Chapter 1: Introduction

1. What is rheology, anyway?
2. Newtonian versus non-Newtonian
3. Key features of non-Newtonian behavior: Nonlinearity and Memory

What is rheology anyway?

To the layperson, rheology is:

-Mayonnaise does not flow even under stress for a long time; honey always flows

- Silly Putty bounces (is elastic) but also flows (is viscous)
-Dilute flour-water solutions are easy to work with but doughs can be quite temperamental
-Corn starch and water can display strange behavior - poke it slowly and it deforms easily around your finger; punch it rapidly and your fist bounces off of the surface

What is rheology anyway?

To the scientist, engineer, or technician, rheology is

-Yield stresses
-Viscoelastic effects
-Memory effects

- Shear thickening and shear thinning

For both the layperson and the technical person, rheology is a set of problems or observations related to how the stress in a material or force applied to a material is related to deformation
(change of shape) of the material.

What is rheology anyway?

Rheology affects: •Processing (design, costs, production rates)

www.corrugatorman.com/ pic/akron\%20extruder.JPG

www.math.utwente.nl/ $\mathrm{mpcm} / a a m p /$ examples.html
-End use (food texture, product pour, motor-oil function)

-Product quality (surface distortions, anisotropy, strength, structure development)

Goal of the scientist, engineer, or technician:

-Understand the kinds of flow and deformation effects exhibited by complex systems
-Apply qualitative rheological knowledge to diagnostic, design, or optimization problems

- In diagnostic, design, or optimization problems, use or devise quantitative analytical tools that correctly capture
 rheological effects

Learning Rheology (bibliography)

Descriptive Rheology
Barnes, H., J. Hutton, and K. Walters, An Introduction to Rheology (Elsevier, 1989)

Quantitative Rheology
Morrison, Faith, Understanding Rheology (Oxford, 2001)
Bird, R., R. Armstrong, and O. Hassager, Dynamics of Polymeric Liquids, Volume 1 (Wiley, 1987)

Industrial Rheology
Dealy, John and Kurt Wissbrun, Melt Rheology and Its Role in Plastics
Processing (Van Nostrand Reinhold, 1990)
Polymer Behavior
Larson, Ron, The Structure and Rheology of Complex Fluids (Oxford, 1999)
Ferry, John, Viscoelastic Properties of Polymers (Wiley, 1980)
Suspension Behavior
Mewis, Jan and Norm Wagner, Colloidal Suspension (Cambridge, 2012) Macosko, Chris, Rheology: Principles, Measurements, and Applications (VCH Publishers, 1994)

The Physics Behind Rheology:

Newtonian fluids: (shear
flow only)

$$
\tau_{21}=-\frac{d v_{1}}{d x_{2}}
$$

Constitutive Equation

Non-Newtonian fluids: (all
flows)

Rate-of-

<
non-linear function (in time and position)

Introduction to Non-Newtonian Behavior

Rheological Behavior of Fluids, National
Committee on Fluid Mechanics Films, 1964
Velocity gradient tensor $\underline{\underline{\underline{\gamma}}}$

Type of fluid	Momentum balance	Stress -Deformation relationship (constitutive equation)
Inviscid (zero viscosity, $\mu=0$)	Euler equation (Navier- Stokes with zero viscosity)	Stress is isotropic
Newtonian (finite. constant viscosity, μ)	Navier-Stokes (Cauchy momentum equation with Newtonian constitutive equation)	Stress is a function of the instantaneous velocity gradient
Non-Newtonian (finite, variable viscosity η plus memory effects)	Cauchy momentum equation with memory constitutive equation	Stress is a function of the history of the velocity gradient

Rheological Behavior of Fluids - Newtonian

1. Strain response to imposed shear stress
-shear rate is constant

2. Stress tensor in shear
3. Pressure-driven flow in a tube (Poiseuille flow)
-viscosity is constant

flow
-only two components are nonzero

Rheological Behavior of Fluids - non-Newtonian

1. Strain response to imposed shear stress
-shear rate is variable

2. Pressure-driven flow in a tube (Poiseuille flow)
-viscosity is variable

3. Stress tensor in shear flow

Normal
Normal
stresses
-all 9 components are nonzero
$\tau=\left(\begin{array}{lll}\tau_{11} & \tau_{12} & \tau_{13} \\ \tau_{21} & \tau_{22} & \tau_{23} \\ \tau_{31} & \tau_{32} & \tau_{33}\end{array}\right)_{123}$

Rheological Behavior of Fluids - non-Newtonian

1. Strain response to imposed shear stress
-shear rate is variable

2. Pressure-driven flow in a tube (Poiseuille flow)
-viscosity is variable

y
-all 9 components are
 nonzero

Examples from the film of

Dependence on the history of the deformation gradient
-Polymer fluid pours, but springs back
-Elastic ball bounces, but flows if given enough time

- Steel ball dropped in polymer solution "bounces"
- Polymer solution in concentric cylinders - has fading memory -Quantitative measurements in concentric cylinders show memory and need a finite time to come to steady state

Non-linearity of the function

$$
\underline{\underline{\tau}}=f(\underline{\underline{\underline{\gamma}}})
$$

-Polymer solution draining from a tube is first slower, then faster than a Newtonian fluid
-Double the static head on a draining tube, and the flow rate does not necessarily double (as it does for Newtonian fluids); sometimes more than doubles, sometimes less
-Normal stresses in shear flow
-Die swell

> Show NCFM Film on Rheological Behavior of Fluids

- Search for "NCFMF"
- web.mit.edu/hml/ncfmf.html
- Also on YouTube

Chapter 2: Mathematics Review

1. Vector review
2. Einstein notation
3. Tensors

Motivation: We will be solving the momentum balance:

$$
\rho\left(\frac{\partial \underline{v}}{\partial t}+\underline{v} \cdot \nabla \underline{v}\right)=-\nabla p-\nabla \cdot \underline{\underline{\tau}}+\rho \underline{g}
$$

Newtonian fluids: - Linear

- Instantaneous
- $\underline{\underline{\tau}}(t)=-\mu \underline{\underline{\dot{\gamma}}}(t)$

Non-Newtonian fluids:

- Non-linear
- Non-instantaneous
- $\underline{\underline{\tau}}(t)=$?

Motivation: We will be solving the momentum balance:

$$
\rho\left(\frac{\partial \underline{v}}{\partial t}+\underline{v} \cdot \nabla \underline{v}\right)=-\nabla p-\nabla \cdot \underline{\underline{\tau}}+\rho \underline{g}
$$

Newtonian fluids: - Linear

Motivation: We will be solving the momentum balance:

$$
\rho\left(\frac{\partial \underline{v}}{\partial t}+\underline{v} \cdot \nabla \underline{v}\right)=-\nabla p-\nabla \cdot \underline{\underline{\tau}}+\rho \underline{g}
$$

Newtonian fluids: • Linear

We're going to be trying	Instantaneous
to identify the constitutive	$\underline{\underline{\tau}}(t)=-\mu \underline{\underline{\dot{\gamma}}}(t)$

We're going to need to calculate how different

- Non-linear
- Non-instantaneous
- $\underline{\underline{\tau}}(t)=$? guesses affect the predicted behavior.

Motivation: We will be solving the momentum balance:

$$
\rho\left(\frac{\partial \underline{v}}{\partial t}+\underline{v} \cdot \nabla \underline{v}\right)=-\nabla p-\nabla \cdot \underline{\underline{\tau}}+\rho \underline{g}
$$

Newtonian fluids: • Linear

Chapter 2: Mathematics Review

1. Scalar - a mathematical entity that has magnitude only
e.g.: temperature T
speed v
time t
density r

- scalars may be constant or may be variable

Laws of Algebra for		
Scalars:	yes commutative	$a b=b a$
	yes associative	$a(b c)=(a b) c$
	yes distributive	$a(b+c)=a b+a c$

2. Vector - a mathematical entity that has magnitude and direction
e.g.: force on a surface \underline{f} velocity \underline{v}

- vectors may be constant or may be variable

Definitions

magnitude of a vector - a scalar associated with a vector

$$
|\underline{v}|=v \quad|\underline{f}|=f
$$

unit vector - a vector of unit length

$$
\frac{\underline{v}}{|\underline{v}|}=\hat{v} \overbrace{\substack{\text { a unit vector in the } \\ \text { direction of } \underline{v}}}
$$

Laws of Algebra for
 Vectors:

1. Addition

2. Subtraction

Laws of Algebra for Vectors (continued):
3. Multiplication by scalar $\alpha \underline{v}$

$$
\begin{array}{lc}
\text { yes commutative } & \alpha \underline{v}=\underline{v} \alpha \\
\text { yes associative } & \alpha(\beta \underline{v})=(\alpha \beta) \underline{v}=\alpha \beta \underline{v} \\
\text { yes distributive } & \alpha(\underline{v}+\underline{w})=\alpha \underline{v}+\alpha \underline{w}
\end{array}
$$

4. Multiplication of vector by vector

4a. scalar (dot) (inner) product

$$
\underline{v} \cdot \underline{w}=v w \cos \theta
$$

Note: we can find magnitude with dot product

$$
\begin{aligned}
& \underline{v} \cdot \underline{v}=v v \cos 0=v^{2} \\
& v=|\underline{v}|=\sqrt{\underline{v} \cdot \underline{v}}
\end{aligned}
$$

Laws of Algebra for Vectors (continued):

4a. scalar (dot) (inner) product (con't)

$$
\begin{array}{lc}
\text { yes commutative } & \underline{v} \cdot \underline{w}=\underline{w} \cdot \underline{v} \\
\text { NO associative } & \underline{v} \cdot \underline{w} \cdot \underline{Z} \\
\text { yes distributive } & \underline{Z} \cdot(\underline{v}+\underline{w})=\underline{z} \cdot \underline{v}+\underline{z} \cdot \underline{w}
\end{array}
$$

4b. vector (cross) (outer) product

$$
\underline{v} \times \underline{w}=v w \sin \theta \hat{e}
$$

\hat{e} is a unit vector perpendicular to both \underline{v} and \underline{w} following the right-hand rule

Laws of Algebra for Vectors (continued):

4b. vector (cross) (outer) product (con't)

$$
\begin{array}{lc}
\text { NO commutative } & \underline{v} \times \underline{w} \neq \underline{w} \times \underline{v} \\
\text { NO associative } \\
\underline{v} \times \underline{w} \times \underline{z} \neq(\underline{v} \times \underline{w}) \times \underline{z} \neq \underline{v} \times(\underline{w} \times \underline{z}) \\
\text { yes distributive } & \underline{z} \times(\underline{v}+\underline{w})=(\underline{z} \times \underline{v})+(\underline{z} \times \underline{w})
\end{array}
$$

Coordinate Systems

-Allow us to make actual calculations with vectors

Rule: any three vectors that are non-zero and linearly independent (non-coplanar) may form a coordinate basis

Three vectors are linearly dependent if a, b, and g can be found such that:

$$
\begin{gathered}
\alpha \underline{a}+\beta \underline{b}+\gamma \underline{c}=\underline{0} \\
\text { for } \quad \alpha, \beta, \gamma \neq 0
\end{gathered}
$$

If a, β, and γ are found to be zero, the vectors are linearly independent.

How can we do actual calculations with vectors?

Rule: any vector may be expressed as the linear combination of three, non-zero, non-coplanar basis vectors

$$
\begin{aligned}
& \text { any vector } \\
& =a_{1} \hat{e}_{1}+a_{2} \hat{e}_{2}+a_{3} \hat{e}_{3} \\
& =\sum_{j=1}^{3} a_{j} \hat{e}_{j}
\end{aligned}
$$

Trial calculation: dot product of two vectors

$$
\begin{aligned}
& \underline{a} \cdot \underline{b}=\left(a_{1} \hat{e}_{1}+a_{2} \hat{e}_{2}+a_{3} \hat{e}_{3}\right) \cdot\left(b_{1} \hat{e}_{1}+b_{2} \hat{e}_{2}+b_{3} \hat{e}_{3}\right) \\
& =a_{1} \hat{e}_{1} \cdot\left(b_{1} \hat{e}_{1}+b_{2} \hat{e}_{2}+b_{3} \hat{e}_{3}\right)+ \\
& a_{2} \hat{e}_{2} \cdot\left(b_{1} \hat{e}_{1}+b_{2} \hat{e}_{2}+b_{3} \hat{e}_{3}\right)+ \\
& a_{3} \hat{e}_{3} \cdot\left(b_{1} \hat{e}_{1}+b_{2} \hat{e}_{2}+b_{3} \hat{e}_{3}\right) \\
& =a_{1} \hat{e}_{1} \cdot b_{1} \hat{e}_{1}+a_{1} \hat{e}_{1} \cdot b_{2} \hat{e}_{2}+a_{1} \hat{e}_{1} \cdot b_{3} \hat{e}_{3}+ \\
& a_{2} \hat{e}_{2} \cdot b_{1} \hat{e}_{1}+a_{2} \hat{e}_{2} \cdot b_{2} \hat{e}_{2}+a_{2} \hat{e}_{2} \cdot b_{3} \hat{e}_{3}+ \\
& a_{3} \hat{e}_{3} \cdot b_{1} \hat{e}_{1}+a_{3} \hat{e}_{3} \cdot b_{2} \hat{e}_{2}+a_{3} \hat{e}_{3} \cdot b_{3} \hat{e}_{3}
\end{aligned}
$$

If we choose the basis to be orthonormal - mutually perpendicular and of unit length - then we can simplify.

