CM4650 Lectures 1-3: Intro, Mathematical

Review

Polymer Rheology CM4650

Polymer Rheology

Michigan Tech
Rhe-

rei — Greek for flow

What is rheology anyway?

Rheology = the study of deformation
and flow.

“What is Rheology Anyway?” Faith A.
Morrison, The Industrial Physicist,
10(2) 29-31, April/May 2004.
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Chapter 1: Introduction

CM4650
Polymer Rheology

Michigan Tech
1. What is rheology, anyway? -

2. Newtonian versus non-Newtonian

3. Key features of non-Newtonian

behavior: Nonlinearity and Memory
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What is rheology anyway?

To the layperson, rheology is:

*Mayonnaise does not flow even under stress for a
long time; honey always flows

«Silly Putty bounces (is elastic) but also flows (is
viscous)

+Dilute flour-water solutions are easy to work with
but doughs can be quite temperamental

*Corn starch and water can display strange behavior
— poke it slowly and it deforms easily around your
finger; punch it rapidly and your fist bounces off of
the surface

3
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What is rheology anyway?

To the scientist, engineer, or
technician, rheology is

*Yield stresses

*Viscoelastic effects
*Memory effects

v e *Shear thickening and shear

Release

arese thinning

iy

For both the layperson and the technical person, rheology is a

set of problems or observations related to how the stress in a

material or force applied to a material is related to deformation
(change of shape) of the material.

4
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What is rheology anyway?

Rheology affects: *Processing (design, costs,
production rates)

www.corrugatorman.com/

pic/akron%20extruder.JPG
www.math.utwente.nl/
mpcm/aamp/examples.html

*End use (food texture,
product pour, motor-oil

function) distortions, anisotropy,

strength, structure
development)

Pomar et al.
INNFM 54
143 1994

5
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*Product quality (surface

Goal of the scientist, engineer,
or technician:

*Understand the kinds of flow and
deformation effects exhibited by
complex systems

How
do we reach
these goals?

*Apply qualitative rheological
knowledge to diagnostic, design, or
optimization problems

«In diagnostic, design, or optimization
problems, use or devise quantitative
analytical tools that correctly capture
rheological effects

6
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I
H O W ? f By observing the behavior
. Yﬂ of different systems

*Understand the kinds of flow and
deformation effects exhibited by
complex systems

*Apply qualitative rheological
knowledge to diagnostic, design, or

optimization problems By learning
which
By making «In diagnostic, design, or optimization N duantitative
calculations problems, Use or devise quantitative mode!s
with models in analytical tools that correctly capture apply in
: rheological effects what
appropriate .
situations
stances

© Faith A. Morrison, Michigan Tech U.

Learning Rheology (bibliography)

Descriptive Rheology

Barnes, H., J. Hutton, and K. Walters, An Introduction to Rheology
(Elsevier, 1989)

Quantitative Rheology

Morrison, Faith, Understanding Rheology (Oxford, 2001)
Bird, R., R. Armstrong, and O. Hassager, Dynamics of Polymeric Liquids,
Volume 1 (Wiley, 1987)

Industrial Rheology
Dealy, John and Kurt Wissbrun, Melt Rheology and Its Role in Plastics
Processing (Van Nostrand Reinhold, 1990)
Polymer Behavior
Larson, Ron, The Structure and Rheology of Complex Fluids (Oxford, 1999)
Ferry, John, Viscoelastic Properties of Polymers (Wiley, 1980)
Suspension Behavior

Mewis, Jan and Norm Wagner, Colloidal Suspension (Cambridge, 2012)
Macosko, Chris, Rheology: Principles, Measurements, and Applications (VCH
Publishers, 1994)
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The Physics Behind Rheology:

1. Conservation laws .
Cauchy Momentum Equation

momentum — ov
energy /’(gJ“Y'V‘l):_VPPQ

2. Mathematics

differential equations
vectors
tensors

3. Constitutive law = law that relates stress to
deformation for a particular fluid

9
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Polymer Rheology Non-Newtonian Fluid Mechanics

Newtonian fluids: (fluid G\/\material parameter

mechanics) — et
Y e dx. — deformation
2

. J
Y

Newton’s Law of Viscosity

*This is an empirical law
(measured or observed)

*May be derived theoretically for
some systems

Non-Newtonian fluids: Need a new law or new
(rheology) laws

*These laws will also either be
empirical or will be derived
theoretically

10
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Polymer Rheology

Non-Newtonian Fluid Mechanics

flow only)

Newtonian fluids: (shear

Non-Newtonian fluids: (all

flows) —r

Constitutive Equation

Rate-of-
deformation
stress tensor /\I = f ()/) tensor

non-linear function (in
time and position)

11
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Introduction to Non-Newtonian Behavior

Rheological Behavior of Fluids, National
Committee on Fluid Mechanics Films, 1964

Velocity gradient tensor y

Type of fluid

Momentum balance

Stress —Deformation
relationship (constitutive
equation)

Inviscid
(zero viscosity, u=0)

Euler equation (Navier-
Stokes with zero viscosity)

Stress is isotropic

Newtonian
(finite. constant viscosity,
1)

Navier-Stokes (Cauchy
momentum equation with
Newtonian constitutive
equation)

Stress is a function of the
instantaneous velocity
gradient

Non-Newtonian (finite,
variable viscosity n plus
memory effects)

Cauchy momentum
equation with memory
constitutive equation

Stress is a function of the
history of the velocity
gradient

12
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Rheological Behavior of Fluids - Newtonian

1. Strain response to
imposed shear stress %

vi(X,)
eshear rate is constant %

Y dy

y = —— =constant
T

2. Pressure-driven flow in [
a tube (Poiseuille flow)

eviscosity is
constant
B 7APR*
o8ul
Q aR* #
2 =constant
8ulL
AP

3. Stress tensor in shear
flow

eonly two components
are nonzero

0 7, O
=7, 0 O
0 0 O

13
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Rheological Behavior of Fluids — non-Newtonian

1. Strain response to
imposed shear stress %

vi(X,)
eshear rate is variable %

Release
stress

2. Pressure-driven flow in
a tube (Poiseuille flow)

eviscosity is variable

3. Stress tensor in shear
flow

«all 9 components are
nonzero

Normal
stresses

14
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Rheological Behavior of Fluids — non-Newtonian

1. Strain response to
imposed shear stress %

eshear rate is variable

2. Pressure-driven flow in [
a tube (Poiseuille flow)

«all 9 components are
nonzero

eviscosity is variable Normal

AP - N

© Faith A. Morrison, Michigan Tech U.

Examples from the film of . . ..

Dependence on the history of the deformation gradient

*Polymer fluid pours, but springs back

«Elastic ball bounces, but flows if given enough time

«Steel ball dropped in polymer solution “bounces”

*Polymer solution in concentric cylinders — has fading memory
*Quantitative measurements in concentric cylinders show memory
and need a finite time to come to steady state

Non-linearity of the function = f (L’)

*Polymer solution draining from a tube is first slower, then faster
than a Newtonian fluid

*Double the static head on a draining tube, and the flow rate does
not necessarily double (as it does for Newtonian fluids); sometimes
more than doubles, sometimes less

*Normal stresses in shear flow

*Die swell

16
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National Committee for

Fluid Mechanics Films

In 1861, Ascher Shapiro founded the Naticnal Commitiee for Fluid Mechanics
Films (NCFMF} in cooperation with the Education Developmant Center and
released a series of 39 videos and g texts which

the teaching of fluid mechanics. MIT's iFluids program has made a number of
the films from this series available on the wed. (Realplayer is required
Deownload | Purchase infarmation.

The peeface to Wusirated Experiments in Fluid Mechanics: The NCFMF Boak
of Film Notes can be found below.

Coemplate film notes for the NCFMF movies
Ascher Shapro's Obituary

Aerodyramics Generation of Sound RealPlayer
Cavitation RealPlayar
Channel Flow of a Compressible Fluid
Deformation of Continucus Media
Fulerian Lagrangian Description

Flow Instabilities

Flow Visualuzation

Fluid Dynamics of Drag Pant |

Fluid Dyramics of Drag P 1l

Fhuid Dynamics of Drag Part [11

Fhuid Dynamics of Drag Part [V

Finid £, e snd Eleay

Eilm Netes
Film Notes

Show NCFM Film on | - Searchfor "NCFMFY
h | . | h ] o web.mit.edu/hml/ncfmf.html
Rheological Behavior | . Also on YouTube

of Fluids

17
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Chapter 2. Mathematics Review

CM4650
Polymer Rheology
Michigan Tech

1. Vector review ey
.I nhanlu_gv

2. Einstein notation

3. Tensors

18
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Jat

Newtonian fluids: -«

Non-Newtonian fluids:

Motivation: We will be solving the momentum balance:
ov
plm-tv-Vu|=-Vp-V-z+pg

Linear
Instantaneous

. 10 = —wy(0)

Rheological Behavior of Fluids — non-Mewtonian

N -
1. Strain response o e
imposed shear stress .,
"t
=shear rate is variable
0 .
t

* Non-linear

2. Pressure-driventiow in ":
atube (Foiseulle fiow)
i

~wiscosty is variable +all 8 components are

Mo nonzern

s
meS \\ B
-

L Y

=
© Faiv A Morrison, Michigan Tech U 19

* Non-instantaneous
» z(t) =?

© Faith A. Morrison, Michigan Tech U.

