

Learning Rheology (bibliography)
Descriptive Rheology
Barnes, H., J. Hutton, and K. Walters, <i>An Introduction to Rheology</i> (Elsevier, 1989)
Quantitative Rheology
Morrison, Faith, <i>Understanding Rheology</i> (Oxford, 2001) Bird, R., R. Armstrong, and O. Hassager, <i>Dynamics of Polymeric Liquids,</i> <i>Volume 1</i> (Wiley, 1987)
Industrial Rheology
Dealy, John and Kurt Wissbrun, <i>Melt Rheology and Its Role in Plastics Processing</i> (Van Nostrand Reinhold, 1990)
Polymer Behavior
Larson, Ron, <i>The Structure and Rheology of Complex Fluids</i> (Oxford, 1999) Ferry, John, <i>Viscoelastic Properties of Polymers</i> (Wiley, 1980)
Suspension Behavior
Mewis, Jan and Norm Wagner, <i>Colloidal Suspension</i> (Cambridge, 2012) Macosko, Chris, <i>Rheology: Principles, Measurements, and Applications</i> (VCH Publishers, 1994)
8
© Faith A. Morrison, Michigan Tech U.

Mathematics Review	Polymer Rheology
Trial calculation: dot product of two vectors	
$\underline{a} \cdot \underline{b} = (a_1 \hat{e}_1 + a_2 \hat{e}_2 + a_3 \hat{e}_3) \cdot (b_1 \hat{e}_1 + b_2)$	$_{2}\hat{e}_{2}+b_{3}\hat{e}_{3}$
$= a_1 \hat{e}_1 \cdot (b_1 \hat{e}_1 + b_2 \hat{e}_2 + b_3 \hat{e}_3) +$	
$a_2 \hat{e}_2 \cdot (b_1 \hat{e}_1 + b_2 \hat{e}_2 + b_3 \hat{e}_3) +$	
$a_3\hat{e}_3\cdot (b_1\hat{e}_1+b_2\hat{e}_2+b_3\hat{e}_3)$	
$= a_1 \hat{e}_1 \cdot b_1 \hat{e}_1 + a_1 \hat{e}_1 \cdot b_2 \hat{e}_2 + a_1 \hat{e}_1 \cdot b_3 \hat{e}_3$	+
$a_2\hat{e}_2\cdot b_1\hat{e}_1 + a_2\hat{e}_2\cdot b_2\hat{e}_2 + a_2\hat{e}_2\cdot$	$b_3 \hat{e}_3 +$
$a_3\hat{e}_3\cdot b_1\hat{e}_1 + a_3\hat{e}_3\cdot b_2\hat{e}_2 + a_3\hat{e}_3$	$\hat{b}_3 \cdot b_3 \hat{e}_3$
If we choose the basis to be orthonormal - mute and of unit length - then we can simplify.	ually perpendicular
	31
	© Faith A. Morrison, Michigan Tech U.

Mathematics Review	Polymer Rheology
If we choose the basis to be orthonormal - m and of unit length, then we can simplify.	nutually perpendicular
$\hat{e}_1 \cdot \hat{e}_1 = 1$ $\hat{e}_1 \cdot \hat{e}_2 = 0$ $\hat{e}_1 \cdot \hat{e}_3 = 0$	
$\underline{a} \cdot \underline{b} = a_1 \hat{e}_1 \cdot b_1 \hat{e}_1 + a_1 \hat{e}_1 \cdot b_2 \hat{e}_2 + a_1 \hat{e}_1 \\ a_2 \hat{e}_2 \cdot b_1 \hat{e}_1 + a_2 \hat{e}_2 \cdot b_2 \hat{e}_2 + a_3 \hat{e}_3 \cdot b_1 \hat{e}_1 + a_3 \hat{e}_3 \cdot b_2 \hat{e}_2 \\ = a_1 b_1 + a_2 b_2 + a_3 b_3$	$\hat{e}_1 \cdot b_3 \hat{e}_3 + a_2 \hat{e}_2 \cdot b_3 \hat{e}_3 + a_2 \hat{e}_3 \cdot b_3 \hat{e}_3 + a_3 \hat{e}_3 \cdot b_3 \hat{e}_3$
We can generalize this operation with a techn	ique called Einstein notation.
	32 © Faith A. Morrison, Michigan Tech U.

Mathematics Review	Polymer Rheology
3. Tensor – (continued)	
More Definitions	
Identity Tensor	
$\underline{\underline{I}} = \hat{e}_i \hat{e}_i = \hat{e}_1 \hat{e}_1 + \hat{e}_2 \hat{e}_2 + \hat{e}_3 \hat{e}_3$ $= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}_{123}$	
$\underline{\underline{A}} \cdot \underline{\underline{I}} = A_{ip} \hat{e}_i \hat{e}_p \cdot \hat{e}_k \hat{e}_k$ $= A_{ip} \hat{e}_i \delta_{pk} \hat{e}_k$ $= A_{ik} \hat{e}_i \hat{e}_k$	
$=\underline{\underline{A}}$	48
	© Faith A. Morrison, Michigan Tech