If we choose the basis to be orthonormal - mutually perpendicular and of unit length, then we can simplify.

$$
\begin{gathered}
\hat{e}_{1} \cdot \hat{e}_{1}=1 \\
\hat{e}_{1} \cdot \hat{e}_{2}=0 \\
\hat{e}_{1} \cdot \hat{e}_{3}=0 \\
\cdots \\
\underline{a} \cdot \underline{b}=a_{1} \hat{e}_{1} \cdot b_{1} \hat{e}_{1}+a_{1} \hat{e}_{1} \cdot b_{2} \hat{e}_{2}+a_{1} \hat{e}_{1} \cdot b_{3} \hat{e}_{3}+ \\
a_{2} \hat{e}_{2} \cdot b_{\hat{e}} \hat{e}_{1}+a_{2} \hat{e}_{2} \cdot b_{2} \hat{e}_{2}+a_{2} \hat{e}_{3} \cdot b_{3} \hat{e}_{3}+ \\
a_{3} \hat{e}_{3} \cdot b_{1} \hat{e}_{2}+a_{3} \hat{e}_{3} \cdot b_{2} \hat{e}_{2}+a_{3} \hat{e}_{3} \cdot b_{3} \hat{e}_{3} \\
=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}
\end{gathered}
$$

We can generalize this operation with a technique called Einstein notation.

$$
\begin{aligned}
& \text { Einstein Notation } \\
& \qquad \begin{array}{l}
\text { a system of notation for vectors and tensors that allows for the } \\
\text { calculation of results in Cartesian coordinate systems. } \\
\qquad \begin{array}{l}
\underline{a}=a_{1} \hat{e}_{1}+a_{2} \hat{e}_{2}+a_{3} \hat{e}_{3} \\
\\
=\sum_{j=1}^{3} a_{j} \hat{e}_{j} \\
= \\
=a_{j} \hat{e}_{j}=a_{m} \hat{e}_{m}
\end{array}
\end{array} . \begin{array}{l}
\text {. }
\end{array}
\end{aligned}
$$

-the initial choice of subscript letter is arbitrary -the presence of a pair of like subscripts implies a missing summation sign

Einstein Notation (con't)
The result of the dot products of basis vectors can be summarized by the Kronecker delta function
$\hat{e}_{1} \cdot \hat{e}_{1}=1$
$\hat{e}_{1} \cdot \hat{e}_{2}=0$
$\hat{e}_{1} \cdot \hat{e}_{3}=0$
...

Kronecker delta

$$
\begin{aligned}
& \text { Mathematics Review Polymer Rheology } \\
& \text { Einstein Notation (con't) } \\
& \text { To carry out a dot product of two arbitrary vectors . . . } \\
& \underline{a} \cdot \underline{b}=\left(a_{1} \hat{e}_{1}+a_{2} \hat{e}_{2}+a_{3} \hat{e}_{3}\right) \cdot\left(b_{1} \hat{e}_{1}+b_{2} \hat{e}_{2}+b_{3} \hat{e}_{3}\right) \\
& \underline{a} \cdot \underline{b}=a_{j} \hat{e}_{j} \cdot b_{m} \hat{e}_{m} \\
& =a_{1} \hat{e}_{1} \cdot b_{1} \hat{e}_{1}+a_{1} \hat{e}_{1} \cdot b_{2} \hat{e}_{2}+a_{1} \hat{e}_{1} \cdot b_{3} \hat{e}_{3}+ \\
& a_{2} \hat{e}_{2} \cdot b_{1} \hat{e}_{1}+a_{2} \hat{e}_{2} \cdot b_{2} \hat{e}_{2}+a_{2} \hat{e}_{2} \cdot b_{3} \hat{e}_{3}+ \\
& a_{3} \hat{e}_{3} \cdot b_{1} \hat{e}_{1}+a_{3} \hat{e}_{3} \cdot b_{2} \hat{e}_{2}+a_{3} \hat{e}_{3} \cdot b_{3} \hat{e}_{3} \\
& =a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} \\
& =a_{j} \delta_{j m} b_{m} \\
& =a_{j} b_{j}
\end{aligned}
$$

3. Tensor - the indeterminate vector product of two (or more) vectors
e.g.: stress $\underline{\underline{\tau}}$ velocity gradient $\underline{\underline{\gamma}}$

- tensors may be constant or may be variable

Definitions
dyad or dyadic product - a tensor written explicitly as the indeterminate vector product of two vectors

Laws of Algebra for Indeterminate Product of Vectors:

$$
\begin{array}{lc}
\text { NO commutative } & \underline{a} \underline{v} \neq \underline{v} \underline{a} \\
\text { yes associative } & \underline{b}(\underline{a} \underline{v})=(\underline{b} \underline{a}) \underline{v}=\underline{b} \underline{a} \underline{v} \\
\text { yes distributive } & \underline{a}(\underline{v}+\underline{w})=\underline{a} \underline{v}+\underline{a} \underline{w}
\end{array}
$$

How can we represent tensors with respect to a chosen coordinate system?
$\underline{a} \underline{m}=\left(a_{1} \hat{e}_{1}+a_{2} \hat{e}_{2}+a_{3} \hat{e}_{3}\right)\left(m_{1} \hat{e}_{1}+m_{2} \hat{e}_{2}+m_{3} \hat{e}_{3}\right)$
$=a_{1} \hat{e}_{1} m_{1} \hat{e}_{1}+a_{1} \hat{e}_{1} m_{2} \hat{e}_{2}+a_{1} \hat{e}_{1} m_{3} \hat{e}_{3}+$
$a_{2} \hat{e}_{2} m_{1} \hat{e}_{1}+a_{2} \hat{e}_{2} m_{2} \hat{e}_{2}+a_{2} \hat{e}_{2} m_{3} \hat{e}_{3}+$
$a_{3} \hat{e}_{3} m_{1} \hat{e}_{1}+a_{3} \hat{e}_{3} m_{2} \hat{e}_{2}+a_{3} \hat{e}_{3} m_{3} \hat{e}_{3}$
$=\sum_{k=1}^{3} \sum_{w=1}^{3} a_{k} \hat{e}_{k} m_{w} \hat{e}_{w}$
$=\sum_{k=1}^{3} \sum_{w=1}^{3} a_{k} m_{w} \hat{e}_{k} \hat{e}_{w}$
Any tensor may be written as the sum of 9 dyadic products of basis vectors

Mathematics Review

What about $\underline{\underline{A}}$? Same.

$$
\underline{\underline{A}}=\sum_{i=1}^{3} \sum_{j=1}^{3} A_{i j} \hat{e}_{i} \hat{e}_{j}
$$

Einstein notation for tensors: drop the summation sign; every double index implies a summation sign has been dropped.

How can we use Einstein Notation to calculate dot products between vectors and tensors?

It's the same as between vectors.

$$
\begin{aligned}
& \underline{a} \cdot \underline{b}= \\
& \underline{a} \cdot \underline{u} \underline{v}= \\
& \underline{b} \cdot \underline{\underline{A}}=
\end{aligned}
$$

Summary of Einstein Notation

1. Express vectors, tensors, (later, vector operators) in a Cartesian coordinate system as the sums of coefficients multiplying basis vectors - each separate summation has a different index
2. Drop the summation signs
3. Dot products between basis vectors result in the Kronecker delta function because the Cartesian system is orthonormal.

Note:

-In Einstein notation, the presence of repeated indices implies a missing summation sign
-The choice of initial index (i, m, p, etc.) is arbitrary - it merely indicates which indices change together
3. Tensor - (continued)

Definitions

Scalar product of two tensors

$$
\underline{\underline{A}}: \underline{\underline{M}}=A_{i p} \hat{e}_{i} \hat{e}_{p}: M_{k m} \hat{e}_{k} \hat{e}_{m}
$$

$$
\left.\begin{array}{l}
=A_{i p} M_{k m} \overbrace{\hat{e}_{i}}^{\hat{e}_{p}} \underbrace{\hat{e}_{k}} \hat{e}_{m} \\
=A_{i p} M_{k m} \\
\left.=A_{i p} M_{k m} \quad \begin{array}{l}
\left.\hat{e}_{p} \cdot \hat{e}_{k}\right)
\end{array} \hat{e}_{i} \cdot \hat{e}_{m}\right) \\
\text { carry out the dot } \\
\text { products indicated }
\end{array}\right)
$$

But, what is a tensor really?

A tensor is a handy representation of a Linear Vector Function

$$
\text { scalar function: } \quad y=f(x)=x^{2}+2 x+3
$$

a mapping of values of x onto values of y
vector function: $\quad \underline{w}=f(\underline{v})$
a mapping of vectors of \underline{v} into vectors \underline{w}

How do we express a vector function?

What is a linear function?
Linear, in this usage, has a precise, mathematical definition.

Linear functions (scalar and vector) have the following two properties:

$$
\begin{aligned}
& f(\lambda x)=\lambda f(x) \\
& f(x+w)=f(x)+f(w)
\end{aligned}
$$

Multiplying vectors and tensors is a convenient way of representing the actions of a linear vector function (as we will now show).

Tensors are Linear Vector Functions

Let $f(\underline{a})=\underline{b}$ be a linear vector function.
\qquad We can write \underline{a} in Cartesian coordinates.

$$
\begin{aligned}
& \underline{a}=a_{1} \hat{e}_{1}+a_{2} \hat{e}_{2}+a_{3} \hat{e}_{3} \\
& f(\underline{a})=f\left(a_{1} \hat{e}_{1}+a_{2} \hat{e}_{2}+a_{3} \hat{e}_{3}\right)=\underline{b}
\end{aligned}
$$

Using the linear properties of f, we can distribute the function action:

$$
f(\underline{a})=a_{1} f\left(\hat{e}_{1}\right)+a_{2} f\left(\hat{e}_{2}\right)+a_{3} f\left(\hat{e}_{3}\right)=\underline{b}
$$

These results are just vectors, we will name them $\underline{v}, \underline{w}$, and \underline{m}.
© Faith A. Morrison, Michigan Tech U.

Mathematics Review Polymer Rheology

Tensors are Linear Vector Functions (continued)

$$
\begin{aligned}
& f(\underline{a})=a_{1} \underbrace{f\left(\hat{e}_{1}\right)}_{\underline{v}}+a_{\underline{w}}^{a_{2}} \underbrace{f\left(\hat{e}_{2}\right)}_{\underline{w}}+\underbrace{a_{3} f\left(\hat{e}_{3}\right)}_{\underline{m}}=\underline{b} \\
& f(\underline{a})=a_{1} \underline{\underline{v}}+a_{2} \underline{w}+a_{3} \underline{m}=\underline{b}
\end{aligned}
$$

Now we note that the coefficients a_{i} may be written as,

$$
a_{1}=\underline{a} \cdot \hat{e}_{1} \quad a_{2}=\underline{a} \cdot \hat{e}_{2} \quad a_{3}=\underline{a} \cdot \hat{e}_{3}
$$

Substituting,

$$
f(\underline{a})=\underline{a} \cdot \hat{e}_{1} \underline{v}+\underline{a} \cdot \hat{e}_{2} \underline{w}+\underline{a} \cdot \hat{e}_{3} \underline{m}=\underline{b}
$$

The indeterminate vector product has appeared!

Using the distributive law, we can factor out the dot product with \underline{a} :

$$
f(\underline{a})=\underline{a} \cdot(\underbrace{\left(\hat{e}_{1} \underline{v}+\hat{e}_{2} \underline{w}+\hat{e}_{3} \underline{m}\right)}=\underline{b}
$$

This is just a tensor (the sum of dyadic $\quad\left(\hat{e}_{1} \underline{v}+\hat{e}_{2} \underline{w}+\hat{e}_{3} \underline{m}\right) \equiv \underline{\underline{M}}$ products of vectors)

$$
f(\underline{a})=\underline{a} \cdot \underline{\underline{M}}=\underline{b}
$$

3. Tensor - (continued)

More Definitions
Identity Tensor

$$
\begin{aligned}
\underline{\underline{I}} & =\hat{e}_{i} \hat{e}_{i}=\hat{e}_{1} \hat{e}_{1}+\hat{e}_{2} \hat{e}_{2}+\hat{e}_{3} \hat{e}_{3} \\
& =\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)_{123}
\end{aligned}
$$

$$
\begin{aligned}
\underline{\underline{A}} \cdot \underline{\underline{I}} & =A_{i p} \hat{e}_{i} \hat{e}_{p} \cdot \hat{e}_{k} \hat{e}_{k} \\
& =A_{i p} \hat{e}_{i} \delta_{p k} \hat{e}_{k} \\
& =A_{i k} \hat{e}_{i} \hat{e}_{k} \\
& =\underline{\underline{A}}
\end{aligned}
$$

3. Tensor - (continued) More Definitions

Zero Tensor

$$
\underline{\underline{0}}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)_{123}
$$

Magnitude of a Tensor

$$
|\underline{\underline{A}}| \equiv+\sqrt{\underline{\underline{\underline{A}}: \underline{\underline{A}}}} \begin{aligned}
& \text { Note that the book has a } \\
& \text { typo on this equation: the } \\
& \text { "2" is under the square root }
\end{aligned}
$$

$$
\underline{\underline{A}}: \underline{\underline{A}}=A_{i p} \hat{e}_{i} \hat{e}_{p}: A_{k m} \hat{e}_{k} \hat{e}_{m}
$$

$$
\begin{array}{ll}
=A_{i p} A_{k m}\left(\hat{e}_{p} \cdot \hat{e}_{k}\right)\left(\hat{e}_{i} \cdot \hat{e}_{m}\right) & \begin{array}{l}
\text { products } \\
\text { across the } \\
\text { diagonal }
\end{array} \\
=A_{m k} A_{k m} &
\end{array}
$$

3. Tensor - (continued)

More Definitions
Tensor Transpose

$$
\underline{\underline{M}}^{T}=\left(M_{i k} \hat{e}_{i} \hat{e}_{k}\right)^{T}=M_{i k} \hat{e}_{k} \hat{e}_{i} \quad \begin{aligned}
& \text { Exchange the } \\
& \text { coefficients across } \\
& \text { the diagonal }
\end{aligned}
$$

