Flows for Rheology

© Faith A. Morrison, Michigan Tech U.

127

CM4650 
Polymer Rheology 

Michigan Tech

21, xx

3x

H )( 21 xv

1x

2x

HVHv 01 )( 

constant0 

shear

elongation

On to . . . Polymer Rheology . . .

© Faith A. Morrison, Michigan Tech U.

We now know how to model Newtonian fluid motion,                             :

128

  Tvv  

gpvv
t

v  



 



Cauchy momentum equation

  0



v
t


Continuity equation

Newtonian constitutive equation

),(),,( txptxv
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© Faith A. Morrison, Michigan Tech U.

Rheological Behavior of Fluids – Non-Newtonian

How do we model the motion of Non-Newtonian fluid fluids?

129

),( txf

gpvv
t

v  



 



Cauchy Momentum Equation

  0



v
t


Continuity equation

Non-Newtonian constitutive equation

© Faith A. Morrison, Michigan Tech U.

Rheological Behavior of Fluids – Non-Newtonian

130

),( txf

gpvv
t

v  



 



Cauchy Momentum Equation

  0



v
t


Continuity equation

Non-Newtonian constitutive equation

This is the 
missing piece

How do we model the motion of Non-Newtonian fluid fluids?
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Chapter 4:  Standard Flows for Rheology

© Faith A. Morrison, Michigan Tech U.

131

Chapter 4:  Standard flows
Chapter 5:  Material Functions
Chapter 6:  Experimental Data

Chapter 7:  GNF
Chapter 8:  GLVE
Chapter 9:  Advanced

Constitutive equations

To get to constitutive 
equations, we must 
first quantify how 

non-Newtonian fluids 
behave

© Faith A. Morrison, Michigan Tech U.

1.  Strain response to imposed 
shear stress 

t

dt

d
  =constant

2.  Pressure-driven flow in 
a tube (Poiseuille flow)

•shear rate is constant

L

PR
Q




8

4


3.  Stress tensor in shear 
flow

123

21

12

000

00

00
















 




P

Q
L

R



8

4

=constant

•viscosity is 
constant

•only two components 
are nonzero

1x

2x

)( 21 xv

r

z
r

z

132

Rheological Behavior of Fluids – Newtonian

What do we observe?
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© Faith A. Morrison, Michigan Tech U.

1.  Strain response to imposed shear 
stress

•shear rate is variable

3.  Stress tensor in shear flow

P

Q

•viscosity is variable •all 9 components are 
nonzero

123333231

232221

131211


























t

Release 
stress

Normal 
stresses

Q1

2Q1

1P 12 P

1x

2x

)( 21 xv

2.  Pressure-driven flow in a tube 
(Poiseuille flow)

r

z
r
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Rheological Behavior of Fluids – Non-Newtonian

What do we observe?

Non-Newtonian Constitutive Equations

© Faith A. Morrison, Michigan Tech U.

134

• We have observations that some materials 
are not like Newtonian fluids.

• How can we be systematic about developing 
new, unknown models for these materials?

Need measurements

For Newtonian fluids, measurements 
were easy:  
• shear flow
• one stress, ߬ଶଵ
• one material constant, ߤ (viscosity)

x1

x2

x3

H

W V

v1(x2)

ഭ߬ ൌ െߤ പݒߘ ൅ പݒߘ ்
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Non-Newtonian Constitutive Equations

© Faith A. Morrison, Michigan Tech U.
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Need measurements

For non-Newtonian fluids, 
measurements are not easy: 

• shear flow (not the only choice) 
• Four stresses in shear, ߬ଶଵ, ߬ଵଵ, ߬ଶଶ, ߬ଷଷ
• Unknown number of material constants in ഭ߬ሺݒപሻ
• Unknown number of material functions in ഭ߬ሺݒപሻ

x1

x2

x3

H

W V

v1(x2)

ഭ߬ ൌ? ? ?

Non-Newtonian Constitutive Equations

© Faith A. Morrison, Michigan Tech U.
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Need measurements

For non-Newtonian fluids, 
measurements are not easy: 

• shear flow (not the only choice) 
• Four stresses in shear, ߬ଶଵ, ߬ଵଵ, ߬ଶଶ, ߬ଷଷ
• Unknown number of material constants in ഭ߬ሺݒപሻ
• Unknown number of material functions in ഭ߬ሺݒപሻ

x1

x2

x3

H

W V

v1(x2)

ഭ߬ ൌ? ? ?