Motivation: We will be solvin

Jat

Newtonian fluids: -«

g the momentum balance:

ov
plm-tv-Vu|==-Vp-V-z+pg

Linear
Instantaneous

7(t) = —uy ()

imposed shearshess
e
=shear rate is variabls .
- . e Non-linear
. i
2. Pressure-driventiow in m ": Non InStantaneous
atube (Foiseulle fiow)
: L[] ’l‘(t) :?
wiscasty i varitle | w19 corponents are = :
s
ny - fn
T T Tnd g
15
© Failr A Mowisor, dlichigon Tech Il
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0 vy =

imposed shear stess

- I 1
T
=shear rate is variable
0

sssssss

=
© Faiv A Morrison, Michigan Tech U

Motivation: We will be solving the momentum balance:

=Vp=V-2+pg

Newtonian fluids: « Linear
Instantaneous

7(t) = —uy ()

* Non-linear
* Non-instantaneous

« (0 =?

21
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0 vy =

imposed shear stess

- I 1
T
=shear rate is variable
0

sssssss

=
© Faiv A Morrison, Michigan Tech U

Motivation: We will be solving the momentum balance:

=Vp—=V-2+pg

Newtonian fluids: « Linear
Instantaneous

7(t) = —uy ()

* Non-linear
* Non-instantaneous

. z(t) =?

ech U.

1/14/2015

11



CM4650 Lectures 1-3: Intro, Mathematical

Review

Chapter 2. Mathematics Review

1. Scalar — a mathematical entity that has magnitude only

e.g.. temperature T
speed v
time t
density r

— scalars may be constant or may be variable

Laws of Algebra for
Scalars:

yes commutative ab =ba
yes associative  a(bc) = (ab)c

yes distributive  a(b+c) = ab+ac

23
© Faith A. Morrison, Michigan Tech U.

Mathematics Review Polymer Rheology

2. Vector — a mathematical entity that has magnitude and direction

e.g.: force on a surface f
velocity v

— vectors may be constant or may be variable

Definitions

magnitude of a vector — a scalar associated with a vector
v|=v ‘ f ‘ =f
unit vector — a vector of unit length
\'

vinl 2

v

a unit vector in the
direction of v

24
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Mathematics Review

Polymer Rheology

Laws of Algebra for
Vectors:

1. Addition

lex

© Faith A. Morrison, Michigari

25

Tech U.

Laws of Algebra for Vectors (continued):

3. Multiplication by scalar v

yes commutative aV =\Va

a(Bv)=(apl = apv

alV+ W)= av+aw

yes associative

yes distributive

4. Multiplication of vector by vector
4a. scalar (dot) (inner) product

V-W=VwCcosé v 0
Note: we can find

magnitude with dot
product

I=

V-V =wcos0=v?

v==vy

© Faith A. Morrison, Michigari

26
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Laws of Algebra for Vectors (continued):

4a. scalar (dot) (inner) product (con’t)

yes commutative V-W=W-V

NO associative M no such operation

yes distributive Z‘(\_/"' v_v) =ZV+Z-W

4b. vector (cross) (outer) product

VxW=vwsing é

1<
N

@ is a unit vector
perpendicular to
both v and w
following the
right-hand rule

1=

27,
© Faith A. Morrison, Michigari

Tech U.

Laws of Algebra for Vectors (continued):

4b. vector (cross) (outer) product (con’t)
NO commutative VXW#WXV
NO associative \_/xV_VxZ¢(yx\/_V)xZ¢yx(V—\/xZ)

yes distributive (V+w)=(zxv)+(zxw)

28
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Mathematics Review

Polymer Rheology

Coordinate Systems

*Allow us to make actual calculations with vectors

Rule: any three vectors that are non-zero and linearly
independent (non-coplanar) may form a coordinate basis

Three vectors are linearly dependent if a, b, and g can
be found such that:

ca+pb+yc=0
for «a,p,y#0

If a, B, and y are found to be zero, the vectors are
linearly independent.

© Faith A. Morrison, Michigan Tech U.

29

Mathematics Review

Polymer Rheology

How can we do actual calculations with vectors?

Rule: any vector may be expressed as the linear combination
of three, non-zero, non-coplanar basis vectors

coefficient of ainthe @

direction y

anyVeCtOr a
k_,ae +aé +aé =|a
a

© Faith A. Morrison, Michigan Tech U.
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Mathematics Review Polymer Rheology

Trial calculation: dot product of two vectors

Q’Q = (a1é1 + azéz + asés)' (b1é1 + bzéz + b3é3)
=a,6 '(blel + bzez + b3e3)+
azéz '(b1§1 + bzéz + bséa)"'
as€, '(blel + bzez + b3e3)
=a6 - blel + a6 'bzez + a6 - bses +
a,6,-be +ae,-be,+ae, be +
a.6,-bé +a.6,-be, +aé,-he,

If we choose the basis to be orthonormal - mutually perpendicular
and of unit length - then we can simplify.

31
© Faith A. Morrison, Michigan Tech U.

Mathematics Review Polymer Rheology

If we choose the basis to be orthonormal - mutually perpendicular
and of unit length, then we can simplify.

a-b=2ag bé +ag be,+ab -be+
a6, D6 + 3,6, 0,6, + 3k, by +
;- b6 + a8 - b6, + &b - b
= afy +ah, +agh

We can generalize this operation with a technique called Einstein notation.

32
© Faith A. Morrison, Michigan Tech U.
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Mathematics Review Polymer Rheology

Einstein Notation

a system of notation for vectors and tensors that allows for the
calculation of results in Cartesian coordinate systems.

a :331é1+ e, + &k,
= a6
j=1

«the initial choice of subscript letter is arbitrary

the presence of a pair of like subscripts implies a
missing summation sign

33
© Faith A. Morrison, Michigan Tech U.

Mathematics Review Polymer Rheology

Einstein Notation (con't)

The result of the dot products of basis vectors can be
summarized by the Kronecker delta function

p = %p

6-6=1 .
6.6=0  §: 5—={1 =P
6-6,=0

Kronecker delta

34
© Faith A. Morrison, Michigan Tech U.
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Mathematics Review Polymer Rheology

Einstein Notation (con't)

To carry out a dot product of two arbitrary vectors . . .

Detailed Notation

a-b=(a8+ae +as) be+be+bs)
— a6 bg+ag be+ag e+ |

a6, - b + a6, -be, +ak, b+ ! =20 by
;- b6 + a8 - b6, + af; - b !

= ab +ah, +ah; =ayb,
35
© Faith A. Morrison, Michigan Tech U.
Mathematics Review Polymer Rheology

3. Tensor — the indeterminate vector product of two (or more) vectors

e.g.. stress T
velocity gradient

— tensors may be constant or may be variable

Definitions

dyad or dyadic product — a tensor written explicitly as the
indeterminate vector product of two vectors

ad  dyad
A general representation
= of a tensor

36
© Faith A. Morrison, Michigan Tech U.
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Mathematics Review Polymer Rheology

Laws of Algebra for Indeterminate
Product of Vectors:

NO commutative av#va

yes associative  p (3 v)= (b a)v =bav
yes distributive

37
© Faith A. Morrison, Michigan Tech U.

Mathematics Review Polymer Rheology

How can we represent tensors with respect to a chosen

coordinate system?
Just follow the rules of tensor algebra

am= (a1é1 + azéz + a3é3 )(mlél + mzéz + m3é3)
= alélmlél + aiélmzéz + aié1m3é3 +
a,e,me, +a,e,m,e, +a,e,m,e, +
a,6,;me€, +a,6,;m,é, + a,e,m.e,

3 3
= Z Z ak ek mwew
k=1 w=1
3 3 Any tensor may be written as the
= Z am,ece, sum of 9 dyadic products of basis
k=1 w=1 vectors

38
© Faith A. Morrison, Michigan Tech U.
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Mathematics Review

Polymer Rheology

What about 4? Same.
3
A=3 Y Aje4
i=1 j=1

Einstein notation for tensors: drop the summation sign; every
double index implies a summation sign has been dropped.

A=A &= Ay 6

Reminder: the initial choice of subscript
letters is arbitrary

39
© Faith A. Morrison, Michigan Tech U.

Mathematics Review Polymer Rheology

How can we use Einstein Notation to calculate dot products
between vectors and tensors?

It's the same as between vectors.

(S <
I> = o
<
Il

40
© Faith A. Morrison, Michigan Tech U.
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Mathematics Review Polymer Rheology

Summary of Einstein Notation

1. Express vectors, tensors, (later, vector operators) in a Cartesian
coordinate system as the sums of coefficients multiplying basis
vectors - each separate summation has a different index

2. Drop the summation signs

3. Dot products between basis vectors result in the Kronecker delta
function because the Cartesian system is orthonormal.

Note:

«In Einstein notation, the presence of repeated indices implies
a missing summation sign

*The choice of initial index (i, m, p, etc.) is arbitrary - it merely
indicates which indices change together

41
© Faith A. Morrison, Michigan Tech U.

Mathematics Review Polymer Rheology

3. Tensor — (continued)
Definitions

Scalar product of two tensors

A L Aa carry out the dot
= AipM km iep e products indicated

:AipMkm (épékxé|ém)

= Aip M km 5pk é‘im p becomes “k”
Aﬂ M “I" becomes “m”

= Pk Vlm

42
© Faith A. Morrison, Michigan Tech U.
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Mathematics Review

But, what is a tensor really?

Polymer Rheology

Atensor is a handy representation of a Linear Vector Function

scalar function: 'y = f (X) =x>+2x+3

a mapping of values of x onto values of y

vector function:

w= f(v)

a mapping of vectors of v into vectors w

How do we express a
vector function?