CAUTION:

$$
\begin{aligned}
(\underline{A} \cdot \underline{\underline{A}})^{T} & =\left(A_{i k} \hat{e}_{i} \hat{e}_{k} \cdot C_{p p} \hat{e}_{\hat{e}} \hat{e}_{j}\right)^{T}=\left(A_{i k} C_{p j} \hat{e}_{i} \hat{e}_{j} \delta_{k p}\right)^{T} \\
& =\left(A_{i p} C_{p j} \hat{e}_{\hat{e}} \hat{e}_{j}\right)^{T} \\
& =A_{i p} C_{p j} \hat{e}_{j} \hat{e}_{i}
\end{aligned}
$$

$$
\text { It is not equal t: } \begin{aligned}
(\underline{\underline{A}} \cdot \underline{\underline{C}})^{T} & =\left(A_{i p} C_{p j} \hat{e}_{i} \hat{e}_{j}\right)^{T} \\
& \neq \bar{A}_{n j} C_{j} \hat{e}_{i} e_{i}
\end{aligned}
$$

I recommend you always interchange the indices on the basis vectors rather than on the coefficients.

```
Mathematics Review Polymer Rheology
```

3. Tensor - (continued) More Definitions

Symmetric Tensor

$$
\begin{aligned}
& \underline{\underline{M}}=\underline{\underline{M}}^{T} \\
& M_{i k}=M_{k i}
\end{aligned}
$$

e.g.
$\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6\end{array}\right)_{123}$

Antisymmetric Tensor

$$
\begin{aligned}
& \underline{M}=-\underline{M}^{T} \\
& M_{i k}=-M_{k i}
\end{aligned}
$$

e.g.
$\left(\begin{array}{ccc}0 & -2 & -3 \\ 2 & 0 & -5 \\ 3 & 5 & 0\end{array}\right)_{123}$
3. Tensor - (continued)

More Definitions

Tensor order
Scalars, vectors, and tensors may all be considered to be tensors (entities that exist independent of coordinate system). They are tensors of different orders, however. order $=$ degree of complexity

scalars	$0^{\text {th }}$-order tensors	3^{0}	
vectors	$1^{\text {st }}$-order tensors	3^{1}	Number of coefficients
tensors	$2^{\text {nd }}$-order tensors	3^{2}	needed to express the
higherorder tensors	$3{ }^{\text {rd }}$-order tensors	3^{3-}	tensor in 3D space

3. Tensor - (continued) More Definitions

Tensor Invariants
Scalars that are associated with tensors; these are numbers that are independent of coordinate system.
vectors: $\quad|v|=v \quad$ The magnitude of a vector is a scalar associated with the vector It is independent of coordinate system, i.e. it is an invariant.
tensors: $\quad \underline{A} \quad$ There are three invariants associated with a second-order tensor.

Tensor Invariants

$$
I_{\underline{\underline{A}}} \equiv \operatorname{trace} \underline{\underline{A}}=\operatorname{tr} \underline{\underline{A}}
$$

For the tensor written in Cartesian coordinates:

$$
\begin{array}{r}
\operatorname{trace} \underline{\underline{\underline{A}}}=A_{p p}=A_{11}+A_{22}+A_{33} \\
I I_{\underline{\underline{A}}} \equiv \operatorname{trace}(\underline{\underline{A}} \cdot \underline{\underline{A}})=\underline{\underline{A}}: \underline{\underline{A}}=A_{p k} A_{k p} \\
I I I_{\underline{\underline{A}}} \equiv \operatorname{trace}(\underline{\underline{A}} \cdot \underline{\underline{A}} \cdot \underline{\underline{A}})=A_{p j} A_{j h} A_{h p}
\end{array}
$$

Note: the definitions of invariants written in terms of coefficients are only valid when the tensor is written in Cartesian coordinates.

4. Differential Operations with Vectors, Tensors

Scalars, vectors, and tensors are differentiated to determine rates of change (with respect to time, position)
-To carryout the differentiation with respect to a single variable, differentiate each coefficient individually.
-There is no change in order (vectors remain vectors, scalars remain scalars, etc.

$$
\frac{\partial \alpha}{\partial t} \quad \frac{\partial \underline{w}}{\partial t}=\left(\begin{array}{l}
\frac{\partial w_{1}}{\partial t} \\
\frac{\partial w_{2}}{\partial t} \\
\frac{\partial w_{3}}{\partial t}
\end{array}\right)_{123} \quad \frac{\partial B}{\partial t}=\left(\begin{array}{lll}
\frac{\partial B_{11}}{\partial t} & \frac{\partial B_{21}}{\partial t} & \frac{\partial B_{31}}{\partial t} \\
\frac{\partial B_{21}}{\partial t} & \frac{\partial B_{22}}{\partial t} & \frac{\partial B_{23}}{\partial t} \\
\frac{\partial B_{31}}{\partial t} & \frac{\partial B_{32}}{\partial t} & \frac{\partial B_{33}}{\partial t}
\end{array}\right)_{123}
$$

4. Differential Operations with Vectors, Tensors (continued)
-To carryout the differentiation with respect to 3D spatial variation, use the del (nabla) operator.
-This is a vector operator
-Del may be applied in three different ways
-Del may operate on scalars, vectors, or tensors

$$
\begin{aligned}
& \begin{array}{r}
\text { This is written in } \\
\begin{array}{c}
\text { Cartesian } \\
\text { coordinates }
\end{array}
\end{array}\left\{\nabla \equiv \hat{e}_{1} \frac{\partial}{\partial x_{1}}+\hat{e}_{2} \frac{\partial}{\partial x_{2}}+\hat{e}_{3} \frac{\partial}{\partial x_{3}}=\left(\begin{array}{c}
\frac{\partial}{\partial x_{1}} \\
\frac{\partial}{\partial x_{2}} \\
\frac{\partial}{\partial x_{3}}
\end{array}\right)_{123}\right. \\
& =\sum_{p=1}^{3} \hat{e}_{p} \frac{\partial}{\partial x_{p}}=\underbrace{\hat{e}_{p} \frac{\partial}{\partial x_{p}}}
\end{aligned}
$$

4. Differential Operations with Vectors, Tensors (continued)

$\begin{array}{r}\text { Gradient of } \mathrm{a} \\ \text { scalar field }\end{array}=\hat{e}_{p} \frac{\partial \beta}{\partial x_{p}}$

-gradient operation increases the order of the entity operated upon

57
© Faith A. Morrison, Michigan Tech U.

Mathematics Review
4. Differential Operations with Vectors, Tensors (continued)
B. Vectors - gradient

$$
\begin{array}{rlr}
\nabla \underline{w} \equiv & \hat{e}_{1} \frac{\partial}{\partial x_{1}} \underline{w}+\hat{e}_{2} \frac{\partial}{\partial x_{2}} \underline{w}+\hat{e}_{3} \frac{\partial}{\partial x_{3}} \underline{w} & \begin{array}{l}
\text { This is all written in } \\
\text { Cartesian } \\
\text { coordinates (basis } \\
\text { vectors are } \\
\text { constant) }
\end{array} \\
= & \hat{e}_{1} \frac{\partial}{\partial x_{1}}\left(w_{1} \hat{e}_{1}+w_{2} \hat{e}_{2}+w_{3} \hat{e}_{3}\right) & \left.\begin{array}{c}
\text { (}
\end{array}\right) \\
& +\hat{e}_{3} \frac{\partial}{\partial x_{2}}\left(w_{1} \hat{e}_{1}+w_{2} \hat{e}_{2}+w_{3} \hat{e}_{3}\right) & \left.w_{1} \hat{e}_{1}+w_{2} \hat{e}_{2}+w_{3} \hat{e}_{3}\right) \\
= & \hat{e}_{1} \hat{e}_{1} \frac{\partial w_{1}}{\partial x_{1}}+\hat{e}_{1} \hat{e}_{2} \frac{\partial w_{2}}{\partial x_{1}}+\hat{e}_{1} \hat{e}_{3} \frac{\partial w_{3}}{\partial x_{1}}+\hat{e}_{2} \hat{e}_{1} \frac{\partial w_{1}}{\partial x_{2}}+ \\
& \hat{e}_{2} \hat{e}_{2} \frac{\partial w_{2}}{\partial x_{2}}+\hat{e}_{2} \hat{e}_{3} \frac{\partial w_{3}}{\partial x_{2}}+\hat{e}_{3} \hat{e}_{1} \frac{\partial w_{1}}{\partial x_{3}}+\hat{e}_{3} \hat{e}_{2} \frac{\partial w_{2}}{\partial x_{3}}+\hat{e}_{3} \hat{e}_{3} \frac{\partial w_{3}}{\partial x_{3}}
\end{array}
$$

```
Mathematics Review Polymer Rheology
4. Differential Operations with Vectors, Tensors (continued)
B. Vectors - gradient (continued)
constants may appear on either side of the
Gradient of a vector field differential operator

The gradient of
a vector field is a tensor

Einstein notation for gradient of a vector
4. Differential Operations with Vectors, Tensors (continued)
C. Vectors - divergence
\(\begin{array}{r}\text { Divergence of a } \\ \text { vector field }\end{array} \nabla \cdot \underline{w} \equiv\left(\hat{e}_{1} \frac{\partial}{\partial x_{1}}+\hat{e}_{2} \frac{\partial}{\partial x_{2}}+\hat{e}_{3} \frac{\partial}{\partial x_{3}}\right) \cdot w_{1} \hat{e}_{1}+w_{2} \hat{e}_{2}+w_{3} \hat{e}_{3}\)
\(=\frac{\partial w_{1}}{\partial x_{1}}+\frac{\partial w_{2}}{\partial x_{2}}+\frac{\partial w_{3}}{\partial x_{3}}\)
\(=\sum_{i=1}^{3} \frac{\partial w_{i}}{\partial x_{i}}=\frac{\partial w_{i}}{\partial x_{i}}\)

The Divergence of a vector field is a scalar

Einstein notation for divergence of a vector

\section*{Mathematics Review}
4. Differential Operations with Vectors, Tensors (continued)
C. Vectors - divergence (continued)
\[
\begin{aligned}
& \begin{array}{l}
\begin{array}{l}
\text { constants may appear } \\
\text { on either side of the } \\
\text { differential operator }
\end{array} \\
\begin{aligned}
\nabla \cdot \underline{w} \\
\text { notation }
\end{aligned}
\end{array} \begin{array}{l}
\text { This is all written in } \\
\text { Cartesian } \\
\text { coordinates (basis } \\
\text { vectors are } \\
\text { constant) }
\end{array} \\
& \\
& \\
& =\frac{\partial w_{m}}{\partial x_{j}}
\end{aligned} w_{j} \hat{e}_{j}=\frac{\partial w_{j}}{\partial x_{m}} \hat{e}_{m} \cdot \hat{e}_{j}=\frac{\partial w_{j}}{\partial x_{m}} \delta_{m j}
\]
-divergence operation decreases the order of the entity operated upon
4. Differential Operations with Vectors, Tensors (continued)
D. Vectors - Laplacian

Using
Einstein
notation:
\[
\begin{aligned}
\nabla \cdot \nabla \underline{w} & \equiv \hat{e}_{m} \frac{\partial}{\partial x_{m}} \cdot \hat{e}_{p} \frac{\partial}{\partial x_{p}} w_{j} \hat{e}_{j}=\frac{\partial}{\partial x_{m}} \frac{\partial}{\partial x_{p}} w_{j}\left(\hat{e}_{m} \cdot \hat{e}_{p}\right) \hat{e}_{j} \\
& =\frac{\partial}{\partial x_{m}} \frac{\partial}{\partial x_{p}} w_{j}\left(\delta_{m p}\right) \hat{e}_{j} \\
& =\frac{\partial}{\partial x_{p}} \frac{\partial}{\partial x_{p}} w_{j} \hat{e}_{j} \quad \begin{array}{cc}
\text { The Laplacian of } \\
\text { a vector field is a } \\
\text { vector }
\end{array}
\end{aligned}
\]
\(=\left(\begin{array}{l}\frac{\partial^{2} w_{1}}{\partial x_{1}}+\frac{\partial^{2} w_{1}}{\partial x_{2}}+\frac{\partial^{2} w_{1}}{\partial x_{3}} \\ \frac{\partial^{2} w_{2}}{\partial x_{1}}+\frac{\partial^{2} w_{2}}{\partial x_{2}}+\frac{\partial^{2} w_{2}}{\partial x_{3}} \\ \frac{\partial^{2} w_{3}}{\partial x_{1}}+\frac{\partial^{2} w_{3}}{\partial x_{2}}+\frac{\partial^{2} w_{3}}{\partial x_{3}}\end{array}\right)_{123}\)
-Laplacian operation does not change the order of the entity operated upon
```