We know we 
need to make 

measurements to 
know more,
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Non-Newtonian Constitutive Equations

© Faith A. Morrison, Michigan Tech U.
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Need measurements

For non-Newtonian fluids, 
measurements are not easy: 

• shear flow (not the only choice) 
• Four stresses in shear, ߬ଶଵ, ߬ଵଵ, ߬ଶଶ, ߬ଷଷ
• Unknown number of material constants in ഭ߬ሺݒപሻ
• Unknown number of material functions in ഭ߬ሺݒപሻ

x1

x2

x3

H

W V

v1(x2)

ഭ߬ ൌ? ? ?

We know we 
need to make 

measurements to 
know more,

But, because we do not 
know the functional form of 
ഭ߬ሺݒപሻ, we don’t know what we 

need to measure to know 
more!

Non-Newtonian Constitutive Equations

© Faith A. Morrison, Michigan Tech U.
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What should we do?
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Non-Newtonian Constitutive Equations

© Faith A. Morrison, Michigan Tech U.
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What should we do?

1. Pick a small number of simple flows
• Standardize the flows
• Make them easy to calculate with
• Make them easy to produce in the lab

Chapter 4:  Standard flows

Non-Newtonian Constitutive Equations

© Faith A. Morrison, Michigan Tech U.
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What should we do?

1. Pick a small number of simple flows

2. Make calculations
3. Make measurements

• Standardize the flows
• Make them easy to calculate with
• Make them easy to produce in the lab

Chapter 5:  Material Functions
Chapter 6:  Experimental Data

Chapter 4:  Standard flows
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Non-Newtonian Constitutive Equations

© Faith A. Morrison, Michigan Tech U.

141

What should we do?

1. Pick a small number of simple flows

2. Make calculations
3. Make measurements
4. Try to deduce ഭ߬ሺݒപሻ

• Standardize the flows
• Make them easy to calculate with
• Make them easy to produce in the lab

Chapter 5:  Material Functions
Chapter 6:  Experimental Data

Chapter 4:  Standard flows

Chapter 7:  GNF
Chapter 8:  GLVE
Chapter 9:  Advanced

©
 F

ai
th
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ch
 U

.

Tactic:  Divide the Problem in half

142

Modeling Calculations Experiments

Standard Flows

Dream up models

Calculate material 
functions from 
model stresses

Determine material 
functions from 

measured stresses

Compare

Calculate model 
predictions for 

stresses in standard 
flows

Build experimental 
apparatuses that 

allow measurements 
in standard flows 

Pass judgment 
on models

Collect models and their report 
cards for future use
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© Faith A. Morrison, Michigan Tech U.
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Standard flows – choose a velocity field (not an apparatus or a 
procedure)

•For model predictions, calculations are straightforward
•For experiments, design can be optimized for accuracy and fluid 
variety

Material functions – choose a common vocabulary of stress and 
kinematics to report results

•Make it easier to compare model/experiment
•Record an “inventory” of fluid behavior (expertise)

fluid

C
O

N
ST

A
N

T
T

O
R

Q
U

E
M

O
T

O
R

t





How can we investigate non-Newtonian behavior?

Newtonian fluids: 

 
non-Newtonian fluids: 

 vs.

© Faith A. Morrison, Michigan Tech U.
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H )( 21 xv

1x

2x

HVHv 01 )( 

constant0 

1x

2x

V
)(1 tx )(1 ttx 

Simple Shear Flow
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)(


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












xt

v



velocity field

path lines

© Faith A. Morrison, Michigan Tech U.

145

Near solid surfaces, the 
flow is shear flow.

© Faith A. Morrison, Michigan Tech U.
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 x

 y

 x

 y
(z-plane
section)

(z-plane
section)





 r  
H

 r



(-plane
section)

(plane
section)

 

 r

 

(z-plane
section)

(-plane
section)

 

(z-plane
section)

(-plane
section)

Experimental Shear Geometries

© Faith A. Morrison, Michigan Tech U.
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x3

neutral 
direction

x1

x2

flow direction

gradient 
direction

Standard Nomenclature for Shear Flow

© Faith A. Morrison, Michigan Tech U.
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 x1

 x2

Why is shear a standard flow?
•simple velocity field
•represents all sliding flows
•simple stress tensor

© Faith A. Morrison, Michigan Tech U.
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V

 21 xv
1x

2x

 0,22 ,0 lP

 0,11 ,0 lP

ol

0t

 21 xv
1x

2x

0t

 0,222 ,ltlP o

 0,111 , ltlP o

ol tll oo

tl oo

at long
times

How do 
particles move 
apart in shear 
flow?