43
© Faith A. Morrison, Michigan Tech U.

Mathematics Review

What is a linear function?

Polymer Rheology

Linear, in this usage, has a precise, mathematical definition.

Linear functions (scalar and vector) have the
following two properties:

f (Ax) = Af (X)
f(x+w)=f(x)+ f(w)

Multiplying vectors and tensors is a
convenient way of representing the
actions of a linear vector function
(as we will now show).

44
© Faith A. Morrison, Michigan Tech U.
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Mathematics Review Polymer Rheology

Tensors are Linear Vector Functions

Let f(a) = b be a linear vector function.

L We can write a in Cartesian coordinates.

a= aiél + azéz + a3é3
f(@)=f (aiél + azéz + a3é3) =b

Using the linear properties of f, we can distribute the function action:

f(g):alf(él)+a2f(é2)+a3f(é3):g
e

These results are just vectors, we will

name them v, w, and m.
45

© Faith A. Morrison, Michigan Tech U.

Mathematics Review Polymer Rheology

Tensors are Linear Vector Functions (continued)

f(@):aif(é1)+azf(é2)+a3f(é3)29
—— —— ——
Vv W m

f(a)= av+a,W+a,m= b
Now we note that the coefficients a; may be written as,
4 :Q'él a, :Q'éz a3 :Q'é3
Substituting, /\ indetlrhrﬁinate

~ a vector product
fl@=a-ev+a-e, v_v+§9 has appeared!

46
© Faith A. Morrison, Michigan Tech U.
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Mathematics Review Polymer Rheology

Using the distributive law, we can factor out the dot product with a:

f@=a-(@v+&w+6m)=b
1\ J

This is just a tensor

(the sum of dyadic (él V+6 W+6 m) =M
products of vectors) _

f@=a-M=Db

7

CONCLUSION: Tensor operations
are convenient to
use to express linear
vector functions.

47
© Faith A. Morrison, Michigan Tech U.

Mathematics Review Polymer Rheology
3. Tensor — (continued)

More Definitions

Identity Tensor

1=66=66+66+68

1 00
=0 1 0
0 0 1 23
Al= Apéiép €&
= Apéi5pkék
= A&e

48
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Mathematics Review

3. Tensor — (continued) More Definitions

Polymer Rheology

Zero Tensor

000
0=(0 0 0
00 0),

Magnitude of a Tensor

A:A
= BE
A:A= Apéiép : A€
= Appkm (ép 'ékxéi ém) products
= AnkAQ/ across the

diagonal

49

© Faith A. Morrison, Michigan Tech U.

Mathematics Review Polymer Rheology

3. Tensor — (continued) More Definitions

Tensor Transpose
Exchange the

MT = (Mikélék)T =M; 66 coefficients across

the diagonal

CAUTION:

(AQT = (’A!kélék 'ijépéj = (Akcpj éléjé‘kp)r
= (ACy 88]
= ApCpj €6
! recommend you a]ways
Itis not equal to: (é Q)T _ (Apcpj eéJ)F interchange the indices

on the basis vectors
rather than on the
coefficients.

M

50
© Faith A. Morrison, Michigan Tech U.
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Mathematics Review

Polymer Rheology

3. Tensor — (continued) More Definitions
Symmetric Tensor e.g.
Mo (32
! ! 3 5 6),
Antisymmetric Tensor e.g.
M=-M > _02 _g
M; =-My 3 5 0

123

51
© Faith A. Morrison, Michigan Tech U.

Mathematics Review

Polymer Rheology

3. Tensor — (continued) More Definitions

Tensor order

Scalars, vectors, and tensors may all be considered to
be tensors (entities that exist independent of coordinate
system). They are tensors of different orders, however.

order = degree of complexity

scalars Ot -order tensors 30

"""""""""""""""""""""""""""""""""" Number of
st _ 1

vectors 1st -order tensors 3 coefficients
tensors 2nd _order tensors 32 needed to
77777777777777777777777777777777777777777777777 ) express the

higher- 3rd -order tensors 33 tensor in 3D

order space

tensors

52
© Faith A. Morrison, Michigan Tech U.
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Mathematics Review Polymer Rheology

3. Tensor — (continued) More Definitions

Tensor Invariants

Scalars that are associated with tensors; these are
numbers that are independent of coordinate system.

vectors: M =V The magnitude of a vector is a
scalar associated with the
vector

It is independent of coordinate
system, i.e. it is an invariant.

tensors: There are three invariants
associated with a second-order

tensor.

>

53
© Faith A. Morrison, Michigan Tech U.

Mathematics Review Polymer Rheology

Tensor Invariants

|, =traceA=trA

For the tensor written in Cartesian coordinates:

traceA= Ay, = A+ Ay + Ay
I, =trace(A-A)=A: A= Ay A,

11, =trace(A- A- A)= A;ALA,

Note: the definitions of invariants written in terms of
coefficients are only valid when the tensor is written in
Cartesian coordinates.

/54

© Faith A. Morrison, Michigan Tech U.
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Mathematics Review Polymer Rheology

4. Differential Operations with Vectors, Tensors

Scalars, vectors, and tensors are differentiated to determine
rates of change (with respect to time, position)

To carryout the differentiation with respect to a single variable,
differentiate each coefficient individually.

*There is no change in order (vectors remain vectors, scalars
remain scalars, etc.

o 9By 9By By
ot o ot ot
da ow _ | ow, OB _| 0By 0B, 0By
ot ot ot ot ot ot ot
oW oB;; 0B;, 0By
ot ot ot ot

123 123

© Faith A. Morrison, Michigan Tech U.
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Mathematics Review Polymer Rheology

4. Differential Operations with Vectors, Tensors (continued)

«To carryout the differentiation with respect to 3D
spatial variation, use the del (nabla) operator. Del Operator

*This is a vector operator
*Del may be applied in three different ways

*Del may operate on scalars, vectors, or tensors

o
%
This is written in Vzéli+é2i+ési= i
Cartesian 0% 0%y 0% | 0%
coordinates 0
0%

3

Einstein notation for del

© Faith A. Morrison, Michigan Tech U.
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Review

Mathematics Review

4. Differential Operations with Vectors, Tensors (continued)

A. Scalars - gradient

P
Gibbs 0%
notation 0 0 0 op
- + - + - = £
el@xlﬂ 926X2ﬂ %6x3'3 OXy
[
OXs
Gradientofa =g op

The gradient of
a scalar field is a
vector

scalar field P pr

egradient operation increases the order of the
entity operated upon

© Faith A. Morrison, Michigan Tech U.

The gradient operation
captures the total spatial
variation of a scalar, vector,

Polymer Rheology

This is written in
Cartesian
coordinates

or tensor field.

57

Mathematics Review

4. Differential Operations with Vectors, Tensors (continued)

B. Vectors - gradient

Vw591EW+éziw+esiw

9 OX, 0Xq
i 0
The basis vectors - élC(\Wl@l +W,6, + Wsés)
can move out of axl
the derivatives 5
because they are
constant (do not +6 X (Wlél +W,€, + Waéa)
change with 2
position) 0
+6,—— (W6 +W,6, +W,6,)
8
oW, oW, ow,
=66 —-+66,—2+66,—
4 24 4

OW.

ow, oW,
6,6, —2+6,6—2+6,6—2>
2% o 2% o 1 oy

2 2

© Faith A. Morrison, Michigan Tech U.

—+6,6

Ly
3

Polymer Rheology

This is all written in
Cartesian
coordinates (basis
vectors are
constant)

an
—L 4+
OX,
oW, oW,
6,6, —L+6,6,—2
0Xq 3
58
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Mathematics Review
4. Differential Operations with Vectors, Tensors (continued)

B. Vectors - gradient (continued)

Gradient of a
vector field

Polymer Rheology

constants may appear
on either side of the
differential operator

The gradient of
a vector field is a
tensor

J

LY_J

Einstein notation
for gradient of a
vector

Coaw o
= axj éék

59
© Faith A. Morrison, Michigan Tech U.

Mathematics Review
4. Differential Operations with Vectors, Tensors (continued)

C. Vectors - divergence

0% OX 0%
_y oW _ow

i1 0% 0%

vector

Polymer Rheology

Divergence of a 0 0 0 j
- — +6— +6— | +W,6, + W,
vector field (él oxu 2 X es OX3 Wiél 2%2 363;

The Divergence
of a vector field
is a scalar

Einstein notation
for divergence of a

60
© Faith A. Morrison, Michigan Tech U.
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Review

Mathematics Review
4. Differential Operations with Vectors, Tensors (continued)

C. Vectors - divergence (continued)

constants may appear
on either side of the

«divergence operation decreases the
entity operated upon

Polymer Rheology

This is all written in
Cartesian
coordinates (basis
vectors are

differential operator constant)
Using Einstein
notation /\
0 OW; oW;
M M M
_ oW,
OX;

order of the

61
© Faith A. Morrison, Michigan Tech U.