Mathematics Review Polymer Rheology

```
4. Differential Operations with Vectors, Tensors (continued)
E. Scalar-divergence \(\quad\). \(\alpha\) (impossible; cannot
F. Scalar - Laplacian \(\quad \nabla \cdot \nabla \alpha\)
G. Tensor - gradient \(\quad \nabla \underline{\underline{A}}\)
H. Tensor-divergence \(\nabla \cdot \underline{\underline{A}}\)
I. Tensor - Laplacian
\(\nabla \cdot \nabla \underline{\underline{A}}\)
5. Curvilinear Coordinates
\begin{tabular}{|cc|}
\hline Cylindrical & \(\bar{r}, \theta, z\)
\end{tabular}\(\quad \hat{e}_{\bar{r}}, \hat{e}_{\theta}, \hat{e}_{z} \quad\)\begin{tabular}{l} 
See \\
figures \\
2.11 and \\
Spherical \\
\end{tabular}\(\quad r, \theta, \phi \quad \hat{e}_{r}, \hat{e}_{\theta}, \hat{e}_{\phi} \quad\)\begin{tabular}{l} 
\\
\hline
\end{tabular}

These coordinate systems are ortho-normal, but they are not constant (they vary with position).

This causes some non-intuitive effects when derivatives are taken.
5. Curvilinear Coordinates (continued)

\[
\begin{aligned}
& \nabla \psi=\left(\begin{array}{c}
\frac{\partial \psi}{\partial x} \hat{e}_{x}+\frac{\partial \psi}{\partial y} \hat{e}_{y}+\frac{\partial \psi}{\partial z} \hat{e}_{z}
\end{array}\right) \quad \begin{array}{c}
\hat{e}_{y}=\sin \theta \hat{e}_{r}-\sin \theta \hat{e}_{r}+\cos \theta \hat{e}_{\theta} \\
z=r \cos \theta \\
y=r \sin \theta \\
z=z \\
r=\tan ^{-1}\left(\frac{y}{x}\right) \\
x^{2}+y^{2} \\
\end{array} \\
& \frac{\partial \psi}{\partial x}=\frac{\partial \psi}{\partial r} \frac{\partial r}{\partial x}+\frac{\partial \psi}{\partial \theta} \frac{\partial \theta}{\partial x}+\frac{\partial \psi}{\partial z} \frac{\partial z}{\partial x}=\frac{\partial \psi}{\partial r} \cos \theta+\frac{\partial \psi}{\partial \theta}\left(\frac{-\sin \theta}{r}\right) \\
& \frac{\partial \psi}{\partial y}=\frac{\partial \psi}{\partial r} \frac{\partial r}{\partial y}+\frac{\partial \psi}{\partial \theta} \frac{\partial \theta}{\partial y}+\frac{\partial \psi}{\partial z} \frac{\partial z}{\partial y}=\frac{\partial \psi}{\partial r} \sin \theta+\frac{\partial \psi}{\partial \theta}\left(\frac{\cos \theta}{r}\right)
\end{aligned}
\]
5. Curvilinear Coordinates (continued)
\[
\text { Result: } \quad \begin{aligned}
\nabla & =\left(\frac{\partial}{\partial x} \hat{e}_{x}+\frac{\partial}{\partial y} \hat{e}_{y}+\frac{\partial}{\partial z} \hat{e}_{z}\right) \\
& =\hat{e}_{r} \frac{\partial}{\partial r}+\hat{e}_{\theta} \frac{1}{r} \frac{\partial}{\partial \theta}+\hat{e}_{z} \frac{\partial}{\partial z}
\end{aligned}
\]

Now, proceed:
(We cannot use Einstein notation because these are not Cartesian coordinates)
\(\nabla \cdot \underline{v}=\left(\hat{e}_{r} \frac{\partial}{\partial r}+\hat{e}_{\theta} \frac{1}{r} \frac{\partial}{\partial \theta}+\hat{e}_{z} \frac{\partial}{\partial z}\right) \cdot\left(v_{r} \hat{e}_{r}+v_{\theta} \hat{e}_{\theta}+v_{z} \hat{e}_{z}\right)\)
\(=\hat{e}_{r} \frac{\partial}{\partial r} \cdot\left(v_{r} \hat{e}_{r}+v_{\theta} \hat{e}_{\theta}+v_{z} \hat{e}_{z}\right)+\)
\(\hat{e}_{\theta} \frac{1}{r} \frac{\partial}{\partial \theta} \cdot\left(v_{r} \hat{e}_{r}+v_{\theta} \hat{e}_{\theta}+v_{z} \hat{e}_{z}\right)+\)
\(\hat{e}_{z} \frac{\partial}{\partial z} \cdot\left(v_{r} \hat{e}_{r}+v_{\theta} \hat{e}_{\theta}+v_{z} \hat{e}_{z}\right)\)

Mathematics Review Polymer Rheology
5. Curvilinear Coordinates (continued)

\[
\begin{array}{r}
\hat{e}_{\theta} \frac{1}{r} \frac{\partial}{\partial \theta} \cdot\left(v_{r} \hat{e}_{r}+v_{\theta} \hat{e}_{\theta}+v_{z} \hat{e}_{z}\right)+ \\
\hat{e}_{z} \frac{\partial}{\partial z} \cdot\left(v_{r} \hat{e}_{r}+v_{\theta} \hat{e}_{\theta}+v_{z} \hat{e}_{z}\right)
\end{array}
\]
\[
\hat{e}_{\theta} \frac{1}{r} \frac{\partial}{\partial \theta} \cdot v_{r} \hat{e}_{r}=\hat{e}_{\theta} \cdot \frac{1}{r} \frac{\partial v_{r} \hat{e}_{r}}{\partial \theta}
\]
\[
=\hat{e}_{\theta} \cdot \frac{1}{r}\left(v_{r} \frac{\partial \hat{e}_{r}}{\partial \theta}+\hat{e}_{r} \frac{\partial v_{r}}{\partial \theta}\right)
\]

5. Curvilinear Coordinates (continued)
\[
\left.\begin{array}{rl}
\hat{e}_{\theta} \frac{1}{r} \frac{\partial}{\partial \theta} \cdot v_{r} \hat{e}_{r}= & \hat{e}_{\theta} \cdot \frac{1}{r} \frac{\partial v_{r} \hat{e}_{r}}{\partial \theta} \\
& =\hat{e}_{\theta} \cdot \frac{1}{r}\left(v_{r} \frac{\partial \hat{e}_{r}}{\partial \theta}+\hat{e}_{r} \frac{\partial v_{r}}{\partial \theta}\right) \\
& =\hat{e}_{\theta} \cdot \frac{1}{r}\left(v_{r} \hat{e}_{\theta}+\hat{e}_{r} \frac{\partial v_{r}}{\partial \theta}\right) \\
& =\frac{1}{r} v_{r} \quad
\end{array} \begin{array}{l}
\text { This term is not intuitive, } \\
\text { and appears because the } \\
\text { basis vectors in the } \\
\text { curvilinear coordinate }
\end{array}\right\} \begin{aligned}
& \text { systems vary with position. }
\end{aligned}
\]

69
© Faith A. Morrison, Michigan Tech U.

Mathematics Review
5. Curvilinear Coordinates (continued)

Final result for divergence of a vector in cylindrical coordinates:
\[
\begin{array}{r}
\nabla \cdot \underline{v}=\hat{e}_{r} \frac{\partial}{\partial r} \cdot\left(v_{r} \hat{e}_{r}+v_{\theta} \hat{e}_{\theta}+v_{z} \hat{e}_{z}\right)+ \\
\left.\hat{e}_{\theta} \frac{1}{r} \frac{\partial}{\partial \theta} \cdot\left(v_{r} \hat{e}_{r}\right)+v_{\theta} \hat{e}_{\theta}+v_{z} \hat{e}_{z}\right)+ \\
\hat{e}_{z} \frac{\partial}{\partial z} \cdot\left(v_{r} \hat{e}_{r}+v_{\theta} \hat{e}_{\theta}+v_{z} \hat{e}_{z}\right) \\
\nabla \cdot \underline{v}=\frac{\partial v_{r}}{\partial r}+\frac{1}{r} \frac{\partial v_{\theta}}{\partial \theta}+\frac{v_{r}}{r}+\frac{\partial v_{r}}{\partial z}
\end{array}
\]
5. Curvilinear Coordinates (continued)

Curvilinear Coordinates (summary)
-The basis vectors are ortho-normal
-The basis vectors are non-constant (vary with position)
-These systems are convenient when the flow system mimics the coordinate surfaces in curvilinear coordinate systems.
-We cannot use Einstein notation - must use Tables in Appendix C2 (pp464-468).
Mathematics Review Polymer Rheology
\begin{tabular}{ll} 
6. Vector and Tensor Theorems and & \begin{tabular}{l} 
In Chapter 3 we review Newtonian fluid \\
mechanics using the vectorftensor \\
vocabulary we have learned thus far. We \\
definitions \\
jocht need a few more theorems to prepare
\end{tabular} \\
us for those studies. These are presented \\
without proof.
\end{tabular}

Gauss Divergence Theorem
\[
\frac{\text { outwardly }}{\text { directed unit }}
\]
\(\iiint_{V} \nabla \cdot \underline{b} d V=\iint_{S} \hat{n} \cdot \underline{b} d S\)
This theorem establishes the utility of the divergence operation. The integral of the divergence of a vector field over a volume is equal to the net outward flow of that property through the bounding surface.

\begin{tabular}{|c|c|c|}
\hline Mathematics Review & & Polymer Rheology \\
\hline \multicolumn{3}{|l|}{6. Vector and Tensor Theorems (continued)} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
for differentiating integrals \\
one
\[
\begin{aligned}
\frac{d I}{d t} & =\frac{d}{d t} \int_{\alpha}^{\beta} f(x, t) d x \\
& =\int_{\alpha}^{\beta} \frac{\partial f(x, t)}{\partial t} d x
\end{aligned}
\] dimension, constant limits
\end{tabular}}} \\
\hline & & \\
\hline & & \\
\hline
\end{tabular}
```

Mathematics Review Polymer Rheology

```
6. Vector and Tensor Theorems (continued)
\(J=\int_{\alpha(t)}^{\beta(t)} f(x, t) d x\)
\(\frac{d J}{d t}=\frac{d}{d t} \int_{\alpha(t)}^{\beta(t)} f(x, t) d x\)
variable limits
for differentiating integrals

\begin{tabular}{l} 
one \\
dimension, \\
variable \\
limits
\end{tabular}
\[
=\int_{\alpha(t)}^{\beta(t)} \frac{\partial f(x, t)}{\partial t} d x+\frac{d \beta}{d t} f(\beta, t)-\frac{d \alpha}{d t} f(\alpha, t)
\]

Mathematics Review
Polymer Rheology
6. Vector and Tensor Theorems (continued)

Leibnitz Rule for differentiating integrals
\[
\begin{aligned}
& J=\iiint_{V(t)} f(x, y, z, t) d V \\
& \left.\begin{array}{rl}
\frac{d J}{d t} & =\frac{d}{d t} \iiint_{V(t)} f(x, y, z, t) d V \\
& =\iiint_{V(t)} \frac{\partial f(x, y, z, t)}{\partial t} d V+\iint_{S(t)} f\left(\underline{v}_{\text {surface }} \cdot \hat{n}\right) d S \\
& \text { velocity of the surface element } d S
\end{array}\right\} \begin{array}{l}
\text { three } \\
\text { dimensions, } \\
\text { variable limits }
\end{array} \\
& \text { © Faith A. Morrison, Michigan Tech U. }
\end{aligned}
\]
6. Vector and Tensor Theorems (continued)
Substantial Derivative Consider a function \(f(x, y, z, t)\)
\(\begin{gathered}\text { true for any } \\ \text { path: }\end{gathered} \quad d f \equiv\left(\frac{\partial f}{\partial x}\right)_{y z t} d x+\left(\frac{\partial f}{\partial y}\right)_{x z t} d y+\left(\frac{\partial f}{\partial z}\right)_{x y t} d z+\left(\frac{\partial f}{\partial t}\right)_{x y z} d t\)
choose
special path
\[
\frac{d f}{d t} \equiv\left(\frac{\partial f}{\partial x}\right)_{y z t} \frac{d x}{d t}+\left(\frac{\partial f}{\partial y}\right)_{x z t} \frac{d y}{d t}+\left(\frac{\partial f}{\partial z}\right)_{x y t} \frac{d z}{d t}+\left(\frac{\partial f}{\partial t}\right)_{x y z}
\]
time rate of change of \(f\) along a chosen path
\(x\)-component When the chosen path is of velocity along that path then these are the components of the particle velocities.


\section*{Done with math background.}


Let's use it with Newtonian fluids


\section*{Chapter 3: Newtonian Fluids}
\[
\rho\left(\frac{\partial \underline{v}}{\partial t}+\underline{v} \cdot \nabla \underline{v}\right)=-\nabla p+\mu \nabla^{2} \underline{v}+\rho \underline{g}
\]


\section*{Chapter 3: Newtonian Fluid Mechanics}

TWO GOALS
-Derive governing equations (mass and momentum balances
-Solve governing equations for velocity and stress fields

\section*{QUICK START}

First, before we get deep into derivation, let's do a Navier-Stokes problem to get you started in the mechanics of this type of problem solving.


EXAMPLE: Drag flow
between infinite parallel plates
\[
\underline{v}=\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)_{123}
\]
-Newtonian
-steady state -incompressible fluid -very wide, long -uniform pressure


\section*{Chapter 3: Newtonian Fluid Mechanics}

\section*{TWO GOALS}
-Derive governing equations (mass and momentum balances
- Solve governing equations for velocity and stress fields

Mass Balance
Consider an arbitrary control volume \(V\) enclosed by a surface \(S\)
\[
\binom{\text { rate of increase }}{\text { of mass in } C V}=\binom{\text { net flux of }}{\text { mass into } C V}
\]

\author{
Mathematics Review
}


\section*{Review}
```