Consider two 
particles in the 
same x1-x2

plane, initially 
along the x2

axis.

© Faith A. Morrison, Michigan Tech U.

 0, 1101 ltlP 

 0, 2202 ltlP 

 0,0 22 lP

 0,0 11 lP
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How do particles 
move apart in 
shear flow?

Consider two 
particles in the 
same x1-x2 plane, 
initially along the 
x2 axis (x1=0).

© Faith A. Morrison, Michigan Tech U.
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20
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0

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










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x

v



201 xv 

Each particle has a different 
velocity depending on its x2

position:

2012

1011

:

:

lvP

lvP










The initial x1 position of each particle is x1=0.  After t 
seconds, the two particles are at the following 
positions:

tlxtP

tlxtP

2012

1011

:)(

:)(










 time
time

length
initiallocation 







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What is the separation of the 
particles after time t?

© Faith A. Morrison, Michigan Tech U.

tl10
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









negligible as t

tll 00
In shear the distance between 

points is directly proportional to 
time
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Uniaxial Elongational Flow
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velocity field
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© Faith A. Morrison, Michigan Tech U.
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Uniaxial Elongational Flow
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© Faith A. Morrison, Michigan Tech U.
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Elongational flow occurs when there 
is stretching - die exit, flow through 
contractions

fluid

© Faith A. Morrison, Michigan Tech U.
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fluid

 x1

 x3

air-bed to support sample
x1

 x3

to to+t to+2t

 h(t) R(t)

 R(to)

 h(to)
x1

x3

thin, lubricating
layer on each
plate

Experimental Elongational Geometries

© Faith A. Morrison, Michigan Tech U.
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www.xpansioninstruments.com

Sentmanat Extension Rheometer (2005) 

•Originally developed for rubbers, 
good for melts
•Measures elongational viscosity, 
startup, other material functions
•Two counter-rotating drums
•Easy to load; reproducible

157

© Faith A. Morrison, Michigan Tech U.

http://www.xpansioninstruments.com/rheo-optics.htm 

Why is elongation a standard flow?

•simple velocity field
•represents all stretching flows
•simple stress tensor

© Faith A. Morrison, Michigan Tech U.
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How do particles 
move apart in 
elongational flow?

Consider two 
particles in the 
same x1-x3 plane, 
initially along the 
x3 axis.

1P

2P
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
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




2
,0,02

olP

1x

3x

0t

ol

© Faith A. Morrison, Michigan Tech U.
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How do particles move apart in elongational flow?

Consider two particles in the same x1-x3 plane, initially along the x3 axis.

oell o
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© Faith A. Morrison, Michigan Tech U.
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ଷݒ ൌ
ଷݔ݀
ݐ݀

ൌ ଷݔሶ଴ߝ
ଷݔ݀
ଷݔ

ൌ ݐሶ଴݀ߝ

ln ଷݔ ൌ ݐሶ଴ߝ ൅ ଵܥ
ଷݔ ൌ ଷሺ0ሻ݁ఌݔ

ሶబ௧

പݒ ൌ

െ
ሶ଴ߝ
2
ଵݔ

െ
ሶ଴ߝ
2
ଶݔ

ଷݔሶ଴ߝ ଵଶଷ

ൌ
0
0

ଷݔሶ଴ߝ ଵଶଷ

ଵݔ ൌ 0
ଶݔ ൌ 0
ଷݔ varies

݈ ൌ ݈଴݁ఌሶబ௧

Particles move apart exponentially fast.
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air under
pressure

P

A second type of shear-free flow: Biaxial Stretching
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© Faith A. Morrison, Michigan Tech U.
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fluid

a

2a

a

a

How do uniaxial and biaxial deformations differ?

Consider a uniaxial
flow in which a 
particle is doubled 
in length in the 
flow direction.

2

a

2

a

© Faith A. Morrison, Michigan Tech U.
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Consider a biaxial
flow in which a 
particle is doubled 
in length in the 
flow direction.

a

2a

a

a

2a

 a/4

How do uniaxial and biaxial deformations differ?