Mathematics Review Polymer Rheology
4. Differential Operations with Vectors, Tensors (continued)
D. Vectors - Laplacian
Usin 0 0 0 0
Einsteig VVw=6y OXn, € OX e = 0%, OX Wi (ém 'ép)%
notation: P P
o 0
= a ax Wj (5mp) eJ
Xm OXp :
o 0 The Laplacian of
=—— "~ W 6. a vector field is a
w; €
8Xp 6Xp 1 vector
w w6
W 0w 0w
X OX 0%
2 2 2 Laplacian operation does
— W, + OW, + W, not change the order of the
82)(1 azxz 62)(3 entity operated upon
ow, ow, 0
s OV O
0% 0%  OX 62
123 © Faith A. Morrison, Michigan Tech U.
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Mathematics Review Polymer Rheology

4. Differential Operations with Vectors, Tensors (continued)

(impossible; cannot

E. Scalar - divergence ><a decrease order of a scalar)

F. Scalar - Laplacian V- -Va
G. Tensor - gradient VA

H. Tensor - divergence

V-A
I. Tensor - Laplacian
V-VA
63
© Faith A. Morrison, Michigan Tech U.
Mathematics Review Polymer Rheology
5. Curvilinear Coordinates
Cylindrical r.0,z €.,6,6 See
figures
) PPN 2.11 and
Spherical r,o, ¢ e, ea,eg, 212

These coordinate systems are ortho-normal, but they are not
constant (they vary with position).

This causes some non-intuitive effects when derivatives are taken.

64
© Faith A. Morrison, Michigan Tech U.
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Review

Mathematics Review
5. Curvilinear Coordinates (continued)

V=V +V,E,+V,E

(aA 0. 0.
=|—& +—e, +—¢€
0

Polymer Rheology

zj '(Vrér + Vaéa + Vzéz)

J

solvefor  [€ =cos@ € +sind e,
Cartesian i
basis €,=-sind € +cosd e,
vectors and
substitute €, =¢,
above

First, we need to write thisT
cylindrical coordinates.

X=rcoséd

y=rsing substitute above
71=12 using chain rule
(see next slide for
details)
65

© Faith A. Morrison, Michigan Tech U.

Mathematics Review

oy ay/é 6l//é

Vy=|—"& +—8& +—

X Or \Qx/" 060 ox

oy oroy 00 oy

€, =C0sO € —sinbé, y
€, =sindé +cosde, | (;j

Zj/

=
, i
oy _ oy o 46"//6%61//62_@1//003%61//( Smé’j

W:W%av’@@ﬁw@z_@wsmmw(cowj

Polymer Rheology

%rcose r=

[ 'y=rsing O=tan™

x2+y?

| =1

/
/

oz ox  or 00

oz oy or 00

66
© Faith A. Morrison, Michigan Tech U.
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Intro, Mathematical

Mathematics Review

5. Curvilinear Coordinates (continued)

(We cannot use

Einstein notation . 0 R
because these are =€ — (Vr r
not Cartesian 6[’
coordinates)
~ 1 8
€
0
roo
2,
6

Q)
Qb

(v.8, +v,8,

Polymer Rheology

éz)+

v8 )

V9é9 + Vzéz)

67

© Faith A. Morrison, Michigan Tech U.

Mathematics Review

5. Curvilinear Coordinates (continued)

Polymer Rheology

. 0
V.v= ea— v9e9+ve
0 (
T
00
0
R a— +veg+ve)
10 . . love
€,—— V€ =6, —
roe r oo
. 1( 08 Aavr
=eg-— V, —+§,
" 00 00
O _ a(cos6’e+sm6?e)
26 06

=-singé, +cosf e,
) ’
68
© Faith A. Morrison, Michigan Tech U.
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Mathematics Review Polymer Rheology

5. Curvilinear Coordinates (continued)

A

€

| =

o 4 1 0v,€,
_'Vrer =€, ————
r oo r 06

. l( 08, Aav,j
ea'FV +e —

(D>

‘00 00
_s, -i(vréa +8 alj
r 00
1
=—V This term is not intuitive,

r and appears because the
basis vectors in the
curvilinear coordinate
systems vary with position.

69
© Faith A. Morrison, Michigan Tech U.

Mathematics Review Polymer Rheology

5. Curvilinear Coordinates (continued)

Final result for divergence of a vector
in cylindrical coordinates:

A~

V.v=¢ B V8 +V,8, )+

<

9.
"or
o 0

r oo

~ O ,\ ,\ o
e a—‘<Vrer +V,€, +Vzez)
YA

V,€ )+ V€, +V,E, )+

D
D)
| —
o))

Voo Qe L (W) o,
- or r o0 0z

© Faith A. Morrison, Michigan Tech U.
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Review

Mathematics Review Polymer Rheology

5. Curvilinear Coordinates (continued)

Curvilinear Coordinates (summary)

*The basis vectors are ortho-normal
*The basis vectors are non-constant (vary with position)

*These systems are convenient when the flow system
mimics the coordinate surfaces in curvilinear coordinate
systems.

*We cannot use Einstein notation — must use Tables in
Appendix C2 (pp464-468).

71

© Faith A. Morrison, Michigan Tech U.

Mathematics Review Polymer Rheology

6. Vector and Tensor Theorems and n Chapter 3 we review Newtonian fluid
definitions mechanics using the vector/tensor

vocabulary we have learned thus far. We
just need a few more theorems to prepare
us for those studies. These are presented
without proof.

Gauss Divergence Theorem outwardly

directed unit

[[[vbav=[[Abds
Y S

This theorem establishes the utility of the
divergence operation. The integral of the
divergence of a vector field over a volume is
equal to the net outward flow of that property
through the bounding surface.

72
© Faith A. Morrison, Michigan Tech U.
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Mathematics Review

Polymer Rheology

73
© Faith A. Morrison, Michigan Tech U.

Mathematics Review

6. Vector and Tensor Theorems (continued)

Leibnitz Rule for differentiating integrals

/\ﬂ
constant limits | = I f (X’t) dx

\_/V
di
dt

B
_ _[ of (x,1) dx
ot

dﬂ
—=—/ f(x,t) dx
dti( )

Polymer Rheology

\

one
dimension,

> constant
limits

j 74

© Faith A. Morrison, Michigan Tech U.
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Review

Mathematics Review Polymer Rheology
6. Vector and Tensor Theorems (continued)
Leibnitz Rule for differentiating integrals \
B(t)
— J f (X,t) dx variable limits
a(t)v\_/
) one
dJ d dimension,
T I f(x1) dx variable
dt  dt ey
a(t) limits
B(t)
of (x,t) dﬁ
=] = f(ﬁt)——f( 1)
a(t)
75
© Faith A. Morrison, Michigan Tech U.

Mathematics Review Polymer Rheology

6. Vector and Tensor Theorems (continued)

Leibnitz Rule for differentiating integrals \

J:mf(x,y,z,t)dv

v (t)

three _
&l fenzoey \ varae i
—j_” of (x, y z,t) dv + ”’ Lsurface A) ds
V(t) S(t)

velocity of the surface element dS

J

© Faith A. Morrison, Michigan Tech U.
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Mathematics Review

6. Vector and Tensor Theorems (continued)

Substantial Derivative

OX -

choose

yzt

time rate of
change of f
along a chosen
path

rue for an
t path¥ df = (ij dx + (ﬂ
oy

special path: ﬂ A (ﬂj %4_(
dt  \ox/ , dt

X-component
of velocity
along that path

Polymer Rheology

Consider a function

f(x,y,z,t)

) dy+(ﬂj dz+ (af) dt
ot 0z ot/

1) 90(2) (1)
ay) . dt \oz/,  dt \ot/,,

Xyt

When the chosen path is
the path of a fluid particle,
then these are the
components of the
particle velocities.

7

© Faith A. Morrison, Michigan Tech U.

Mathematics Review

6. Vector and Tensor Theorems (continued)

When the chosen
path is the path of
a fluid particle,

Polymer Rheology

Substantial Derivative

then the space df dx (8]" j dy dz (af )
derivatives are the< — E — — — —+| —
components of the d yzt dt ay wat dt yt dt ot xyz
particle velocities. l l
af of
dona - V + vV, +| —
dt a pagr]‘(icle xzt ot Xyz
path /
Y
v- Vi
Substantial Derivative
df Df of
(_j alon - - _+ny
dt a pagrticle Dt 8t
path
78

© Faith A. Morrison, Michigan Tech U.
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Review

Done with math
background.

1. Vector review
2. Einstein notation

3. Tensors

Chapter 2: Mathematics Review

CMABS5H
Polymer Rheology
Michigan Tech

Let's use it with
Newtonian fluids

79
© Faith A. Morrison, Michigan Tech U.

Chapter 3: Newtonian Fluids

CM4650
Polymer Rheology
Michigan Tech

Navier-Stokes Equation

p(%ww) =—Vp+uV?v+pg

80

© Faith A. Morrison, Michigan Tech U.
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Review

Chapter 3: Newtonian Fluid Mechanics

TWO GOALS

«Derive governing equations (mass and momentum balances

*Solve governing equations for velocity and stress fields

|

QUICK START -
/ w: \=> V
—
First, before we get deep into % P -
derivation, let's do a Navier-Stokes I =

problem to get you started in the L x

mechanics of this type of problem

solving.

X !

81
© Faith A. Morrison, Michigan Tech U.

EXAMPLE: Drag flow
between infinite
parallel plates

*Newtonian

ssteady state
sincompressible fluid
svery wide, long
suniform pressure

%1
2 = vz
V3/ 123
7 .
W - \/
/ -t
|
1 vi(x,) H

1/14/2015
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Review

Chapter 3: Newtonian Fluid Mechanics

TWO GOALS

«Derive governing equations (mass and momentum balances
«Solve governing equations for velocity and stress fields

Mass Balance

Consider an arbitrary control
volume V enclosed by a surface S

rate of increase _(net flux of
of mass inCV ) | mass into CV

83
© Faith A. Morrison, Michigan Tech U.