Chapter 3: Newtonian Fluid Mechanics

```

Polymer Rheology
\(\left.\begin{array}{ll}\text { Mass Balance } \begin{array}{l}\text { (continued) }\end{array} & \begin{array}{c}\text { Consider an } \\ \text { arbitrary } \\ \text { volume } V \\ \text { enclosed by a } \\ \text { surface } S\end{array} \\ \binom{\text { rate of increase }}{\text { of mass in } V}=\frac{d}{d t}\left(\iiint_{V} \rho d V\right.\end{array}\right)\)
\[
\left(\begin{array}{l}
\text { net flux of } \\
\text { mass into } V \\
\text { through surface } S
\end{array}\right)=-\iint_{S} \begin{aligned}
& \text { outwardly } \\
& \rho \hat{n} \cdot \underline{v} d S \\
& \begin{array}{l}
\text { pointing unit } \\
\text { normal }
\end{array} \\
& \hline
\end{aligned}
\]
\(\qquad\)
Mass Balance (continued)
\(\underset{\text { Leibnitz }}{\text { rule }}<\frac{d}{d t}\left(\iiint_{V} \rho d V\right)=-\iint_{S} \rho \hat{n} \cdot \underline{v} d S\)
\[
\begin{array}{rlr}
\iiint_{V} \frac{\partial \rho}{\partial t} d V & =-\iint_{S} \hat{n} \cdot(\rho \underline{v}) d S \\
& =-\iiint_{V} \nabla \cdot(\rho \underline{v}) d V
\end{array} \quad \begin{aligned}
& \text { Gauss } \\
& \begin{array}{l}
\text { Divergence } \\
\text { Theorem }
\end{array} \\
& \iiint_{V}\left(\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \underline{v})\right) d V=0
\end{aligned}
\]
\(\begin{aligned} & \text { Since } V \text { is } \\ & \text { arbitrary, } \\ & \text { ar } \\ & \int_{V}\end{aligned}\left(\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \underline{v})\right) d V=0\)

Continuity equation: microscopic mass balance
\[
\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \underline{v})=0
\]
Mass Balance (continued)
\[
\begin{aligned}
& \text { Continuity equation (general fluids) } \\
& \qquad \begin{array}{l}
\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \underline{v})=0 \\
\frac{\partial \rho}{\partial t}+\rho(\nabla \cdot \underline{v})+\underline{v} \cdot \nabla \rho=0 \\
\frac{D \rho}{D t}+\rho(\nabla \cdot \underline{v})=0
\end{array}
\end{aligned}
\]

For \(\rho=\) constant (incompressible fluids):
\[
\nabla \cdot \underline{v}=0
\]




Forces on \(V\)

Body Forces (non-contact)
\[
\binom{\text { force on } V}{\text { dueto } \underline{g}}=\iiint_{V} \rho \underline{g} d V
\]
\(\qquad\)
Chapter 3: Newtonian Fluid Mechanics Polymer Rheology

Molecular Forces (contact) - this is the tough one


> We need an expression for the state of stress at an arbitrary point \(P\) in a flow.

\section*{Molecular Forces (continued)}

Think back to the molecular picture from chemistry:


The specifics of these forces,
connections, and interactions
must be captured by the
molecular forces term that we

\section*{Molecular Forces (continued)}
-We will concentrate on expressing the molecular forces mathematically;
-We leave to later the task of relating the resulting mathematical expression to experimental observations.

\section*{First, choose a} surface:
-arbitrary shape -small


Consider the forces on three mutually perpendicular surfaces through point \(P\) :


\section*{Molecular Forces (continued)}
\begin{tabular}{|c|}
\(\underline{a} \quad\) is stress on a " \(\underbrace{\underline{b} \text { surface at } \mathrm{P}}_{\)\begin{tabular}{c}
\text { a surface with } \\
\text { unit normal }\(\hat{e}_{1}\)
\end{tabular}\(}\) \\
\(\underline{c} \quad\) is stress on a " 2 " surface at P
\end{tabular}

We can write these vectors in a
Cartesian coordinate system:
\[
\begin{aligned}
& \underline{a}=a_{1} \hat{e}_{1}+a_{2} \hat{e}_{2}+a_{3} \hat{e}_{3} \\
&=\Pi_{11} \hat{e}_{1}+\Pi_{12} \hat{e}_{2}+\Pi_{13} \hat{e}_{3} \\
& 1 "
\end{aligned}
\]

Molecular Forces (continued)
\[
\begin{aligned}
\underline{a} & =a_{1} \hat{e}_{1}+a_{2} \hat{e}_{2}+a_{3} \hat{e}_{3} \\
& =\Pi_{11} \hat{e}_{1}+\Pi_{12} \hat{e}_{2}+\Pi_{13} \hat{e}_{3} \\
\underline{b} & =b_{1} \hat{e}_{1}+b_{2} \hat{e}_{2}+b_{3} \hat{e}_{3} \\
& =\Pi_{21} \hat{e}_{1}+\Pi_{22} \hat{e}_{2}+\Pi_{23} \hat{e}_{3} \\
\underline{c} & =c_{1} \hat{e}_{1}+c_{2} \hat{e}_{2}+c_{3} \hat{e}_{3} \\
& =\Pi_{31} \hat{e}_{1}+\Pi_{32} \hat{e}_{2}+\Pi_{33} \hat{e}_{3}
\end{aligned}
\]
\(\underline{a} \quad\) is stress on a " 1 " surface at P \(\underline{b} \quad\) is stress on a " 2 " surface at P c is stress on a " 3 " surface at \(P\)


How can we write \(f\) (the force on an arbitrary surface \(d S\) ) in terms of the \(\Pi_{p k}\) ?

\[
\underline{f}=f_{1} \hat{1}_{1}+f_{2} \hat{e}_{2}+f_{3} \hat{e}_{3}
\]
\(f_{3}\) is force on dS in
\(f_{1}\) is force on dS in 1-direction \(\sqrt{6}\)
There are three \(\Pi_{p k}\) that relate to forces in the 1-direction:
\[
\Pi_{11}, \Pi_{21}, \Pi_{31}
\]

Molecular Forces (continued)

\(\begin{aligned} & \text { How can we write } f \text { (the force on an } \\ & \text { arbitrary surface } d S \text { ) in terms of the } \\ & f\end{aligned}=f_{1} \hat{e}_{1}+f_{2} \hat{e}_{2}+f_{3} \hat{e}_{3}\) quantities \(\Pi_{p k}\) ?
\(f_{1}\), the force on \(d S\) in 1-direction, can be broken into three parts associated with the three stress components:
first part: \(\left\{\begin{array}{l}(\overbrace{\left(\begin{array}{c}\text { projection of } \\ \text { dA onto the } \\ 1-\text { surface }\end{array}\right.}\end{array}=\Pi_{11} \hat{n} \cdot \hat{e}_{1} d S\right.\)

\section*{Molecular Forces (continued)}
\(f_{1}\), the force on \(d S\) in 1-direction, is composed of THREE parts:


© Faith A. Morrison, Michigan Tech U.

\section*{Molecular Forces (continued)}
\(f_{1}\), the force in the 1-direction on an arbitrary surface \(d S\) is composed of THREE parts.
\[
f_{1}=\Pi_{11} \hat{n} \cdot \hat{e}_{1} d S+\prod_{\text {stress }}^{\prod_{21}} \underbrace{\hat{n} \cdot \hat{e}_{2} d S}_{\begin{array}{c}
\text { appropriate } \\
\text { area }
\end{array}}+\Pi_{31} \hat{n} \cdot \hat{e}_{3} d S
\]

Using the distributive law:
\[
f_{1}=\hat{n} \cdot\left(\Pi_{11} \hat{e}_{1}+\Pi_{21} \hat{e}_{2}+\Pi_{31} \hat{e}_{3}\right) d S
\]

Force in the 1-direction on an arbitrary surface \(d S\)

\section*{Molecular Forces (continued)}

The same logic applies in the 2-direction and the 3-direction
\[
\begin{aligned}
& f_{1}=\hat{n} \cdot\left(\Pi_{11} \hat{e}_{1}+\Pi_{21} \hat{e}_{2}+\Pi_{31} \hat{e}_{3}\right) d S \\
& f_{2}=\hat{n} \cdot\left(\Pi_{12} \hat{e}_{1}+\Pi_{22} \hat{e}_{2}+\Pi_{32} \hat{e}_{3}\right) d S \\
& f_{3}=\hat{n} \cdot\left(\Pi_{13} \hat{e}_{1}+\Pi_{23} \hat{e}_{2}+\Pi_{33} \hat{e}_{3}\right) d S
\end{aligned}
\]

Assembling the force vector:
\[
\begin{array}{rl}
f= & f_{1} \hat{e}_{1}+f_{2} \hat{e}_{2}+f_{3} \hat{e}_{3} \\
=d S \\
n & n \cdot\left(\Pi_{11} \hat{e}_{1}+\Pi_{21} \hat{e}_{2}+\Pi_{31} \hat{e}_{3}\right) \hat{e}_{1} \\
& \quad+d S \hat{n} \cdot\left(\Pi_{12} \hat{e}_{1}+\Pi_{22} \hat{e}_{2}+\Pi_{32} \hat{e}_{3}\right) \hat{e}_{2} \\
\quad & +d S \hat{n} \cdot\left(\Pi_{13} \hat{e}_{1}+\Pi_{23} \hat{e}_{2}+\Pi_{33} \hat{e}_{3} \hat{e}_{3} \hat{e}_{3}\right.
\end{array}
\]

\section*{Review}

\section*{Molecular Forces (continued)}

Assembling the force vector:
\[
\begin{array}{rl}
\underline{f}=f_{1} \hat{e}_{1} & +f_{2} \hat{e}_{2}+f_{3} \hat{e}_{3} \\
=d S \\
n \cdot\left(\Pi_{11} \hat{e}_{1}+\Pi_{21} \hat{e}_{2}+\Pi_{31} \hat{e}_{3}\right) \hat{e}_{1} \\
& +d S n \cdot\left(\Pi_{12} \hat{e}_{1}+\Pi_{22} \hat{e}_{2}+\Pi_{32} \hat{e}_{3}\right) \hat{e}_{2} \\
& +d S \hat{n} \cdot\left(\Pi_{13} \hat{e}_{1}+\Pi_{23} \hat{e}_{2}+\Pi_{33} \hat{e}_{3}\right) \hat{e}_{3} \\
=d S & n \cdot \\
& {\left[\Pi_{11} \hat{e}_{1} \hat{e}_{1}+\Pi_{21} \hat{e}_{2} \hat{e}_{1}+\Pi_{31} \hat{e}_{3} \hat{e}_{1}\right.} \\
& +\Pi_{12} \hat{e}_{1} \hat{e}_{2}+\Pi_{22} \hat{e}_{2} \hat{e}_{2}+\Pi_{32} \hat{e}_{3} \hat{e}_{2} \\
& \left.+\Pi_{13} \hat{e}_{1} \hat{e}_{3}+\Pi_{23} \hat{e}_{2} \hat{e}_{3}+\Pi_{33} \hat{e}_{3} \hat{e}_{3}\right]
\end{array}
\]
linear combination of dyadic products \(=\) tensor

\section*{Molecular Forces (continued)}

Assembling the force vector:
\[
\begin{aligned}
& \underline{f}=d S \hat{n} \cdot\left[\Pi_{11} \hat{e}_{1} \hat{e}_{1}+\Pi_{21} \hat{e}_{2} \hat{e}_{1}+\Pi_{31} \hat{e}_{3} \hat{e}_{1}\right. \\
& +\Pi_{12} \hat{e}_{1} \hat{e}_{2}+\Pi_{22} \hat{e}_{2} \hat{e}_{2}+\Pi_{32} \hat{e}_{3} \hat{e}_{2} \\
& \left.+\Pi_{13} \hat{e}_{1} \hat{e}_{3}+\Pi_{23} \hat{e}_{2} \hat{e}_{3}+\Pi_{33} \hat{e}_{3} \hat{e}_{3}\right] \\
& =d S \hat{n} \cdot \sum_{p=1 m=1}^{3} \sum_{p m}^{3} \Pi_{p} \hat{e}_{p} \hat{e}_{m} \\
& =d S \hat{n} \cdot \Pi_{p m} \hat{e}_{p} \hat{e}_{m} \\
& \underline{f}=d S \hat{n} \cdot \underline{\underline{\Pi}} \\
& \text { Total stress tensor } \\
& \text { (molecular stresses) }
\end{aligned}
\]
\[
\begin{aligned}
& \begin{aligned}
&\binom{\text { Momentum Balance (continued) }}{\text { of momentum in } V}=\binom{\text { net flux of }}{\text { momentum into } V}+\binom{\text { sum of }}{\text { forces on } V} \\
& \iiint_{V} \frac{\partial}{\partial t}(\rho \underline{v}) d V=-\iiint_{V} \nabla \cdot(\rho \underline{v V}) d V+\iiint_{V} \rho \underline{g} d V+\begin{array}{l}
\text { molecular } \\
\text { forces }
\end{array} \\
& \begin{aligned}
& \text { molecular } \\
& \text { forces }=\iint_{S}\left(\begin{array}{l}
\text { molecular } \\
\text { forces on } \\
d S
\end{array}\right)
\end{aligned} \begin{array}{l}
\text { We use a stress sign } \\
\text { convention that } \\
\text { requires a negative } \\
\text { sign here. }
\end{array} \\
&=\iint_{S} \hat{n} \cdot(-\underline{\underline{\Pi})}) d S \\
&=\iiint_{V} \nabla \cdot(-\underline{\underline{\Pi})}) d V \\
& \begin{array}{l}
\text { Gauss } \\
\text { Divergence } \\
\text { Theorem }
\end{array} \\
&
\end{aligned}
\end{aligned}
\]
\[
\binom{\text { rate of increase }}{\text { of momentum in } V}=\binom{\text { net flux of }}{\text { momentum into } V}+\binom{\text { sum of }}{\text { forces on } V}
\]
\[
\iiint_{V} \frac{\partial}{\partial t}(\rho \underline{v}) d V=-\iiint_{V} \nabla \cdot(\rho \underline{v \underline{V}}) d V+\iiint_{V} \rho \underline{g} d V+\begin{gathered}
\text { molecular } \\
\text { forces }
\end{gathered}
\]


UR/Bird choice: positive compression (pressure is positive)

Gauss
Divergence
Theorem

UR/Bird
choice: fluid at
lesser \(y\) exerts
force on fluid at
greater \(y\)
(IFM/Mechanics choice: (opposite)

Momentum Balance (continued)
Final Assembly:
\[
\begin{gathered}
\binom{\text { rate of increase }}{\text { of momentum in } V}=\binom{\text { net flux of }}{\text { momentum into } V}+\binom{\text { sum of }}{\text { forces on } V} \\
\iiint_{V} \frac{\partial}{\partial t}(\rho \underline{v}) d V=-\iiint_{V} \nabla \cdot(\rho \underline{v} \underline{v}) d V+\iiint_{V} \rho \underline{g} d V-\iiint_{V} \nabla \cdot \underline{\underline{\Pi}} d V \\
\iiint_{V}\left[\frac{\partial \rho \underline{v}}{\partial t}+\nabla \cdot(\rho \underline{v})-\rho \underline{g}+\nabla \cdot \underline{\underline{\Pi}}\right] d V=0
\end{gathered}
\]

Because V is arbitrary, we may conclude:
\[
\frac{\partial \rho \underline{v}}{\partial t}+\nabla \cdot(\rho \underline{v \underline{v}})-\rho \underline{g}+\nabla \cdot \underline{\underline{\Pi}}=0 \quad \begin{aligned}
& \text { Microscopic } \\
& \text { momentum } \\
& \text { balance }
\end{aligned}
\]
```