© Faith A. Morrison, Michigan Tech U.
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a

2a

a

a

a

 a/2
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
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xt

xt

v








0)( t

A third type of shear-free flow:  
Planar Elongational Flow

© Faith A. Morrison, Michigan Tech U.

164



CM4650 Lectures 1-3:  Intro, Mathematical 
Review

1/14/2015

83

All three shear-free flows can be written together as:
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Elongational flow:  b=0, 

Biaxial stretching:  b=0,

Planar elongation: b=1,

0)( t

0)( t

0)( t

© Faith A. Morrison, Michigan Tech U.
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Why have we chosen these flows?

© Faith A. Morrison, Michigan Tech U.

ANSWER: Because these simple flows have 
symmetry.

And symmetry allows us to draw 
conclusions about the stress tensor 
that is associated with these flows 
for any fluid subjected to that flow.
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123333231

232221

131211
























In general:

© Faith A. Morrison, Michigan Tech U.

But the stress tensor is symmetric – leaving 6 independent 
stress components.

Can we choose a flow to use in which there are fewer than 6 
independent stress components?

Yes we can – symmetric flows

167

How does the stress tensor simplify for 
shear (and later, elongational) flow?

 1230,1,3P

1̂e

2ê

2e

1e

  3210,1,3P

© Faith A. Morrison, Michigan Tech U.
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What would the velocity function be for a 
Newtonian fluid in this coordinate system?

© Faith A. Morrison, Michigan Tech U.
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What would the velocity function be for a 
Newtonian fluid in this coordinate system?

© Faith A. Morrison, Michigan Tech U.

123

1

0

0

















v

v

2

V

2

V

2H

2x

1x

170



CM4650 Lectures 1-3:  Intro, Mathematical 
Review

1/14/2015

86

Vectors are independent of coordinate system, but in general the 
coefficients will be different when the same vector is written in two 
different coordinate systems:

© Faith A. Morrison, Michigan Tech U.
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For shear flow and the two particular coordinate systems we have 
just examined, however:
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If we plug in the same number in for 2ݔ and ̅2ݔ, we will NOT be 
asking about the same point in space, but we WILL get the same 
exact velocity vector.  

Since stress is calculated from the velocity field, we will get the same 
exact stress components when we calculate them from either 
vector representation.

x1

x2

1x

2x

This is an unusual 
circumstance only true for 
the particular coordinate 
systems chosen.
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© Faith A. Morrison, Michigan Tech U.

What do we learn if we formally transform v from 
one coordinate system to the other?

173

© Faith A. Morrison, Michigan Tech U.

What do we learn if we formally transform ഭ߬
from one coordinate system to the other?

174
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© Faith A. Morrison, Michigan Tech U.

What do we learn if we formally transform v from 
one coordinate system to the other?

175

ഭ߬ ൌ ߬௠௦݁̂௠݁̂௦ ൌ ߬̅௠௦݁̅௠݁̅௦

(now, substitute from previous 
slide and simplify)

You try.
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





Because of symmetry, there are only 5 nonzero components of the 
extra stress tensor in shear flow.

SHEAR:

This greatly simplifies the experimentalists tasks as only four stress 
components must be measured instead of 6 ሺrecall	߬ଶଵൌ ߬ଵଶሻ.                  

© Faith A. Morrison, Michigan Tech U.
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Conclusion:
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Summary:

© Faith A. Morrison, Michigan Tech U.

We have found a coordinate system (the shear 
coordinate system) in which there are only 5 
non-zero coefficients of the stress tensor.  In 
addition, ߬ଶଵ ൌ ߬ଵଶ.

This leaves only four stress components to be 
measured for this flow, expressed in this 
coordinate system.

177

1x

2x

21, xx

3x

How does the stress tensor simplify for 
elongational flow?

There is 180o of symmetry around all three 
coordinate axes.

© Faith A. Morrison, Michigan Tech U.
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


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













Because of symmetry, there are only 3 nonzero components of the 
extra stress tensor in elongational flows.

ELONGATION:

This greatly simplifies the experimentalists tasks as only three 
stress components must be measured instead of 6.                       