Mathematics Review Polymer Rheology

84
© Faith A. Morrison, Michigan Tech U.
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Review

Intro, Mathematical

Chapter 3: Newtonian Fluid Mechanics Polymer Rheology
Mass Balance (continued) Consider an
arbitrary
volume V
enclosed by a
(rate of mcreasej surface S
of mass in V
outwardly
net flux of pointing unit
normal
mass into V j n-v
S

through surface S

85

© Faith A. Morrison, Michigan Tech U.

Chapter 3: Newtonian Fluid Mechanics Polymer Rheology

Mass Balance (continued)

m v ={[ilovios — o
=—mv-<py>dv7
0T (224540 v -0

86

© Faith A. Morrison, Michigan Tech U.
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Review

Chapter 3: Newtonian Fluid Mechanics

Mass Balance (continued)

Polymer Rheology

Since V is -QJ‘ (Z—f+V-(p\_/)j dv =0

arbitrary, ~_/

Continuity equation:
microscopic mass balance

%—f+V-(p\_/)=0

© Faith A. Morrison, Michigan Tech U.

87

Chapter 3: Newtonian Fluid Mechanics

Mass Balance (continued)

Polymer Rheology

Continuity equation (general fluids)

P v (o)

.V (py)=0
aa—/t)+p(v~y)+\1-vp=
Dp V)=

S+ PV v)=0

0

For p=constant (incompressible fluids):

V.v=20

© Faith A. Morrison, Michigan Tech U.
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Chapter 3: Newtonian Fluid Mechanics Polymer Rheology
Momentum Balance Consider an
arbitrary
control volume
Momentum is conserved. V enclosed by
a surface S

rate of increase B net flux of N sum of
of momentum inCV ) | momentum into CV forces on CV

o o o

resembles the resembles the Forces:
rate term in the flux term in the body (gravity)
mass balance mass balance molecular forces

89
© Faith A. Morrison, Michigan Tech U.

Momentum Balance Polymer Rheology

90
© Faith A. Morrison, Michigan Tech U.

45



CM4650 Lectures 1-3: Intro, Mathematical
Review

Momentum Balance (continued)

Polymer Rheology

(rate of increase j
of momentum in V

:% Hj pydvi
i jE

= J[[ < pv)av

(net flux of
momentum into V

J= 1T e owes s
S 7 Divergence

_ _J‘J‘J' V. (,0\_/\_/) dv Theorem

91
© Faith A. Morrison, Michigan Tech U.

Momentum Balance (continued)

Forces on V

Polymer Rheology

forceon V
dueto o]

Body Forces (non-contact)

jﬁ{f pg &V

92
© Faith A. Morrison, Michigan Tech U.
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Review

Chapter 3: Newtonian Fluid Mechanics

Polymer Rheology

Molecular Forces (contact) — this is the tough one

choose a surface

f=| at Pl ds through P

/‘ on dS

the

surface

We need an expression for the
state of stress at an arbitrary
point P in a flow.

force on P
\

93
© Faith A. Morrison, Michigan Tech U.

Molecular Forces (continued)

Think back to the molecular
picture from chemistry:

The specifics of these forces,
connections, and interactions
must be captured by the
molecular forces term that we
seek.

I
I
I
J

94
© Faith A. Morrison, Michigan Tech U.
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Review

Molecular Forces (continued)

*We will concentrate on expressing the molecular
forces mathematically;

*We leave to later the task of relating the resulting
mathematical expression to experimental observations.

First, choose a

surface: N

earbitrary shape

esmall X f
stress
atP 1ds=f What s 2
on dS

95

© Faith A. Morrison, Michigan Tech U.

Consider the forces on
three mutually

perpendicular surfaces
through point P:

[

© Faith A. Morrison, Michigan Tech U.
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Review

Molecular Forces (continued)

a isstressona“l1” surface at P

H_J
a surface with
unit normal €
b isstressona “2” surface at P
c isstressona “3” surface at P

We can write these vectors in a _
Cartesian coordinate system: a=a +a, + afs
=111,6 + 11,56, + 11,48

stresson a “1”
surface in the 1-

direction
97

© Faith A. Morrison, Michigan Tech U.

Molecular Forces (continued)

a=ag+ak +af

= I—Illél + leéz + I—Il3e3 i iS S:reSS ona i sur:ace az E
b= +bé + b isstressona surface a
B blél bz 2 Q@; c isstressona “3” surface at P

=118 + 11,6, + 11,48
C=Cf +CE +C&;

=156 + 1156, + 115565

So far, this is
nomenclature; next we
relate these
expressions to force
on an arbitrary
surface.

pk

Stresson a “p
surface in the
k-direction

98

© Faith A. Morrison, Michigan Tech U.
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Molecular Forces (continued)

How can we write f (the force
on an arbitrary surface dS) in
terms of the IT,?

f, is force on dS in

There are three IT,, that relate to

1-direction f, is force on dS in
2-direction

forces in the 1-direction: IL.. TT... TI
11 21 31

>

f=16+16+18

f; is force on dS in
3-direction

99
© Faith A. Morrison, Michigan Tech U.

Molecular Forces (continued)

arbitrary surface dS) in terms of the
quantities IT,,?

How can we write f (the force on an

n-6 ds
K_H

projection of

1-surface

p
first part: < (r1,,] dAonto the
(forcej " (area)
area
\

L

f=1fe+16+ 15

f, , the force on dS in 1-direction, can be broken into
three parts associated with the three stress components:

1_Ill’ 1_121’ 1_131

100
© Faith A. Morrison, Michigan Tech U.
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Review

Molecular Forces (continued)

f, , the force on dS in 1-direction, is composed of THREE parts:

~
projection of
firstpart: < (I1,;] dAontothe | = II,;n-§dS
L 1-surface
- - -
projection of
second part: < ([1,;] dAontothe | = TI,N-& dS
‘) 2 —surface
/_\\ . -
projection of
stress on a
2-surface  third part: < (M) dAontothe = Tyxn-&dS
G s 2 3—surface
direction -
the sum of these three = f;
101
© Faith A. Morrison, Michigan Tech U.
X2
F
~ ~ l‘ :
AA, = (7l - é;)AA | 8,
‘\L.r' [—
———————— ’ xl
/'Z‘Z:\ —l- l:[;lél ':
X3 AA, = (7~ &,)AA
© Faith A. Morrison, Michigan Tech U.
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Review

Molecular Forces (continued)

f, , the force in the 1-direction on an arbitrary surface dS is
composed of THREE parts.

;Y_/

stress appropriate
area

Using the distributive law:

fi=n- (Hllél +11,8 + H3163) ds

Force in the 1-direction on an
arbitrary surface dS

103
© Faith A. Morrison, Michigan Tech U.

Molecular Forces (continued)

The same logic applies in the 2-direction and the 3-direction

fi=n- (Hllél +116, + H31%) ds
f,=n. (H12él +11,8, + Haz%) ds
f=n- (H13él +11,8, + H33%) dS

Assembling the force vector:

f=16+16+18
= dS f- (Hlléj_ + H21é2 + H3lé3) él
+dS A- (H12él +11,8, + Hsz%) &
+dS A- (48 + a8, + T1536,) 6,

104
© Faith A. Morrison, Michigan Tech U.
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Review

Molecular Forces (continued)

Assembling the force vector:

f=1g+16+ 18

=dsSn. (Hllél +11,6, + H31é3) &
+dS N+ (T8 + 11,6, + T156,) 6
+dS A ([T, + T8, + TTe6s) 6

=dS N-[I1,66 + 11,66 + 1,86
+ 11,66, + 11,68, + [13.,6:6,

+ 1186 + 1,6 + Hss%@e]
“w o
v

linear combination of

dyadic products = tensor 105
© Faith A. Morrison, Michigan Tech U.

Molecular Forces (continued)

Assembling the force vector:

£ =dS N-[[1,,68 +T1,68 + 11,88
+ 11,68, + 11,68, + 115,66,

+11;56€; + 11,68, + H33®3%]
=dsn- 23: inpmépém

p=1m=1
=dS A-T1,,6.6,

f=dsnOi)

Total stress tensor
(molecular stresses)

106
© Faith A. Morrison, Michigan Tech U.
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Review

Intro, Mathematical

Momentum Balance (continued)

(rate of increase

Polymer Rheology

net flux of

] ( j (sum of ]
= +
of momentum in V momentum into V forces on V

Wa 2 (py)av =~{JIv-(ow)av + [ pg av +

molecular
forces

molecular
forces

-Jf A

” forces on
S

jsvﬂ (11 Jav

We use a stress sign
convention that
requires a negative
ds sign here.

molecular

dS\ Gauss
? Divergence
Theorem

107
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Momentum Balance (continued)

(rate of increase

Polymer Rheology

net flux of

] ( j (sum of ]
= +
of momentum in V momentum into V forces on V

(1 2 v =[5 (mov « [ og v+

molecular
forces

molecular

UR/Bird choice:
positive
compression
(pressure is
positive)

molecular
forces on

Divergence
Theorem

- H) ds \> Gauss

108
© Faith A. Morrison, Michigan Tech U.
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Review

Intro, Mathematical

Momentum Balance (continued) Polymer Rheology

Py - [ A-Cm)ds - [f f-@)as

surface

~

IT,, I

yX

UR/Bird (IEM/Mechanics

choice: fluid at choice: (opposite)
lesser y exerts

force on fluid at

greater y

109
© Faith A. Morrison, Michigan Tech U.
Momentum Balance (continued) Polymer Rheology

Final Assembly:
rate of increase net flux of sum of
(of momentum in Vj :(momentum into VjJ{forces on V)
T S owlav =—{[[v-(owav ][] pg v [[] v-mav
\% \% \% \%

m[a”- V-(pw)-pg +V-g}dvzo

Because V is arbitrary, we may conclude:

ooV Microscopic
9P | V'(,O\_/\_/)—pg +V-I1=0| momentum
ot - — balance

110

© Faith A. Morrison, Michigan Tech U.
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Review

Momentum Balance (continued) Polymer Rheology
Microscopic
opVv
momenum |02 | 7. (pyv)— pg +V-I1=0
balance ot - = =

After some rearrangement:

p(—gfw-wj:—vgwg voton
Dv
—==_V.I+

Now, what to do with l; ?