Momentum Balance (continued) Polymer Rheology

```

Microscopic momentum balance
\[
\frac{\partial \rho \underline{v}}{\partial t}+\nabla \cdot(\rho \underline{v} \underline{v})-\rho \underline{g}+\nabla \cdot \underline{\underline{\Pi}}=0
\]

After some rearrangement:
\[
\begin{aligned}
& \rho\left(\frac{\partial \underline{v}}{\partial t}+\underline{v} \cdot \nabla \underline{v}\right)=-\nabla \cdot \underline{\underline{\Pi}}+\rho \underline{g} \\
& \rho \frac{D \underline{v}}{D t}=-\nabla \cdot \underline{\underline{\Pi}}+\rho \underline{g}
\end{aligned}
\]

Now, what to do with \(\underline{\underline{\Pi}}\) ?

111
© Faith A. Morrison, Michigan Tech U.

Momentum Balance (continued)
Polymer Rheology

Now, what to do with \(\underline{\underline{\prod}}\) ? Pressure is part of it.

Pressure
definition: An isotropic force/area of molecular origin. Pressure is the same on any surface drawn through a point and acts normally to the chosen surface.
\[
\text { pressure }=p \underline{\underline{I}}=p \hat{e}_{1} \hat{e}_{1}+p \hat{e}_{2} \hat{e}_{2}+p \hat{e}_{3} \hat{e}_{3}=\left(\begin{array}{ccc}
p & 0 & 0 \\
0 & p & 0 \\
0 & 0 & p
\end{array}\right)_{123}
\]

Test: what is the force on a surface with unit normal \(\hat{n}\) ?
```

Momentum Balance (continued) Polymer Rheology

```
back to our question,
Now, what to do with \(\underline{\underline{\prod}}\) ? Pressure is part of it.
There are other, nonisotropic stresses
Extra Molecular Stresses
definition: The extra stresses are the molecular stresses that are not isotropic
\[
\underline{\underline{\tau}} \equiv \underline{\underline{\Pi}}-p \underline{\underline{I}}
\]

Extra stress
tensor, i.e. everything complicated in molecular deformation


This becomes the central question of rheological study 113

Momentum Balance (continued) Polymer Rheology

Stress sign
convention affects any expressions
\[
\text { lesser } y \text { exerts }
\]
with \(\underline{\underline{\Pi}}, \underline{\underline{\Pi}}\) or \(\underline{\underline{\tau}}, \underline{\underline{\tilde{\tau}}}\)
\[
\underline{\underline{\Pi}} \equiv \underline{\underline{\tau}}+p \underline{\underline{I}}
\]
force on fluid at greater \(y\)
\[
\underline{\underline{\underline{\Pi}}} \equiv \underline{\underline{\tau}}-p \underline{\underline{I}}
\]
(IFM/Mechanics choice: (opposite)
```

Momentum Balance (continued) Polymer Rheology

```

\section*{Constitutive equations for Stress}


Momentum Balance (continued) Polymer Rheology
\(\left.\begin{array}{r}\text { Microscopic } \\ \text { momentum } \\ \text { balance }\end{array}\right) \rho\left(\frac{\partial \underline{v}}{\partial t}+\underline{v} \cdot \nabla \underline{v}\right)=-\nabla \cdot \underline{\underline{\Pi}}+\rho \underline{g}\) Equation of

In terms of the extra stress tensor:
\[
\rho\left(\frac{\partial \underline{v}}{\partial t}+\underline{v} \cdot \nabla \underline{v}\right)=-\nabla p-\nabla \cdot \underline{\underline{\tau}}+\rho \underline{g}
\]

Equation of Motion

Cauchy
Momentum
Equation

Components in three coordinate systems (our sign convention): http://www.chem.mtu.edu/~fmorriso/cm310/Navier2007.pdf
```