© Faith A. Morrison, Michigan Tech U.
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Standard Flows Summary
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Choose velocity field: Symmetry alone implies:
(no constitutive equation needed yet)

By choosing these symmetric flows, we have reduced the number of stress 
components that we need to measure.
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Tactic:  Divide the Problem in half

181

Modeling Calculations Experiments

Standard Flows

Dream up models

Calculate material 
functions from 
model stresses

Determine material 
functions from 

measured stresses

Compare

Calculate model 
predictions for 

stresses in standard 
flows

Build experimental 
apparatuses that 

allow measurements 
in standard flows 

Pass judgment 
on models

Collect models and their report 
cards for future use

182

© Faith A. Morrison, Michigan Tech U.

123

3

2

1

)(

)1)((
2

1

)1)((
2

1





























xt

xbt

xbt

v













12333

22

11

00

00

00
























12333

2221

1211

00

0

0























123

2

0

0

)(


















xt

v



Choose velocity field: Symmetry alone implies:
(no constitutive equation needed yet)

Next, build and assume this

Measure and 
predict this
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One final comment on measuring stresses. . . 

123333231

232221

131211



























p

p

p

What is measured is the total stress, :

For the normal stresses we are faced with the 
difficulty of separating p from ii.

Incompressible fluids:Compressible fluids:

V

nRT
p 

Get p from 
measurements of 
T and V. ?

© Faith A. Morrison, Michigan Tech U.
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0

1

2

3

4

0 50 100 150 200 250 300

Pressure (MPa)

3/ cmg



gas density

P
RT

M


polymer density

incompressible fluid

Density does not vary (much) with pressure for polymeric fluids.

© Faith A. Morrison, Michigan Tech U.
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For incompressible fluids it is not possible to  separate p from ii.

Luckily, this is not a problem since we

only need  p

gP

gvv
t

v











Equation of motion
We do not 
need ii

directly to 
solve for 
velocities

Solution?  Normal stress differences

© Faith A. Morrison, Michigan Tech U.
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Normal Stress Differences

332233222

221122111






N

N
First normal stress 
difference

Second normal stress 
difference

2121 ,, NN
In shear flow, three stress 

quantities are measured

In elongational flow, two stress 
quantities are measured 11221133 ,  

© Faith A. Morrison, Michigan Tech U.
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Normal Stress Differences

332233222

221122111






N

N
First normal stress 
difference

Second normal stress 
difference

2121 ,, NN
In shear flow, three stress 

quantities are measured

In elongational flow, two stress 
quantities are measured 11221133 ,  

© Faith A. Morrison, Michigan Tech U.
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Are shear 
normal 
stress 

differences 
real?

First normal stress effects: rod climbing

Bird, et al., Dynamics of Polymeric Fluids, vol. 1, 
Wiley, 1987, Figure 2.3-1 page 63. (DPL)

Newtonian - glycerin Viscoelastic - solution of 
polyacrylamide in glycerin

02211 
Extra tension in the 1-direction pulls 

azimuthally and upward (see DPL p65).

© Faith A. Morrison, Michigan Tech U.
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Second normal stress effects: inclined open-
channel flow

R. I. Tanner, Engineering Rheology, 
Oxford 1985, Figure 3.6 page 104

Newtonian - glycerin Viscoelastic - 1% soln of 
polyethylene oxide in water

03322 
Extra tension in the 2-direction pulls down the free 

surface where dv1 /dx2 is greatest (see DPL p65).

N2 ~ -N1 /10

© Faith A. Morrison, Michigan Tech U.
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Example:  Can the equation of motion predict 
rod climbing for typical values of N1, N2?

 z

A


fluid

R
 r

 

 R

cross-section A:

zr

vv





















0

0

Bird et al. p64

?isWhat
dr

d zz

© Faith A. Morrison, Michigan Tech U.© Faith A. Morrison, Michigan Tech U.

190

www.chem.mtu.edu/~fmorriso/cm4650/rod_climb.pdf



CM4650 Lectures 1-3:  Intro, Mathematical 
Review

1/14/2015

96

123

2

0

0

)(


















xt

v



What’s next?
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
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













xt

xbt

xbt

v













Elongational flow:  b=0,

Biaxial stretching:  b=0,

Planar elongation: b=1,

0)( t
0)( t
0)( t

Shear

Shear-free 
(elongational, 
extensional)

Even with just these 2 (or 4) 
standard flows, we can still generate 
an infinite number of flows by 

varying ).(and)( tt  

© Faith A. Morrison, Michigan Tech U.
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We seek to 
quantify the 
behavior of non-
Newtonian fluids

6a. Compare measured 
material functions with 
predictions of these material 
functions (from proposed 
constitutive equations).