111
© Faith A. Morrison, Michigan Tech U.

Momentum Balance (continued) Polymer Rheology

Now, what to do with [ 2 Pressure is part of it.

Pressure

definition: An isotropic force/area of molecular origin. Pressure is
the same on any surface drawn through a point and acts normally to
the chosen surface.

pressure=pl=pe6+pee,+pes=

o O ©T
o T O
T O O

Test: what is the force on a
surface with unit normal 1i ?

112
© Faith A. Morrison, Michigan Tech U.
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Momentum Balance (continued) Polymer Rheology

back to our question,
Now, what to do with [ 2 Pressure is part of it.

There are other, nonisotropic stresses

Extra Molecular Stresses

definition: The extra stresses are the
molecular stresses that are not isotropic

Extra stress
tensor, i.e. everything complicated in
molecular deformation

Now, what to do with 7 ? This becomes the central
= question of rheological study s

© Faith A. Morrison, Michigan Tech U.

Momentum Balance (continued) Polymer Rheology
Stress sign UR/Bird
convention affects ‘120—';& fé“'dnat

) Sser y exerts
any expressions [=7+pl force on fluid at
with IT,IT or z,7 = = = greater y

ﬁ = i -p l (IEM/Mechanics

choice: (opposite)

114
© Faith A. Morrison, Michigan Tech U.
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Momentum Balance (continued)

Constitutive equations for Stress

Polymer Rheology

eare tensor equations

erelate the velocity field to the stresses

= f(VWy,

material properties)

generated by molecular forces

eare based on observations (empirical) or are
based on molecular models (theoretical)

«are typically found by trial-and-error

eare justified by how well they work for a
system of interest

eare observed to be symmetric

Observation: the stress
tensor is symmetric

115
© Faith A. Morrison, Michigan Tech U.

Momentum Balance (continued)

Polymer Rheology

Microscopic

momentum p(% +V- V\_/j =_V.

balance

Equation of

I+ 09| motion

In terms of the extra stress tensor:

p(%_l_\_/,v\_J =—Vp—V-£+pg Equation of

Motion

Cauchy
Momentum
Equation

Components in three coordinate systems (our sign convention):
http:/mww.chem.mtu.edu/~fmorriso/cm310/Navier2007.pdf

116
© Faith A. Morrison, Michigan Tech U.
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Momentum Balance (continued) Polymer Rheology

Newtonian Constitutive equation

r=—ulvv+(W)')

«for incompressible fluids (see text for
compressible fluids)

*is empirical

emay be justified for some systems with
molecular modeling calculations

Note: 7 = +,u(V\_/ +(Vv) ) 17

© Faith A. Morrison, Michigan Tech U.

Momentum Balance (continued) Polymer Rheology

How is the Newtonian
Constitutive equation related to
Newton’s Law of Viscosity?

ov,

T Ty =—H_—

T=- ,u(V\_/ +(Vv) ) n = X,
eincompressible fluids eincompressible fluids

erectilinear flow (straight lines)
*no variation in x5-direction

118

© Faith A. Morrison, Michigan Tech U.
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Momentum Balance (continued)

Back to the momentum balance . . .

oV j
CivW|=—Vp-V.
p(at = vE P

We can incorporate the Newtonian
constitutive equation into the momentum
balance to obtain a momentum-balance
equation that is specific to incompressible,
Newtonian fluids

Polymer Rheology

Equation of
Z+P9  Motion

L r=—ulvv+ (W) )

119
© Faith A. Morrison, Michigan Tech U.

Momentum Balance (continued)

Navier-Stokes Equation

Polymer Rheology

p(%w-w) =—Vp+uV?v+pg

convention.

eincompressible fluids
*Newtonian fluids

Note: The Navier-Stokes is
unaffected by the stress sign

120
© Faith A. Morrison, Michigan Tech U.
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Momentum Balance  (continued) Polymer Rheology

Next?

Navier-Stokes Equation

p(%ﬂ_l-w) =—Vp+uV?v+pg

Newtonian
Problem
Solving

121
© Faith A. Morrison, Michigan Tech U.

EXAMPLE: Drag flow from QUICK START

between infinite (2
parallel plates v = (Uz)
«Newtonian U3/ 123
ssteady state
sincompressible fluid —-—)
svery wide, long /
suniform pressure W m— \/
/
)
X I
1 V1(Xy) I_ll
X
1
X3

122
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EXAMPLE: Poiseuille
flow between infinite
parallel plates

*Newtonian

ssteady state
eIncompressible fluid
sinfinitely wide, long

EXAMPLE: Poiseuille
flow in a tube

*Newtonian

*Steady state
sincompressible fluid
elong tube

cross-section A:

fluid

1/14/2015
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EXAMPLE: Torsional
flow between parallel
plates

*Newtonian
*Steady state
sincompressible fluid

vy = zf(7)

C_‘DQ

cross-sectional
view:

— R

125

Chapter 4. Standard Flows
- VS. -

How can we investigate non-Newtonian behavior?

CM4650
Polymer Rheology
Michigan Tech

126
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Chapter 4. Standard Flows for Rheology

CM4650
Polymer Rheology

mr Michigan Tech
T 7, = constant
shear
H Z— ) X%
r—l; Xy
X3
et elongation
™\ N

127

© Faith A. Morrison, Michigan Tech U.

Onto... Polymer Rheology . .. B o
RS —}11 ?;'j\* #

We now know how to model Newtonian fluid motion, V(X,t), p(X,t) :

0
a_'?+ V. (p\_/) =0 Continuity equation

ov
p(é_g e VI === z v /)g Cauchy momentum equation
¥ 1 H H -
7= _;U(V\_/ + (V\_/) ) Newtonian constitutive equation

128
© Faith A. Morrison, Michigan Tech U.
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Rheological Behavior of Fluids — Non-Newtonian

How do we model the motion of Non-Newtonian fluid fluids?

Continuity equation

Cauchy Momentum Equation

Non-Newtonian constitutive equation

129
© Faith A. Morrison, Michigan Tech U.

Rheological Behavior of Fluids — Non-Newtonian

How do we model the motion of Non-Newtonian fluid fluids?

Continuity equation

Cauchy Momentum Equation

Non-Newtonian constitutive equation

This is the

missing piece 130
© Faith A. Morrison, Michigan Tech U.
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Chapter 7. GNF
Chapter 8: GLVE
Chapter 9: Advanced

Chapter 4: Standard flows
Chapter 5: Material Functions
Chapter 6: Experimental Data

Chapter 4. Standard Flows for Rheology

To get to constitutive
equations, we must
first quantify how
non-Newtonian fluids
behave

Constitutive equations

131
© Faith A. Morrison, Michigan Tech U.

What do we observe?

1. Strain response to imposed
shear stress %

V(%)
eshear rate is constant %

Rheological Behavior of Fluids — Newtonian

) = d—y =constant
AT

2. Pressure-driven flowin [
a tube (Poiseuille flow)

eviscosity is
constant
B 7APR*
B 8uL
4
Q i =constant
8uL
AP

3. Stress tensor in shear
flow

«only two components
are nonzero

0 7, O
=7, 0 O
0 0 O

132
© Faith A. Morrison, Michigan Tech U.
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Review

What do we observe?

Rheological Behavior of Fluids — Non-Newtonian

1. Strain response to imposed shear
stress .

g (%)
eshear rate is variable
X

Release
stress

3. Stress tensor in shear flow

2. Pressure-driven flow in atube [7]
(Poiseuille flow)

«all 9 components are

Normal - nonzero
stresses

sviscosity is variable

133
© Faith A. Morrison, Michigan Tech U.

Non-Newtonian Constitutive Equations

* We have observations that some materials
are not like Newtonian fluids.

< How can we be systematic about developing
new, unknown models for these materials?

_ Need measurements -
/ w NV
For Newtonian fluids, measurements _L.
were easy: XZI w65 H
e shear flow 7 l
+ one stress, T,; *s

e one material constant, u (viscosity)

X

z=tury + (V)"
134
© Faith A. Morrison, Michigan Tech U.
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Non-Newtonian Constitutive Equations

_ Need measurements

For non-Newtonian fluids,
measurements are not easy:

e shear flow (not the only choice)

e Four stresses in shear, 751,711, T22, T33

» Unknown number of material constants in z(v)
* Unknown number of material functions in z(v)

-

=227 / : \™ V
T =777 /w N
—-—

135
© Faith A. Morrison, Michigan Tech U.

Non-Newtonian Constitutive Equations

‘ Need measurements We know we

For non-Newtonian fluids, need to make

measurements are not easy: measurements to
know more,

e shear flow (not the only choice)

e Four stresses in shear, 751,711, T22, T33

» Unknown number of material constants in z(v)

* Unknown number of material functions in z(v)

—)

=277 / : \™ V
T =777 w N
—-—

%, T

1 V(%) '1'
» Xy
X3

136
© Faith A. Morrison, Michigan Tech U.
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Non-Newtonian Constitutive Equations

‘ Need measurements We know we

For non-Newtonian fluids, need to make

measurements are not easy: measurements to
know more,

e shear flow (not the only choice)

e Four stresses in shear, 751,711, T22, T33

» Unknown number of material constants in z(v)

* Unknown number of material functions in z(v)

But, because we do not
know the functional form of
z(v), we don’t know what we
need to measure to know
more!