Momentum Balance (continued) Polymer Rheology

```

Newtonian Constitutive equation
\[
\underline{\underline{\tau}}=-\mu\left(\nabla \underline{v}+(\nabla \underline{v})^{T}\right)
\]
-for incompressible fluids (see text for compressible fluids)
-is empirical
-may be justified for some systems with molecular modeling calculations

Note: \(\underset{\underline{\tau}}{=}=+\mu\left(\nabla \underline{v}+(\nabla \underline{v})^{T}\right)\)

How is the Newtonian
Constitutive equation related to
Newton's Law of Viscosity?
\[
\tau_{21}=-\mu \frac{\partial v_{1}}{\partial x_{2}}
\]
-incompressible fluids
- incompressible fluids -rectilinear flow (straight lines) \(\cdot\) no variation in \(x_{3}\)-direction
Momentum Balance (continued) Polymer Rheology

Back to the momentum balance . . .
\[
\rho\left(\frac{\partial \underline{v}}{\partial t}+\underline{v} \cdot \nabla \underline{v}\right)=-\nabla p-\nabla \cdot \stackrel{\underline{\underline{\tau}}+\rho \underline{g}}{\substack{\text { Equation of } \\
\text { Motion }}} \begin{aligned}
& \underline{\underline{\tau}}=-\mu\left(\nabla \underline{v}+(\nabla \underline{v})^{T}\right)
\end{aligned}
\]

Momentum Balance (continued) Polymer Rheology

Navier-Stokes Equation
\[
\rho\left(\frac{\partial \underline{v}}{\partial t}+\underline{v} \cdot \nabla \underline{v}\right)=-\nabla p+\mu \nabla^{2} \underline{v}+\rho \underline{g}
\]
-incompressible fluids
- Newtonian fluids

Note: The Navier-Stokes is unaffected by the stress sign convention.

\section*{Next?}

Navier-Stokes Equation
\[
\rho\left(\frac{\partial \underline{v}}{\partial t}+\underline{v} \cdot \nabla \underline{v}\right)=-\nabla p+\mu \nabla^{2} \underline{v}+\rho \underline{g}
\]

Newtonian Problem Solving


\section*{example: Poiseuille}
flow between infinite parallel plates
-Newtonian
- steady state
-Incompressible fluid
-infinitely wide, long


\section*{eXAMPLE: Poiseuille}
flow in a tube
-Newtonian
- Steady state
-incompressible fluid - long tube


\section*{example: Torsional}
flow between parallel plates
-Newtonian
- Steady state
-incompressible fluid
- \(v_{\theta}=z f(r)\)


\section*{Chapter 4: Standard Flows}


VS.


How can we investigate non-Newtonian behavior?

\section*{Chapter 4: Standard Flows for Rheology}


CM4650
Polymer Rheology Michigan Tech


\section*{On to . . . Polymer Rheology . . .}


We now know how to model Newtonian fluid motion, \(\underline{v}(\underline{x}, t), p(\underline{x}, t)\) :
\[
\begin{gathered}
\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \underline{v})=0 \\
\rho\left(\frac{\partial \underline{v}}{\partial t}+\underline{v} \cdot \nabla \underline{v}\right)=-\nabla p-\nabla \cdot \underline{\underline{\tau}}+\rho \underline{g} \\
\underline{=}=-\mu\left(\nabla \underline{v}+(\nabla \underline{v})^{T}\right)
\end{gathered}
\]

Continuity equation

Cauchy momentum equation

Newtonian constitutive equation

\section*{Rheological Behavior of Fluids - Non-Newtonian}

How do we model the motion of Non-Newtonian fluid fluids?
\[
\begin{gathered}
\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \underline{v})=0 \\
\rho\left(\frac{\partial \underline{v}}{\partial t}+\underline{v} \cdot \nabla \underline{v}\right)=-\nabla p-\nabla \cdot \underline{\underline{\tau}}+\rho \underline{g} \quad \text { Continuity equation } \\
\underline{\underline{\tau}}=f(\underline{x}, t) \quad \text { Non-Newtonian constitutive equation Momentum Equation }
\end{gathered}
\]

\section*{Rheological Behavior of Fluids - Non-Newtonian}

How do we model the motion of Non-Newtonian fluid fluids?


\section*{Continuity equation}
\(\rho\left(\frac{\partial \underline{v}}{\partial t}+\underline{v} \cdot \nabla \underline{v}\right)=-\nabla p-\nabla \cdot \underline{\underline{\tau}}+\rho \underline{g}\)
Cauchy Momentum Equation


This is the missing piece

\section*{Chapter 4: Standard Flows for Rheology}

Chapter 4: Standard flows
Chapter 5: Material Functions
Chapter 6: Experimental Data

To get to constitutive equations, we must first quantify how non-Newtonian fluids behave
\(\left.\begin{array}{l}\text { Chapter 7: } \mathrm{GNF} \\ \text { Chapter 8: } \text { GLVE } \\ \text { Chapter 9: Advanced }\end{array}\right\}\) Constitutive equations

What do we observe?
Rheological Behavior of Fluids - Non-Newtonian

\begin{tabular}{l}
\begin{tabular}{l} 
2. Pressure-driven flow in a tube \\
(Poiseuille flow)
\end{tabular} \\
•viscosity is variable \\
\(Q\)
\end{tabular}\(\quad Q=f(\Delta P)\)
© Faith A. Morrison, Michigan Tech \(U\).

\section*{Non-Newtonian Constitutive Equations}
- We have observations that some materials are not like Newtonian fluids.
- How can we be systematic about developing new, unknown models for these materials?

\section*{\(\longrightarrow\) Need measurements}

For Newtonian fluids, measurements were easy:
- shear flow
- one stress, \(\tau_{21}\)

- one material constant, \(\mu\) (viscosity)
\[
\underline{\underline{\tau}}=-\mu\left(\nabla \underline{v}+(\nabla \underline{v})^{T}\right)
\]

\section*{Non-Newtonian Constitutive Equations}
\(\qquad\)
Need measurements
For non-Newtonian fluids, measurements are not easy:
- shear flow (not the only choice)
- Four stresses in shear, \(\tau_{21}, \tau_{11}, \tau_{22}, \tau_{33}\)
- Unknown number of material constants in \(\underline{\underline{\tau}}(\underline{v})\)
- Unknown number of material functions in \(\underline{\underline{\tau}}(\underline{v})\)
\[
\underline{\underline{\tau}}=? ? ?
\]


\section*{Non-Newtonian Constitutive Equations}

Need measurements
For non-Newtonian fluids, measurements are not easy:
- shear flow (not the only choice)
- Four stresses in shear, \(\tau_{21}, \tau_{11}, \tau_{22}, \tau_{33}\)
- Unknown number of material constants in \(\underline{\underline{\tau}}(\underline{v})\)
- Unknown number of material functions in \(\underline{\underline{\tau}}(\underline{v})\)
\[
\underline{\underline{\tau}}=? ? ?
\]


136
© Faith A. Morrison, Michigan Tech U.

\section*{Non-Newtonian Constitutive Equations}

\section*{Need measurements}

For non-Newtonian fluids, measurements are not easy:

We know we need to make measurements to know more,
- shear flow (not the only choice)
- Four stresses in shear, \(\tau_{21}, \tau_{11}, \tau_{22}, \tau_{33}\)
- Unknown number of material constants in \(\underline{\underline{\tau}}(\underline{v})\)
- Unknown number of material functions in \(\underline{\underline{\tau}}(\underline{v})\)
\[
\underline{\underline{\tau}}=? ? ?
\]

But, because we do not know the functional form of \(\underline{\underline{\tau}}(\underline{v})\), we don't know what we need to measure to know more!

\section*{Non-Newtonian Constitutive Equations}

\section*{What should we do?}

\section*{Non-Newtonian Constitutive Equations}

\section*{What should we do?}
1. Pick a small number of simple flows Chapter 4: Standard flows
- Standardize the flows
- Make them easy to calculate with
- Make them easy to produce in the lab

\section*{Non-Newtonian Constitutive Equations}

\section*{What should we do?}
1. Pick a small number of simple flows
- Standardize the flows
- Make them easy to calculate with
- Make them easy to produce in the lab
2. Make calculations
3. Make measurements

Chapter 5: Material Functions Chapter 6: Experimental Data

\section*{Non-Newtonian Constitutive Equations}

\section*{What should we do?}
1. Pick a small number of simple flows Chapter 4: Standard flows
- Standardize the flows
- Make them easy to calculate with
- Make them easy to produce in the lab
2. Make calculations
3. Make measurements


\section*{Tactic: Divide the Problem in half}


Collect models and their report

Standard flows - choose a velocity field (not an apparatus or a procedure)
-For model predictions, calculations are straightforward -For experiments, design can be optimized for accuracy and fluid variety

Material functions - choose a common vocabulary of stress and kinematics to report results
- Make it easier to compare model/experiment
-Record an "inventory" of fluid behavior (expertise)


How can we investigate non-Newtonian behavior?


\section*{Simple Shear Flow}



\section*{Experimental Shear Geometries}


\section*{Standard Nomenclature for Shear Flow}


\section*{Why is shear a standard flow?}
-simple velocity field
-represents all sliding flows
-simple stress tensor


149
© Faith A. Morrison, Michigan Tech U.

How do particles move apart in shear flow?

Consider two particles in the same \(x_{1}-x_{2}\) plane, initially along the \(x_{2}\) axis.

\[
\begin{aligned}
& \begin{array}{l}
\text { How do particles } \\
\text { move apart in } \\
\text { shear flow? }
\end{array} \\
& \hline \underline{v}=\left(\begin{array}{c}
\dot{\gamma}_{0} x_{2} \\
0 \\
0
\end{array}\right)_{123} \quad \begin{array}{l}
\text { Each particle has a different } \\
\text { velocity depending on its } x_{2} \\
\text { position: } \quad v_{1}=\dot{\gamma}_{0} x_{2}
\end{array} \\
& \begin{array}{l}
\text { Consider two } \\
\text { particles in the }
\end{array} \\
& P_{1}: \quad v_{1}=\dot{\gamma}_{0} l_{1} \\
& P_{2}: v_{1}=\dot{\gamma}_{0} l_{2}
\end{aligned}
\] same \(x_{1}-x_{2}\) plane, initially along the \(x_{2}\) axis ( \(x_{1}=0\) ).

The initial \(x_{1}\) position of each particle is \(x_{1}=0\). After \(t\) seconds, the two particles are at the following positions:
\[
\begin{gathered}
P_{1}(t): \quad x_{1}=\dot{\gamma}_{0} l_{1} t \\
P_{2}(t): \quad x_{1}=\underbrace{\dot{\gamma}_{0} l_{2} t} \\
\text { location }=\text { initial }+\left(\frac{\text { length }}{\text { time }}\right)(\text { time })
\end{gathered}
\]

\section*{What is the separation of the} particles after time t?
\[
\begin{aligned}
l^{2} & =l_{0}^{2}+\left[\dot{\gamma}_{0} t\left(l_{2}-l_{1}\right)\right]^{2} \\
& =l_{0}^{2}+\dot{\gamma}_{0}^{2} t^{2} l_{0}^{2} \\
& =l_{0}^{2}\left(1+\dot{\gamma}_{0}^{2} t^{2}\right) \\
l & =l_{0} \sqrt{1+\dot{\gamma}_{0}^{2} t^{2}} \approx l_{0} \dot{\gamma}_{0} t
\end{aligned}
\]

negligible as \(\quad t \rightarrow \infty\)
\[
l \approx l_{0} \dot{\gamma}_{0} t
\]

In shear the distance between points is directly proportional to time

\section*{Uniaxial Elongational Flow}

\[
\underline{v} \equiv\left(\begin{array}{c}
-\frac{\dot{\varepsilon}(t)}{2} x_{1} \\
-\frac{\dot{\varepsilon}(t)}{2} x_{2} \\
\dot{\varepsilon}(t) x_{3}
\end{array}\right)_{123} \dot{\varepsilon}(t)>0
\]

\section*{Uniaxial Elongational Flow}

\[
\underline{v} \equiv\left(\begin{array}{c}
-\frac{\dot{\varepsilon}(t)}{2} x_{1} \\
-\frac{\dot{\varepsilon}(t)}{2} x_{2} \\
\dot{\varepsilon}(t) x_{3}
\end{array}\right)_{123} \dot{\varepsilon}(t)>0
\]


Elongational flow occurs when there is stretching - die exit, flow through contractions


\section*{Experimental Elongational Geometries}


\section*{Sentmanat Extension Rheometer (2005)}
-Originally developed for rubbers, good for melts
-Measures elongational viscosity, startup, other material functions
-Two counter-rotating drums
-Easy to load; reproducible


www.xpansioninstruments.com

\section*{Why is elongation a standard flow?}
-simple velocity field
-represents all stretching flows
- simple stress tensor


\section*{How do particles}
move apart in
elongational flow?

Consider two particles in the same \(x_{1}-x_{3}\) plane, initially along the \(x_{3}\) axis.


How do particles move apart in elongational flow?
Consider two particles in the same \(x_{1}-x_{3}\) plane, initially along the \(x_{3}\) axis.
\[
x_{1}=0
\]
\[
x_{2}=0
\]
\[
x_{3} \text { varies }
\]
\[
\underline{v}=\left(\begin{array}{c}
-\frac{\dot{\varepsilon}_{0}}{2} x_{1} \\
-\frac{\dot{\varepsilon}_{0}}{2} x_{2} \\
\dot{\varepsilon}_{0} x_{3}
\end{array}\right)_{123}=\left(\begin{array}{c}
0 \\
0 \\
\dot{\varepsilon}_{0} x_{3}
\end{array}\right)_{123}
\]
\[
v_{3}=\frac{d x_{3}}{d t}=\dot{\varepsilon}_{0} x_{3}
\]
\[
\frac{d x_{3}}{x_{3}}=\dot{\varepsilon}_{0} d t
\]
\[
\ln x_{3}=\dot{\varepsilon}_{0} t+C_{1}
\]
\[
x_{3}=x_{3}(0) e^{\dot{\varepsilon}_{0} t}
\]
\[
l=l_{0} e^{\dot{\varepsilon}_{0} t}
\]
Particles move apart exponentially fast.

A second type of shear-free flow: Biaxial Stretching


\(\underline{v} \equiv\left(\begin{array}{c}-\frac{\dot{\varepsilon}(t)}{2} x_{1} \\ -\frac{\dot{\varepsilon}(t)}{2} x_{2} \\ \dot{\varepsilon}(t) x_{3}\end{array}\right)_{123} \dot{\varepsilon}(t)<0\)

© Faith A. Morrison, Michigan Tech U.

\section*{How do uniaxial and biaxial deformations differ?}

Consider a uniaxial flow in which a particle is doubled in length in the flow direction.


How do uniaxial and biaxial deformations differ?

Consider a biaxial flow in which a particle is doubled in length in the flow direction.


A third type of shear-free flow: Planar Elongational Flow
\[
\underline{v} \equiv\left(\begin{array}{c}
-\dot{\varepsilon}(t) x_{1} \\
0 \\
\dot{\varepsilon}(t) x_{3}
\end{array}\right)_{123} \dot{\varepsilon}(t)>0
\]


All three shear-free flows can be written together as:
\[
\underline{v}=\left(\begin{array}{c}
-\frac{1}{2} \dot{\varepsilon}(t)(1+b) x_{1} \\
-\frac{1}{2} \dot{\varepsilon}(t)(1-b) x_{2} \\
\dot{\varepsilon}(t) x_{3}
\end{array}\right)_{123}
\]

Elongational flow: \(\mathrm{b}=0, \dot{\varepsilon}(t)>0\)
Biaxial stretching: \(\mathrm{b}=0, \dot{\varepsilon}(t)<0\)
Planar elongation: \(\mathrm{b}=1, \quad \dot{\varepsilon}(t)>0\)

\section*{Why have we chosen these flows?}
\[
\begin{aligned}
& \text { ANSWER: } \begin{array}{l}
\text { Because these simple flows have } \\
\text { symmetry. } \\
\text { And symmetry allows us to draw } \\
\text { conclusions about the stress tensor } \\
\text { that is associated with these flows } \\
\text { for any fluid subjected to that flow. }
\end{array} . \begin{array}{l}
\text { for }
\end{array} \text {. }{ }^{\text {and }} \text {. }
\end{aligned}
\]

\section*{In general:}
\(\underline{\underline{\tau}}=\left(\begin{array}{lll}\tau_{11} & \tau_{12} & \tau_{13} \\ \tau_{21} & \tau_{22} & \tau_{23} \\ \tau_{31} & \tau_{32} & \tau_{33}\end{array}\right)_{123}\)

But the stress tensor is symmetric - leaving 6 independent stress components.
Can we choose a flow to use in which there are fewer than 6 independent stress components?
Yes we can - symmetric flows

How does the stress tensor simplify for shear (and later, elongational) flow?


What would the velocity function be for a
Newtonian fluid in this coordinate system?

What would the velocity function be for a Newtonian fluid in this coordinate system?
\(\underline{v}=\left(\begin{array}{l}v_{1} \\ 0 \\ 0\end{array}\right)_{123}\)


Vectors are independent of coordinate system, but in general the coefficients will be different when the same vector is written in two different coordinate systems:
\[
\underline{v}=\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)_{123}=\left(\begin{array}{l}
\bar{v}_{1} \\
\bar{v}_{2} \\
\bar{v}_{3}
\end{array}\right)_{\overline{1} \overline{2} \overline{3}}
\]

For shear flow and the two particular coordinate systems we have just examined, however:
\[
\underline{v}=\left(\begin{array}{c}
\frac{V}{2 H} x_{2} \\
0 \\
0
\end{array}\right)_{123}=\left(\begin{array}{c}
\frac{V}{2 H} \bar{x}_{2} \\
0 \\
0
\end{array}\right)_{\overline{1} \overline{2} \overline{3}}
\]


If we plug in the same number in for \(x_{2}\) and \(\bar{x}_{2}\), we will NOT be asking about the same point in space, but we WILL get the same exact velocity vector.

Since stress is calculated from the velocity field, we will get the same exact stress components when we calculate them from either vector representation.
\[
\begin{aligned}
v_{n} & =\bar{v}_{n} \\
\tau_{p k} & =\bar{\tau}_{p k}
\end{aligned}
\]

> This is an unusual circumstance only true for the particular coordinate systems chosen.

172

What do we learn if we formally transform \(\underline{V}\) from one coordinate system to the other?

What do we learn if we formally transform \(\underline{\underline{\tau}}\) from one coordinate system to the other?