Mathematics Review	Polymer Rheology
3. Tensor – (continued) More Definitions	
Tensor Transpose	
$\underline{\underline{M}}^{T} = (\underline{M}_{ik} e_{i} e_{k})^{T} = \underline{M}_{ik} e_{k} e_{i}$	Exchange the coefficients across the diagonal
CAUTION:	
$(\underline{\underline{A}} \cdot \underline{\underline{C}})^T = (A_{ik} \hat{e}_i \hat{e}_k \cdot C_{pj} \hat{e}_p \hat{e}_j)^T =$	$= \left(A_{ik} C_{pj} \hat{e}_i \hat{e}_j \delta_{kp} \right)^T$
$= \left(A_{ip} C_{pj} \hat{e}_i \hat{e}_j \right)^T$	
$= A_{ip}C_{pj} e_j e_i$	I recommend you obyout
It is not equal to: $(\underline{\underline{A}} \cdot \underline{\underline{C}})^T = (A_{ip}C_{pj})^T$	$\hat{e}_i \hat{e}_j$ $\hat{e}_i \hat{e}_j$
$\neq A_{pi}C_{fi}$	rather than on the coefficients.
	50
	© Faith A. Morrison, Michigan Tech U.

Mathematics R	eview	Polymer Rheology
3. Tensor	- (continued) More Definitions	
	Symmetric Tensor e.g.	
	$\underline{\underline{M}} = \underline{\underline{M}}^{T} \\ \overline{\underline{M}}_{ik} = \overline{\underline{M}}_{ki}$	$ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{pmatrix}_{123} $
	Antisymmetric Tensor e.g. $\underline{\underline{M}} = -\underline{\underline{M}}^{T}$ $\overline{\underline{M}}_{ik} = -\overline{\underline{M}}_{ki}$	$ \begin{pmatrix} 0 & -2 & -3 \\ 2 & 0 & -5 \\ 3 & 5 & 0 \end{pmatrix}_{123} $
		51 © Faith A. Morrison, Michigan Tech U.

Mathematics Re	eview			Polymer Rheology
3. Tensor -	- (continued)	More Definitions		
	Scalars, be tenso system).	vectors, and tensors m rs (entities that exist inc They are tensors of di	ay all be o dependen fferent oro	considered to t of coordinate ders, however.
	order = c	legree of complexity		
	scalars	0 th -order tensors	30	
	vectors	1 st -order tensors	31	Number of coefficients
	tensors	2 nd -order tensors	32	needed to
	higher- order tensors	3 rd -order tensors	33	tensor in 3D space
			© Faith	52 A. Morrison, Michigan Tech U.

Mathematics R	leview		Polymer Rheology
3. Tensor	– (continued)	Nore Definit	ions
	Tensor Invarian	ts	
	Scalars than numbers the	at are assoc hat are inde	ciated with tensors; these are pendent of coordinate system.
	vectors:	v = v	The magnitude of a vector is a scalar associated with the vector
			It is independent of coordinate system, i.e. it is an invariant.
	tensors:	<u>A</u>	There are three invariants associated with a second-order tensor.
			53 © Faith A. Morrison, Michigan Tech U.

Mathematics Re	view	Polymer Rhe	ology
4. Differential O	perations with Vectors, Tensors (continued) D. Vectors - Laplacian		
Using Einstein notation:	$\nabla \cdot \nabla \underline{w} \equiv \hat{e}_m \frac{\partial}{\partial x_m} \cdot \hat{e}_p \frac{\partial}{\partial x_p} w_j \hat{e}_j = \frac{\partial}{\partial x_m}$ $= \frac{\partial}{\partial x_m} \frac{\partial}{\partial x_p} w_j \left(\delta_{mp} \right) \hat{e}_j$ $= \frac{\partial}{\partial x_p} \frac{\partial}{\partial x_p} w_j \hat{e}_j$	$\frac{\partial}{\partial x_p} w_j \left(\hat{e}_m \cdot \hat{e}_p \right) \hat{e}_j$ The Laplacian of a vector field is a vector	
	$= \begin{pmatrix} \frac{\partial^2 w_1}{\partial x_1} + \frac{\partial^2 w_1}{\partial x_2} + \frac{\partial^2 w_1}{\partial x_3} \\ \frac{\partial^2 w_2}{\partial x_1} + \frac{\partial^2 w_2}{\partial x_2} + \frac{\partial^2 w_2}{\partial x_3} \\ \frac{\partial^2 w_3}{\partial x_1} + \frac{\partial^2 w_3}{\partial x_2} + \frac{\partial^2 w_3}{\partial x_3} \end{pmatrix}_{123}$	•Laplacian o not change t entity operat	peration does he order of the ed upon 62 n, Michigan Tech U.

Mathematics R	leview			Polymer Rheology
5. Curvili	near Coordinates			
	Cylindrical	\overline{r}, θ, z	$\hat{e}_{\overline{r}},\hat{e}_{ heta},\hat{e}_{z}$	See figures
	Spherical	$r, heta, \phi$	$\hat{e}_r, \hat{e}_{ heta}, \hat{e}_{\phi}$	2.11 and 2.12
These const	e coordinate systems tant (they vary with po	are ortho-norn	nal, <i>but they ar</i>	e not
This o	causes some non-inte	uitive effects wh	hen derivatives	are taken.
				64
			© Faith A	A. Morrison, Michigan Tech U.