T =777

137
© Faith A. Morrison, Michigan Tech U.

Non-Newtonian Constitutive Equations

What should we do?

138
© Faith A. Morrison, Michigan Tech U.
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Non-Newtonian Constitutive Equations

What should we do?

1. Pick a small number of simple flows Chapter 4: Standard flows

e  Standardize the flows
«  Make them easy to calculate with
e Make them easy to produce in the lab

139
© Faith A. Morrison, Michigan Tech U.

Non-Newtonian Constitutive Equations

What should we do?

1. Pick a small number of simple flows Chapter 4: Standard flows

e  Standardize the flows
«  Make them easy to calculate with
«  Make them easy to produce in the lab

2. Make calculations Chapter 5: Material Functions
3. Make measurements Chapter 6: Experimental Data

140
© Faith A. Morrison, Michigan Tech U.

1/14/2015

70



CM4650 Lectures 1-3: Intro, Mathematical

Review

Non-Newtonian Constitutive Equations

What should we do?

1. Pick a small number of simple flows Chapter 4: Standard flows

e  Standardize the flows
«  Make them easy to calculate with
e Make them easy to produce in the lab

Make calculations Chapter 5: Material Functions
Make measurements Chapter 6: Experimental Data

Try to deduce z(v)

Pon

Chapter 7: GNF
Chapter 8: GLVE
Chapter 9: Advanced

141

© Faith A. Morrison, Michigan Tech U.

Tactic: Divide the Problem in half

Modeling Calculations Experiments

= Dream up models

l Build experimental

Calculate model apparatuses that
predictions for Standard Flows allow measurements

stresses in standard in standard flows

flows l
Calculate material Determine material
functions from Compare functions from
model stresses measured stresses
Pass judgment
on models

\ g

Collect models and their report
cards for future use

142

© Faith A. Morrison, Michigan Tech U.
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Standard flows — choose a velocity field (not an apparatus or a
procedure)

*For model predictions, calculations are straightforward
For experiments, design can be optimized for accuracy and fluid
variety

Material functions — choose a common vocabulary of stress and
kinematics to report results

*Make it easier to compare model/experiment
*Record an “inventory” of fluid behavior (expertise)

143
© Faith A. Morrison, Michigan Tech U.

- VS. -

How can we investigate non-Newtonian behavior?

© Faith A. Morrison, Michigan Tech U.
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Simple Shear Flow

velocity field V,(H) =V =7,H
[ ] -
T 7, = constant
H Vi (%) Xy
| L. 5O
0 e v=| 0
[ 7N/ N7 ] ‘ V
4 4 O

123

path lines
145
© Faith A. Morrison, Michigan Tech U.

Near solid surfaces, the
flow is shear flow.

146
© Faith A. Morrison, Michigan Tech U.
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Experimental Shear Geometries

(z-plane

section)
>
>
f_- X

S0 Q,_*’>¢

%
LH .
- -6,
(z-plane —— 10
section) T
X (&plane (¢—plane
[y 2 il section) il section)
i i
—=i<0
=160
(@plane (a-pl_ane
(z-plane section) (z-plane section)
section) section)

o

147
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Standard Nomenclature for Shear Flow

Xy

'y

neutral /
direction

X3

gradient
direction

X
flow direction

148
© Faith A. Morrison, Michigan Tech U.
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Why is shear a standard flow?

esimple velocity field
erepresents all sliding flows
esimple stress tensor

X,
7 Vﬁ
Y
IV
A
I/l UV
7/ il // X1,
! 149
© Faith A. Morrison, Michigan Tech U.
How do
particles move | t-g v
apart in shear . —p
flow? RO
IO
Consider two L)
particles in the Vi) ¥
same X;-X,
plane, initially
along the x, t>0 ]
axis. w
? 777777 T 7777777777777 P2(70|2t,|20)
§ lo =1yt atlong
' times
””” R(7ohit. 10)
i) )E_xl
150
© Faith A. Morrison, Michigan Tech U.
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How do particles
move apart in
shear flow?

Consider two
particles in the
same x,-X, plane,
initially along the
X, axis (x;=0).

Each particle has a different

VoXz velocity depending on its x,
v=| 0 position: .
0 Vi =70%;
123
P: v=y 0|1
Pz - V=7 o|2

The initial x, position of each particle is x;,=0. After t
seconds, the two particles are at the following

positions:
Pl(t) X = 7o|1t
P, t): X = 70'2t
I
location = initial +[Ie_ngth j(time)
time

151
© Faith A. Morrison, Michigan Tech U.

particles after time t?

1 = Io2 +[70t(|2 _Il)]2

What is the separation of the

=lg +7ot’l; I~ 17,
= I(f (1+ 7 g tz) In shear the distance between
=1, :N: 7gtz ~ 1yt points is dlrec;[il%sropomonal to
negligibleas t— oo

152
© Faith A. Morrison, Michigan Tech U.
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Uniaxial Elongational Flow
N
an N 17
) P/ RN ‘ Q:;iw g -
RS N4« "R '7”4’&“? 1
ll o // \_\ N
PN "
&(t)
V= Ty %
st)x, | €t)>0
velocity field 123 153
© Faith A. Morrison, Michigan Tech U.

Uniaxial Elongational Flow

X
42 X3
4

g S/ /BANNNS
\E§\ ;7/;/

WL
S
_£O), )
.2 '
v= —?xz ét) >0
path lines ()% 154

123

© Faith A. Morrison, Michigan Tech U.
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Elongational flow occurs when there

Is stretching - die exit, flow through
contractions

L AN
~t—
- _%‘:‘ -—F D -

-

fluid -j
0

155
© Faith A. Morrison, Michigan Tech U.

Experimental Elongational Geometries

(@ N B\

X;

' To00C00 @ Y\
K_/‘ air-bed to support sample fluid

to to+At to+2At

=~

thin, lubricating
layer on each
plate R(to)

fx
B =

¥

R®) |heo

h(ts) o

_T_ T

156
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Sentmanat Extension Rheometer (2005)

«Originally developed for rubbers,
good for melts

*Measures elongational viscosity,
startup, other material functions
*Two counter-rotating drums
*Easy to load; reproducible

www.xpansioninstruments.com

http://www.xpansioninstruments.com/rheo-optics.htm 157
© Faith A. Morrison, Michigan Tech U.

Why is elongation a standard flow?

ssimple velocity field
srepresents all stretching flows
ssimple stress tensor

~t—

|

158
© Faith A. Morrison, Michigan Tech U.
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How do particles
move apart in
elongational flow?

X3
A

Consider two t=0
particles in the I
same X,-X; plane, R 0.0,
initially along the _ P, 2
X3 axis. I Y > X

3 0 P2 1

PZ[O,O,—I"]
2

159

© Faith A. Morrison, Michigan Tech U.

How do particles move apart in elongational flow?

In x33= Eot + C1 ;{ é

X3 = X3 (O)eéot

Consider two particles in the same x;-X; plane, initially along the x; axis.

€o
x1 == 0 _?xl 0
x; =0 v=| & = 0
. __.xz S
EpX
X3 varies ‘2 043 123
€0X3 / 133
dxg .
VU3 = —— = X
3 dt 0X3 X,
s _ odt t>0 !
x 0 f—f—4p,

P{O,O,'Oef’vt]
2

W
| = lyefot \‘\

!

Particles move apart exponentially fast.

> X

P, [o,o,"’e‘%t]
2

160
© Faith A. Morrison, Michigan Tech U.
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A second type of shear-free flow: Biaxial Stretching

before e

before &
P
after

I

air under
pressure
_¢ (t) X, after
0
et )
VEI - % | £t) <0
E(t)x, .
123 161

© Faith A. Morrison, Michigan Tech U.

How do uniaxial and biaxial deformations differ?

Consider a uniaxial
flow in which a a

particle is doubled
in length in the a
flow direction. 3 :
2a
a |
2 2 |
2

162

© Faith A. Morrison, Michigan Tech U.
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How do uniaxial and biaxial deformations differ?

Consider a biaxial

flow in which a a
particle is doubled

in length in the

] v

© Faith A. Morrison, Mlchlgan Tech U.

A third type of shear-free flow:

Planar Elongational Flow

—£(t)x
v=| o | >0 a
&(1)%, 123 a
a ‘
2a
g &

al2

© Faith A. Morrison, Michigan Tech U.
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All three shear-free flows can be written together as:

—%é(t)(1+ b)Xx,

—%é(t)(l—b)xz

<
Il

£(t)%,

123

Elongational flow: b=0, &t)>0
Biaxial stretching: b=0, &£(t) <0
Planar elongation: b=1, &(t) >0

165
© Faith A. Morrison, Michigan Tech U.

Why have we chosen these flows?

ANSWER:  Because these simple flows have
symmetry.

And symmetry allows us to draw
conclusions about the stress tensor
that is associated with these flows
for any fluid subjected to that flow.

166

© Faith A. Morrison, Michigan Tech U.
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In general:

U1 Ty T3
T=|Ty Ty Ty

Tar T3 733 )193

But the stress tensor is symmetric — leaving 6 independent
stress components.

Can we choose a flow to use in which there are fewer than 6
independent stress components?