\[
\begin{gathered}
\hat{e}_{1}=-\bar{e}_{1} \\
\hat{e}_{2}=-\bar{e}_{2} \\
\hat{e}_{3}=\bar{e}_{3}
\end{gathered}
\]

What do we learn if we formally transform \(\underline{V}\) from one coordinate system to the other?
\[
\underline{\underline{\tau}}=\tau_{m s} \hat{e}_{m} \hat{e}_{s}=\bar{\tau}_{m s} \bar{e}_{m} \bar{e}_{s}
\]
(now, substitute from previous
slide and simplify)

\section*{You try.}

\section*{Conclusion:}

Because of symmetry, there are only 5 nonzero components of the extra stress tensor in shear flow.

SHEAR:
\[
\underset{=}{\tau}=\left(\begin{array}{ccc}
\tau_{11} & \tau_{12} & 0 \\
\tau_{21} & \tau_{22} & 0 \\
0 & 0 & \tau_{33}
\end{array}\right)_{123}
\]

This greatly simplifies the experimentalists tasks as only four stress components must be measured instead of 6 (recall \(\tau_{21}=\tau_{12}\) ).

\section*{Summary:}

We have found a coordinate system (the shear coordinate system) in which there are only 5 non-zero coefficients of the stress tensor. In addition, \(\tau_{21}=\tau_{12}\).

This leaves only four stress components to be measured for this flow, expressed in this coordinate system.

\section*{How does the stress tensor simplify for} elongational flow?



There is \(180^{\circ}\) of symmetry around all three coordinate axes.

ELONGATION:
\[
\stackrel{\tau}{=}=\left(\begin{array}{ccc}
\tau_{11} & 0 & 0 \\
0 & \tau_{22} & 0 \\
0 & 0 & \tau_{33}
\end{array}\right)_{123}
\]

This greatly simplifies the experimentalists tasks as only three stress components must be measured instead of 6 .

\section*{Standard Flows Summary}

Choose velocity field: Symmetry alone implies:
\[
\left.\begin{array}{cl}
\underline{v} \equiv\left(\begin{array}{c}
\dot{\zeta}(t) x_{2} \\
0 \\
0
\end{array}\right)_{123} & \text { (no constitutive equation needed yet) } \\
\underline{v}=\left(\begin{array}{ccc}
-\frac{1}{2} \dot{\varepsilon}(t)(1+b) x_{1} \\
-\frac{1}{2} \dot{\varepsilon}(t)(1-b) x_{2} \\
\dot{\varepsilon}(t) x_{3}
\end{array}\right)_{123} & \stackrel{\tau}{=}=\left(\begin{array}{ccc}
\tau_{11} & \tau_{22} & 0 \\
0 & 0 & \tau_{33}
\end{array}\right)_{123} \\
0 & \tau_{22} \\
0 & 0 \\
0 & \tau_{33}
\end{array}\right)_{123} .
\]

By choosing these symmetric flows, we have reduced the number of stress components that we need to measure.

\section*{Tactic: Divide the Problem in half}


Collect models and their report

\section*{Next, build and assume this}


One final comment on measuring stresses. . .

What is measured is the total stress, \(\underline{\underline{\Pi}}\) :
\[
\underline{\underline{\Pi}}=\left(\begin{array}{ccc}
p+\tau_{11} & \tau_{12} & \tau_{13} \\
\tau_{21} & p+\tau_{22} & \tau_{23} \\
\tau_{31} & \tau_{32} & p+\tau_{33}
\end{array}\right)_{123}
\]

For the normal stresses we are faced with the difficulty of separating \(p\) from \(\tau_{i i}\).

Compressible fluids: Incompressible fluids:
\[
p=\frac{n R T}{V} \left\lvert\, \begin{aligned}
& \text { Get } p \text { from } \\
& \text { measurements of } \\
& T \text { and } V .
\end{aligned}\right.
\]
\[
?
\]

Density does not vary (much) with pressure for polymeric fluids.


\section*{For incompressible fluids it is not possible to separate \(\boldsymbol{p}\) from \(\tau_{i i}\).}

Luckily, this is not a problem since we only need \(\nabla \cdot \underline{\underline{\Pi}}=\nabla p+\nabla \cdot \underline{\underline{\tau}}\)

Equation of motion
\begin{tabular}{rl|l}
\(\frac{\partial \underline{v}}{\partial t}+\underline{v} \cdot \nabla \underline{v}\) & \(=-\nabla \underline{\underline{\Pi}}+\rho \underline{g}\) \\
& \(=-\nabla P-\nabla \cdot \underline{\underline{\tau}}+\rho \underline{g}\) & \begin{tabular}{l} 
We do not \\
need \(\tau_{i i}\) \\
directly to \\
solve for \\
velocities
\end{tabular}
\end{tabular}

Solution? Normal stress differences

\section*{Normal Stress Differences}

First normal stress
difference
\[
N_{1} \equiv \Pi_{11}-\Pi_{22}=\tau_{11}-\tau_{22}
\]
\(\begin{aligned} & \text { Second normal stress } \\ & \text { difference }\end{aligned} N_{2} \equiv \Pi_{22}-\Pi_{33}=\tau_{22}-\tau_{33}\)

In shear flow, three stress quantities are measured

In elongational flow, two stress quantities are measured
\[
\tau_{21}, N_{1}, N_{2}
\]
\[
\tau_{33}-\tau_{11}, \tau_{22}-\tau_{11}
\]

\section*{Normal Stress Differences}

First normal stress
difference
\(N_{1} \equiv \Pi_{11}-\Pi_{22}=\tau_{11}-\tau_{22}\)
Second normal stress
difference
\[
N_{2} \equiv \Pi_{22}-\Pi_{33}=\tau_{22}-\tau_{33}
\]

In shear flow, three stress quantities are measured


First normal stress effects: rod climbing
\[
\tau_{11}-\tau_{22}<0
\]

Extra tension in the 1-direction pulls azimuthally and upward (see DPL p65).


Newtonian - glycerin


Viscoelastic - solution of polyacrylamide in glycerin

Bird, et al., Dynamics of Polymeric Fluids, vol. 1,

Second normal stress effects: inclined open-

\[
\tau_{22}-\tau_{33}>0
\]

Extra tension in the 2-direction pulls down the free surface where \(d v_{1} / d x_{2}\) is greatest (see DPL p65).


Viscoelastic - 1\% soln of polyethylene oxide in water
\[
N_{2} \simeq-N_{1} / 10
\]

Example: Can the equation of motion predict rod climbing for typical values of \(N_{1}, N_{2}\) ?

cross-section A:

www.chem.mtu.edu/~fmorriso/cm4650/rod_climb.pdf

\section*{What's next?}

Shear
\[
\underline{v} \equiv\left(\begin{array}{c}
\stackrel{\zeta}{\zeta}(t) x_{2} \\
0 \\
0
\end{array}\right)_{123}
\]

Even with just these 2 (or 4) standard flows, we can still generate an infinite number of flows by varying \(\dot{\zeta}(t)\) and \(\dot{\varepsilon}(t)\).

Shear-free (elongational, extensional)
\[
\underline{v}=\left(\begin{array}{c}
-\frac{1}{2} \check{\varepsilon}(t)(1+b) x_{1} \\
-\frac{1}{2} \dot{\varepsilon}(t)(1-b) x_{2} \\
\dot{\varepsilon}(t) x_{3}
\end{array}\right)_{123}
\]

Elongational flow: \(\mathrm{b}=0, \dot{\varepsilon}(t)>0\)
Biaxial stretching: \(\mathrm{b}=0, \quad \dot{\varepsilon}(t)<0\)
Planar elongation: \(\mathrm{b}=1, \quad \dot{\varepsilon}(t)>0\)

We seek to
quantify the behavior of nonNewtonian fluids

\section*{Procedure:}
1. Choose a flow type (shear or a type of elongation).
2. Specify \(\dot{\zeta}(t)\) or \(\dot{\varepsilon}(t)\) as appropriate.
3. Impose the flow on a fluid of interest.
4. Measure stresses.
\[
\begin{array}{|rl|}
\hline \text { shear } & \tau_{21}, N_{1}, N_{2} \\
\text { elongation } & \tau_{33}-\tau_{11}, \tau_{22}-\tau_{11}
\end{array}
\]
5. Report stresses in terms of material functions.
\begin{tabular}{|l|}
\hline 6a. Compare measured \\
material functions with \\
predictions of these material \\
functions (from proposed \\
constitutive equations). \\
7a. Choose the most \\
appropriate constitutive \\
equation for use in numerical \\
modeling.
\end{tabular}

6b. Compare measured material functions with those measured on other materials.
7a. Draw conclusions on the likely properties of the unknown material based on the comparison.

\section*{Chapter 5: Material Functions}

CM4650
Polymer Rheology
Michigan Tech


\section*{Role of Material Functions in Rheological Analysis}

QUALITY CONTROL



\section*{Material function definitions}
1. Choice of flow (shear or elongation)
\(\underline{v} \equiv\left(\begin{array}{c}\dot{\zeta}(t) x_{2} \\ 0 \\ 0\end{array}\right)_{123} \underline{v}=\left(\begin{array}{c}-\frac{1}{2} \dot{\varepsilon}(t)(1+b) x_{1} \\ -\frac{1}{2} \dot{\varepsilon}(t)(1-b) x_{2} \\ \dot{\varepsilon}(t) x_{3}\end{array}\right)_{123} \quad \begin{aligned} & \text { Elongational flow: } \mathrm{b}=0, \quad \dot{\varepsilon}(t)>0 \\ & \text { Biaxial stretching: } \mathrm{b}=0, \quad \dot{\varepsilon}(t)<0 \\ & \text { Planar elongation: } \mathrm{b}=1, \quad \dot{\varepsilon}(t)>0\end{aligned}\)
2. Choice of details of \(\dot{\mathcal{S}}(t)\) or \(\dot{\varepsilon}(t)\).
3. Material functions definitions: will be based on
\(\tau_{21}, N_{1}, N_{2}\) in shear or \(\tau_{33}-\tau_{11}, \tau_{22}-\tau_{11}\)
in elongational flows.

\section*{(I call these my "recipe cards")}

Steady Shear Flow Material Functions
Kinematics:
\[
\underline{v} \equiv\left(\begin{array}{c}
\dot{\zeta}(t) x_{2} \\
0 \\
0
\end{array}\right)_{123} \quad \dot{\zeta}(t)=\dot{\gamma}_{0}=\text { constant }
\]

Material Functions:


How do we predict material functions?
ANSWER: From the constitutive equation.
\[
\underline{\underline{\tau}}=f(\underline{v})
\]

What does the Newtonian Fluid model predict in steady shearing?


What does the Newtonian Fluid model predict in steady shearing?


\section*{You try.}

What do we measure for these material functions?
(for polymer solutions, for example)


\section*{Steady shear viscosity and first} normal stress coefficient
- \(813 \mathrm{~kg} / \mathrm{mol}\)
\(\Delta 517 \mathrm{~kg} / \mathrm{mol}\)
- \(350 \mathrm{~kg} / \mathrm{mol}\)
- \(200 \mathrm{~kg} / \mathrm{mol}\)

Figure 6.2, p. 171 Menzes and Graessley conc. PB solution; \(c=0.0676 \mathrm{~g} / \mathrm{cm}^{3}\)


\section*{Steady shear viscosity for linear and branched PDMS}


Figure 6.3, p. 172 Piau et al., linear and branched PDMS

What have material functions taught us so far?
-Newtonian constitutive equation is inadequate
1. Predicts constant shear viscosity (not always true)
2. Predicts no shear normal stresses (these stresses are generated for many fluids)
-Behavior depends on the material (chemical structure, molecular weight, concentration)

Can we fix the Newtonian Constitutive Equation?


Let's replace \(\mu\) with a function of shear rate because we want to predict a
 non-constant viscosity in shear

What does this model predict for steady shear viscosity?
\[
\underline{\underline{\tau}}=-M\left(\dot{\gamma}_{0}\right)\left[\nabla \underline{v}+(\nabla \underline{v})^{T}\right]
\]

What does this model predict for steady shear viscosity?
\[
\underline{\underline{\tau}}=-M\left(\dot{\gamma}_{0}\right)\left[\nabla \underline{v}+(\nabla \underline{v})^{T}\right]
\]

\section*{You try.}

What does this model predict for steady shear viscosity?
\[
\underline{\underline{\tau}}=-M\left(\dot{\gamma}_{0}\right)\left[\nabla \underline{v}+(\nabla \underline{v})^{T}\right]
\]

Answer:
\[
\eta=M\left(\dot{\gamma}_{0}\right)
\]

\section*{Review}

If we choose: \(M\left(\dot{\gamma}_{0}\right)=\left\{\begin{array}{cc}M_{0} & \dot{\gamma}_{0}<\dot{\gamma}_{c} \\ m \gamma_{0}^{n-1} & \dot{\gamma}_{0} \geq \dot{\gamma}_{c}\end{array}\right.\)


Problem solved!

But what about the normal stresses?
\[
\underline{\underline{\tau}}=-M\left(\dot{\gamma}_{0}\right)\left[\nabla \underline{v}+(\nabla \underline{v})^{T}\right]
\]
\(\nabla \underline{\boldsymbol{v}}=\left(\begin{array}{ccc}0 & 0 & 0 \\ \dot{\gamma}_{0} & 0 & 0 \\ 0 & 0 & 0\end{array}\right)_{123} \quad \underline{\underline{\gamma}}=\left(\begin{array}{ccc}0 & \dot{\gamma}_{0} & 0 \\ \dot{\gamma}_{0} & 0 & 0 \\ 0 & 0 & 0\end{array}\right)_{123} \quad \begin{aligned} & \text { It appears that } \underline{\underline{\tau}} \\ & \text { should not be } \\ & \text { simply proportional } \\ & \text { to } \underline{\underline{\gamma}}\end{aligned}\)

Try something else . . .
\[
\begin{aligned}
& \underline{\underline{\tau}}=-\mu \underline{\underline{\gamma}}+\underline{\underline{I}} f(v) \\
& \underline{\underline{\tau}}=f(\underline{v}) \nabla v \cdot(\nabla v)^{T} \\
& \underline{\underline{\tau}}=A\left[\nabla v \cdot(\nabla v)^{T}\right]+B \nabla v+C(\nabla v)^{T}
\end{aligned}
\]

\section*{But which ones?}

To sort out how to fix the Newtonian equation, we need more observations (to give us ideas).

Let's try another material function that's not a steady flow (but stick to shear).

\section*{Start-up of Steady Shear Flow Material Functions}

Kinematics:
\[
\underline{v} \equiv\left(\begin{array}{c}
\dot{\zeta}(t) x_{2} \\
0 \\
0
\end{array}\right)_{123} \quad \dot{\zeta}(t)=\left\{\begin{array}{cc}
0 & t<0 \\
\dot{\gamma}_{0} & t \geq 0
\end{array}\right.
\]

Material Functions:

© Faith A. Morrison, Michigan Tech U.

What does the Newtonian Fluid model predict in start-up of steady shearing?


Again, since we know \(\underline{\boldsymbol{v}}\), we can just
plug it in and calculate the stresses.

What does the Newtonian Fluid model predict in startup of steady shearing?
\[
\tau=-\mu \dot{\gamma}=-\mu\left[\nabla \underline{\underline{v}}+(\nabla \underline{v})^{T}\right]
\]

\section*{You try.}

\section*{Material functions predicted for start-up of steady shearing of a Newtonian fluid}
\[
\begin{aligned}
& \eta^{+}(t)= \begin{cases}0 & t<0 \\
\mu & t \geq 0\end{cases} \\
& \Psi_{1}^{+} \equiv \frac{-\left(\tau_{11}-\tau_{22}\right)}{\dot{\gamma}_{0}^{2}}=0 \\
& \Psi_{2}^{+} \equiv \frac{-\left(\tau_{22}-\tau_{33}\right)}{\dot{\gamma}_{0}^{2}}=0
\end{aligned}
\]



Do these predictions match observations?


\section*{What about other non-steady flows?}

\section*{Cessation of Steady Shear Flow Material Functions}

Kinematics:
\[
\underline{v} \equiv\left(\begin{array}{c}
\dot{\zeta}(t) x_{2} \\
0 \\
0
\end{array}\right)_{123} \quad \dot{\zeta}(t)=\left\{\begin{array}{cc}
\dot{\gamma}_{0} & t<0 \\
0 & t \geq 0
\end{array}\right.
\]

Material Functions:

© Faith A. Morrison, Michigan Tech U.

\section*{Review}


What does the model we guessed at predict for start-up and cessation of shear?
\[
\begin{aligned}
& \underline{\tau}=-M\left(\dot{\gamma}_{0}\right)\left[\nabla \underline{v}+(\nabla \underline{v})^{T}\right] \\
& M\left(\dot{\gamma}_{0}\right)=\left\{\begin{array}{cc}
M_{0} & \dot{\gamma}_{0}<\dot{\gamma}_{c} \\
m \dot{\gamma}_{0}^{n-1} & \dot{\gamma}_{0} \geq \dot{\gamma}_{c}
\end{array}\right.
\end{aligned}
\]

\section*{Review}

What does the model we guessed at predict for start-up and cessation of shear?
\[
\underline{\underline{\tau}}=-M\left(\dot{\gamma}_{0}\right)\left[\nabla \underline{v}+(\nabla \underline{v})^{T}\right]
\]

\section*{You try.}
\[
M\left(\dot{\gamma}_{0}\right)=\left\{\begin{array}{cc}
M_{0} & \dot{\gamma}_{0}<\dot{\gamma}_{c} \\
m \dot{\gamma}_{0}^{n-1} & \dot{\gamma}_{0} \geq \dot{\gamma}_{c}
\end{array}\right.
\]

\[
\begin{gathered}
\tau=-M\left(\gamma_{0}\left[\nabla \underline{\underline{v}}+(\nabla \underline{v})^{T}\right]\right. \\
M\left(\gamma_{0}\right)=\left\{\begin{array}{cc}
M_{0} & \dot{\gamma}_{0}<\dot{\gamma}_{c} \\
m \gamma_{0}^{n-1} & \dot{\gamma}_{0} \geq \gamma_{c}
\end{array}\right.
\end{gathered}
\]

\section*{Observations}
-The model predicts an instantaneous stress response, and this is not what is observed for polymers
-The predicted unsteady material functions depend on the shear rate, which is observed for polymers
\[
\eta^{+}=\eta^{+}\left(t, \dot{\gamma}_{0}\right) \longleftrightarrow \quad \text { Progress here }
\]
- No normal stresses are predicted
\[
\underline{\underline{\tau}}=-M\left(\dot{v}_{0}\right)\left[\nabla v+(\nabla v)^{r}\right]
\]

\section*{Observations}
\[
M\left(\dot{\gamma}_{0}\right)=\left\{\begin{array}{cc}
M_{0} & \dot{\gamma}_{0}<\dot{\gamma}_{c} \\
m \gamma_{0}^{n-1} & \dot{\gamma}_{0} \geq \dot{\gamma}_{\mathrm{c}}
\end{array}\right.
\]
-The model predicts an instantaneous stress response, and this is not what is observed for polymers
-The predicted unsteady material functions depend on the shear rate, which is observed for polymers
\[
\eta^{+}=\eta^{+}\left(t, \dot{\gamma}_{0}\right) \longleftrightarrow \quad \text { Progress here }
\]
\(\bullet\) No normal stresses are predicted \(\longleftarrow\) Related to nonlinearities

To proceed to better-designed constitutive equations, we need to know more about material behavior, i.e. we need more material functions to predict, and we need measurements of these material functions.
-More non-steady material functions (material functions that tell us about memory)
-Material functions that tell us about nonlinearity (strain)

\section*{Summary of shear rate kinematics (part 1)}


The next three families of material functions incorporate the concept of strain.```