7a. Choose the most 
appropriate constitutive 
equation for use in numerical 
modeling.

6b. Compare measured 
material functions with 
those measured on other 
materials.

7a. Draw conclusions on 
the likely properties of the 
unknown material based 
on the comparison.

Procedure:
1. Choose a flow type (shear or a type of elongation).

2. Specify                     as appropriate.

3. Impose the flow on a fluid of interest.

4. Measure stresses.

5. Report stresses in terms of material functions.

)(or)( tt  

2121 ,, NN
11221133 ,  

shear
elongation

© Faith A. Morrison, 
Michigan Tech U.
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Chapter 5:  Material Functions

© Faith A. Morrison, Michigan Tech U.
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CM4650 
Polymer Rheology 

Michigan TechSteady Shear Flow Material Functions

constant)( 0    t

Kinematics:
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Material Functions:

0

21








 
2
0

2211
1 







 
2
0

3322
2 





Viscosity

First normal-stress 
coefficient

Second normal-
stress coefficient

© Faith A. Morrison, Michigan Tech U.

Role of Material Functions in Rheological Analysis

unknown 
material

measure material 
functions, e.g. , 

G'(), G"(w), G(t)

compare measured with predicted

conclude which constitutive equation is 
best for further modeling calculations

calculate predictions of 
material functions from 

various constitutive 
equations

compare data with 
literature reports on 

various fluids

conclude on the probable 
physical behavior of the 

fluid based on comparison 
with known fluid behavior

compare with other 
in-house data on 
qualitative basis

conclude whether or 
not a material is 
appropriate for a 

specific application

QUALITY CONTROL QUALITATIVE ANALYSIS

MODELING WORK

© Faith A. Morrison, Michigan Tech U.
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Role of Material Functions in Rheological Analysis

unknown 
material

measure material 
functions, e.g. , 

G'(), G"(w), G(t)

compare measured with predicted

conclude which constitutive equation is 
best for further modeling calculations

calculate predictions of 
material functions from 

various constitutive 
equations

compare data with 
literature reports on 

various fluids

conclude on the probable 
physical behavior of the 

fluid based on comparison 
with known fluid behavior

compare with other 
in-house data on 
qualitative basis

conclude whether or 
not a material is 
appropriate for a 

specific application

QUALITY CONTROL QUALITATIVE ANALYSIS

MODELING WORK

© Faith A. Morrison, Michigan Tech U.

We will 
focus here 

first

195

Material function definitions

1.  Choice of flow (shear or elongation)
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
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
Elongational flow:  b=0,

Biaxial stretching:  b=0,

Planar elongation: b=1,

0)( t
0)( t
0)( t

).(o)( trt  2.  Choice of details of

3.  Material functions definitions: will be based on

in shear or

in elongational flows.  

2121 ,, NN 11221133 ,  

k
in

em
atics

© Faith A. Morrison, Michigan Tech U.
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Steady Shear Flow Material Functions

constant)( 0    t

Kinematics:
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Material Functions:

0
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Viscosity

First normal-stress 
coefficient

Second normal-
stress coefficient

© Faith A. Morrison, Michigan Tech U.
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(I call these my “recipe cards”)

How do we predict material functions?

© Faith A. Morrison, Michigan Tech U.

What does the Newtonian Fluid model predict in 
steady shearing?

)(vf

ANSWER: From the constitutive equation.

  Tvv   

198
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© Faith A. Morrison, Michigan Tech U.

What does the Newtonian Fluid model predict 
in steady shearing?

199

  Tvv   

You try.

What do we measure for these 
material functions?

© Faith A. Morrison, Michigan Tech U.