Mathematics Review	Polymer Rheology
5. Curvilinear Coordinates (continued)	
Result: $\nabla = \left(\frac{\partial}{\partial x}\hat{e}_x + \frac{\partial}{\partial y}\hat{e}_y\right)$	$+\frac{\partial}{\partial z}\hat{e}_{z}$
$= \hat{e}_r \frac{\partial}{\partial r} + \hat{e}_\theta \frac{1}{r} \frac{\partial}{\partial r}$	$\frac{\partial}{\partial \theta} + \hat{e}_z \frac{\partial}{\partial z}$
Now, proceed:	
$\nabla \cdot \underline{v} = \left(\hat{e}_r \frac{\partial}{\partial r} + \hat{e}_{\theta} \frac{1}{r} \frac{\partial}{\partial \theta} + \hat{e}_{\theta} $	$\hat{e}_{z}\frac{\partial}{\partial z}$ \cdot $\left(v_{r}\hat{e}_{r}+v_{\theta}\hat{e}_{\theta}+v_{z}\hat{e}_{z}\right)$
(We cannot use Einstein notation because these are not Cartesian coordinates) $= \hat{e}_r \frac{\partial}{\partial r} \cdot \left(v_r \hat{e}_r + v_\theta \hat{e}_\theta \right)$	$+v_z \hat{e}_z)+$
$\hat{e}_{ heta} \frac{1}{r} \frac{\partial}{\partial heta} \cdot (v_r \hat{e}_r +$	$+v_{\theta}\hat{e}_{\theta}+v_{z}\hat{e}_{z})+$
$\hat{e}_z \frac{\partial}{\partial z} \cdot \left(v_r \hat{e}_r + v_r \hat{e}_r \right)$	$_{g}\hat{e}_{\theta}+v_{z}\hat{e}_{z}$
~~	67
	© Faith A. Morrison, Michigan Tech U

3: Newtonian Flui	d Mechanics	Polymer Rheolog
Mass Balance	(continued)	
Continuity ec	quation (general fluids)	
	$\frac{\partial \rho}{\partial t} + \nabla \cdot \left(\rho \underline{v} \right) = 0$	
	$\frac{\partial \rho}{\partial t} + \rho \left(\nabla \cdot \underline{v} \right) + \underline{v} \cdot \nabla \rho$	
	$\frac{D\rho}{Dt} + \rho \big(\nabla \cdot \underline{v} \big) = 0$	
For ρ=consta	nt (incompressible fluids):	
	$\nabla \cdot \underline{v} = 0$	

Momentum Balance (continued)		Polymer Rheology	
Constitutive equations for	Stress		
<u></u>			
•are tensor equations	$\underline{\tau} =$	$f(\nabla \underline{v},$	
•relate the velocity field to the str generated by molecular forces	resses	material properties)	
•are based on observations (empirical) or are based on molecular models (theoretical)			
•are typically found by trial-and-error			
•are justified by how well they w system of interest	ork for a		
•are observed to be symmetric	Observation: the strong		
	tensor is symmetric		
		115	
© Faith A. Morrison, Michigan Tech U.			

Vectors are independent of coordinate system, but in general the

coefficients will be different when the same vector is written in two different coordinate systems:

$$\underline{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}_{123} = \begin{pmatrix} \overline{v}_1 \\ \overline{v}_2 \\ \overline{v}_3 \end{pmatrix}_{\overline{123}}$$

For shear flow and the two particular coordinate systems we have just examined, <u>however</u>:

$$\underline{v} = \begin{pmatrix} \overline{V} \\ \overline{2H} \\ x_2 \\ 0 \\ 0 \end{pmatrix}_{123} = \begin{pmatrix} \overline{V} \\ \overline{2H} \\ \overline{x}_2 \\ 0 \\ 0 \end{pmatrix}_{\overline{123}}$$

© Faith A. Morrison, Michigan Tech U.

171

We seek to quantify the behavior of non- Newtonian fluids	Procedure: 1. Choose a flow type (shear or a type of elongation). 2. Specify $\dot{\zeta}(t)$ or $\dot{\varepsilon}(t)$ as appropriate. 3. Impose the flow on a fluid of interest. 4. Measure stresses. shear τ_{21}, N_1, N_2 elongation $\tau_{33} - \tau_{11}, \tau_{22} - \tau_{11}$ 5. Depart stresses in terms of material functions	
© Faith A. Morrison, Michigan Tech U.	 6a. Compare measured material functions with predictions of these material functions (from proposed constitutive equations). 7a. Choose the most appropriate constitutive equation for use in numerical modeling. 	6b. Compare measured material functions with those measured on other materials.7a. Draw conclusions on the likely properties of the unknown material based on the comparison.

The next three families of material functions incorporate the concept of strain.

227 © Faith A. Morrison, Michigan Tech U.