200

(for polymer solutions, for example)
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1.E+02

1.E+03

1.E+04

1.E+05

0.01 0.1 1 10 100

, 
Poise

1,

(dyn/cm2)s2

1, s

o
1

o

  

 1

Figure 6.1, p. 170 Menzes and 
Graessley conc. PB solution

Steady shear viscosity and first 
normal stress coefficient

© Faith A. Morrison, Michigan Tech U.SOR Short Course Beginning Rheology
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Steady shear viscosity and first 
normal stress coefficient
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1

Figure 6.2, p. 171 Menzes and 
Graessley conc. PB solution; 
c=0.0676 g/cm3

813 kg/mol
517 kg/mol
350 kg/mol
200 kg/mol

© Faith A. Morrison, Michigan Tech U.SOR Short Course Beginning Rheology
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© Faith A. Morrison, Michigan Tech U.SOR Short Course Beginning Rheology

Steady shear viscosity for linear 
and branched PDMS

Figure 6.3, p. 172 Piau et al., 
linear and branched PDMS

+ linear 131 kg/mole
branched 156 kg/mole
linear 418 kg/mol
branched 428 kg/mol

203

© Faith A. Morrison, Michigan Tech U.

What have material functions taught us so far?

•Newtonian constitutive equation is inadequate

1. Predicts constant shear viscosity (not always 
true)

2. Predicts no shear normal stresses (these 
stresses are generated for many fluids)

•Behavior depends on the material (chemical structure, 
molecular weight, concentration)

204



CM4650 Lectures 1-3:  Intro, Mathematical 
Review

1/14/2015

103

© Faith A. Morrison, Michigan Tech U.

Can we fix the Newtonian Constitutive Equation?

  Tvv  

Let’s replace  with 
a function of shear 
rate because we 
want to predict a 
non-constant 
viscosity in shear

    TvvM  0 

205

© Faith A. Morrison, Michigan Tech U.

What does this model predict for steady shear viscosity?

    TvvM  0 
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© Faith A. Morrison, Michigan Tech U.

What does this model predict for steady shear viscosity?

    TvvM  0 

207

You try.

© Faith A. Morrison, Michigan Tech U.

What does this model predict for steady shear viscosity?

    TvvM  0 

Answer:  0 M

208
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© Faith A. Morrison, Michigan Tech U.

If we choose:
 








 
c

n
c

m

M
M










0
1

0

00
0

log

0log

slope = (n-1)

clog

Problem solved!
209

© Faith A. Morrison, Michigan Tech U.

But what about the normal stresses?

    TvvM  0 
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It appears that      
should not be 
simply proportional 
to 



Try something else . . . 

 
    





TT

T

vCvBvvA

vvvf

vfI
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






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© Faith A. Morrison, Michigan Tech U.

But which ones?

To sort out how to fix the Newtonian equation, 
we need more observations (to give us ideas).

Let’s try another material function that’s not a 
steady flow (but stick to shear).

211

Start-up of Steady Shear Flow Material Functions
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Material Functions:
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Shear stress 
growth 
function

First normal-stress 
growth function

Second normal-
stress growth 

function

© Faith A. Morrison, Michigan Tech U.

212



CM4650 Lectures 1-3:  Intro, Mathematical 
Review

1/14/2015

107

© Faith A. Morrison, Michigan Tech U.

What does the Newtonian Fluid model predict in 
start-up of steady shearing?

  Tvv   

Again, since we know v, we can just 
plug it in and calculate the stresses.

213

© Faith A. Morrison, Michigan Tech U.

What does the Newtonian Fluid model predict in start-
up of steady shearing?

214

You try.

  Tvv   
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Do these predictions 
match observations?
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Startup of Steady Shearing
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Figures 6.49, 6.50, p. 208 
Menezes and Graessley, PB soln
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What about other non-steady flows?
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Cessation of Steady Shearing
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Figures 6.51, 6.52, p. 209 Menezes 
and Graessley, PB soln
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What does the model we guessed at predict 
for start-up and cessation of shear?
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What does the model we guessed at predict 
for start-up and cessation of shear?
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You try.
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Observations

•The model predicts an instantaneous stress 
response, and this is not what is observed for 
polymers

•The predicted unsteady material functions depend 
on the shear rate, which is observed for polymers

•No normal stresses are predicted
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Progress here
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Lacks memory

Related to 
nonlinearities

•The model predicts an instantaneous stress 
response, and this is not what is observed for 
polymers

•The predicted unsteady material functions depend 
on the shear rate, which is observed for polymers

•No normal stresses are predicted
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To proceed to better-designed constitutive equations, 
we need to know more about material behavior, i.e. 
we need more material functions to predict, and we 
need measurements of these material functions.

•More non-steady material functions (material functions that tell 
us about memory)

•Material functions that tell us about nonlinearity (strain)
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The next three families of material functions 
incorporate the concept of strain.
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