Yes we can — symmetric flows

167
© Faith A. Morrison, Michigan Tech U.

How does the stress tensor simplify for
shear (and later, elongational) flow?

168
© Faith A. Morrison, Michigan Tech U.
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What would the velocity function be for a
Newtonian fluid in this coordinate system?

169
© Faith A. Morrison, Michigan Tech U.

What would the velocity function be for a
Newtonian fluid in this coordinate system?

170
© Faith A. Morrison, Michigan Tech U.
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Vectors are independent of coordinate system, but in general the
coefficients will be different when the same vector is written in two
different coordinate systems:

Vl \_/1
\_/: V2 = V2
Vs 123 Vs 123

For shear flow and the two particular coordinate systems we have
just examined, however:

\ vV —
_ X2 - X2
2H 2H
V= 0 = 0
0 0
123 123
171
© Faith A. Morrison, Michigan Tech U.
v X, L X2 B X,
2H 2H %
V= 0 = 0o | e < 1 > A
1
0 0 v_
123 123 / X2

If we plug in the same number in for x, and x,, we will NOT be
asking about the same point in space, but we WILL get the same
exact velocity vector.

Since stress is calculated from the velocity field, we will get the same
exact stress components when we calculate them from either
vector representation.

= This is an unusual
Un =Vp circumstance only true for
Tpk = fpk the particular coordinate
systems chosen.

172
© Faith A. Morrison, Michigan Tech U.
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What do we learn if we formally transform V. from
one coordinate system to the other?

173

© Faith A. Morrison, Michigan Tech U.

What do we learn if we formally transform ¢
from one coordinate system to the other?

él = _e_l
é, = —¢&,
€3 = €3

174
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What do we learn if we formally transform V. from
one coordinate system to the other?

T = Tmsm€s = Tms€mEs

(now, substitute from previous
slide and simplify)

You try.

175
© Faith A. Morrison, Michigan Tech U.

Conclusion:

Because of symmetry, there are only 5 nonzero components of the
extra stress tensor in shear flow.

SHEAR:
1 o O
=7 T O
O O T33 123

This greatly simplifies the experimentalists tasks as only four stress
components must be measured instead of 6 (recall 7,;= 745).

176
© Faith A. Morrison, Michigan Tech U.
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Summary:

We have found a coordinate system (the shear
coordinate system) in which there are only 5
non-zero coefficients of the stress tensor. In
addition, 1, = 14,.

This leaves only four stress components to be
measured for this flow, expressed in this
coordinate system.

177
© Faith A. Morrison, Michigan Tech U.

How does the stress tensor simplify for
elongational flow?

X

A

> X1, Xy «

%
7NN

N \\‘ I,
7

v

There is 180° of symmetry around all three
coordinate axes.

178

© Faith A. Morrison, Michigan Tech U.
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Because of symmetry, there are only 3 honzero components of the
extra stress tensor in elongational flows.

ELONGATION:

This greatly simplifies the experimentalists tasks as only three
stress components must be measured instead of 6.

179
© Faith A. Morrison, Michigan Tech U.

Standard Flows Summary

Choose velocity field: Symmetry alone implies:

(no constitutive equation needed yet)

s
2 ny 7o O
v=| O
- r=|tn 7 O
0 123 0 O T33 123
1.

—%é:(t)(1+b)x1 - 0 0
v= _Eé(t)(l_b)xz i: 0 2y 0

123

By choosing these symmetric flows, we have reduced the number of stress
components that we need to measure.

180
© Faith A. Morrison, Michigan Tech U.
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Tactic: Divide the Problem in half

Modeling Calculations

Experiments

= Dream up models

!

Calculate model
predictions for
stresses in standard
flows

v

Calculate material
functions from
model stresses

Build experimental
apparatuses that
allow measurements
in standard flows

)

Determine material
Compare functions from

measured stresses

Pass judgment
on models

\ g

Standard Flows

© Faith A. Morrison, Michigan Tech U.

Collect models and their report
cards for future use

181

Next, build and assume this

Symmetry alone implies:
i e needed yet)

Measure and
predict this

—%é(t)(1+ b)x,

v= —%é(t)(l—b)xz

()X,

182
© Faith A. Morrison, Michigan Tech U.
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One final comment on measuring stresses. . .

What is measured is the total stress, L1 :

P+7y, 712 T13
= 7, P+7y T3
Ta T3 p + T33 123

For the normal stresses we are faced with the
difficulty of separating p from z;.

Compressible fluids: Incompressible fluids:
Get p from
— nRT measurements of
V Tand V.

183
© Faith A. Morrison, Michigan Tech U.

Density does not vary (much) with pressure for polymeric fluids.

—— gas density

=== polymer density
~ = incompressible fluid

0 50 100 150 200 250 300
Pressure (MPa)
184

© Faith A. Morrison, Michigan Tech U.
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For incompressible fluids it is not possible to separate p from ;.

Luckily, this is not a problem since we
onlyneed V-I1=Vp+V-z

Equation of motion

%+\_/-V\_/=—V£+pg

=-VP-V.z+pg

Solution? Normal stress differences

© Faith A. Morrison, Michigan Tech U.

We do not
need g;
directly to
solve for
velocities

185

Normal Stress Differences

First normal stress

difference Nl = Hll - sz =Ty~ Ty

Second normal stress _ _
N, =11, -1l =7

difference

In shear flow, three stress

22 ~ T33

guantities are measured Tops le N 2

In elongational flow, two stress

quantities are measured  T33 — 711y Tpp — Tqq

© Faith A. Morrison, Michigan Tech U.
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Normal Stress Differences

First normal stress

difference N1 = Hll — sz =TTy
Second normal stress _ _
difference N, =11, -l =7, — 175
Are shear
In shear flow, three stress normal
quantities are measured Ty _ stress
differences
real?

In elongational flow, two stress
quantities are measured T33 — 7113 Typ — 714

187
© Faith A. Morrison, Michigan Tech U.

First normal stress effects: rod climbing
71— 722 <0
Extra tension in the 1-direction pulls
azimuthally and upward (see DPL p65).

i
i
3
i
i
3
F

Newtonian - glycerin Viscoelastic - solution of
polyacrylamide in glycerin

Bird, et al., Dynamics of Polymeric Fluids, vol. 1,
Wiley, 1987, Figure 2.3-1 page 63. (DPL)

188
© Faith A. Morrison, Michigan Tech U.
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Second normal stress effects: inclined open-

channel flow T —733>0

Extra tension in the 2-direction pulls down the free
surface where dv, /dx, is greatest (see DPL p65).

Newtonian - glycerin Viscoelastic - 1% soln of
polyethylene oxide in water
R. I. Tanner, Engineering Rheology, 189

Oxford 1985, Figure 3.6 page 104 . ) o
© Faith A. Morrison, Michigan Tech U.

Example: Can the equation of motion predict
rod climbing for typical values of N;, N,?

z cross-section A:
A

—l-0 0 < |
fIUId\EjS V= \g B @

What is %?
dr

www.chem.mtu.edu/~fmorriso/cm4650/rod_climb.pdf

. 190
Bird et al. p64 © Faith A. Morrison, Michigan Tech U.
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What’s next?

Shear

Shear-free
(elongational,
extensional)

YE

QU
0

<
Il

0

123

Even with just these 2 (or 4)
standard flows, we can still generate
an infinite number of flows by

varying ¢ (t) and £(t).

—%1+ b)x,

—%é(t)(l—b)xz
£(t)Xs

123

Elongational flow: b=0, £(t) >0
Biaxial stretching: b=0, £(t) <0
Planar elongation: b=1, &(t) >0

191

© Faith A. Morrison, Michigan Tech U.

We seek to
guantify the
behavior of non-
Newtonian fluids

© Faith A. Morrison,
Michigan Tech U.

Procedure:

1. Choose a flow type (shear or a type of elongation).

2. Specify ¢(t) or £(t) as appropriate.

3. Impose the flow on a fluid of interest.

4. Measure stresses.

o1 Ny Ny

T3~ hn T~

5. Report stresses in terms of material functions.

6a. Compare measured
material functions with
predictions of these material
functions (from proposed
constitutive equations).

7a. Choose the most
appropriate constitutive
equation for use in numerical
modeling.

6b. Compare measured
material functions with
those measured on other
materials.

7a. Draw conclusions on
the likely properties of the
unknown material based
on the comparison.

192

1/14/2015
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Chapter 5. Material Functions

Steady Shear Flow Material Functions

Kinematics:

SO . )
v=| 0 ¢(t) = y9 = constant
0 123

Material Functions:

First normal-stress ¥ = - (Tll - 722)
> T —
_ —Tpq coefficient 75

70

Second normal- |y, = - (122 — Z'33)

Viscosity stress coefficient },5

© Faith A. Morrison, Michigan Tech U.

CM4650
Polymer Rheology
Michigan Tech

.I ull'ﬁmlug):

193

© Faith A. Morrison, Michigan Tech U.

QUALITY CONTROL

compare with other
in-house data on K
qualitative basis unknown

Role of Material Functions in Rheological Analysis

QUALITATIVE ANALYSIS

compare data with
literature reports on
various fluids

L

\ material /
conclude whether or

not a material is measure material
appropriate for a functions, e.g. 7,
specific application G'(w), G"(w), G(t)

conclude on the probable
physical behavior of the

fluid based on comparison

with known fluid behavior

l

MODELING WORK

compare measured with predicted ‘h

conclude which constitutive equation is
best for further modeling calculations

© Faith A. Morrison, Michigan Tech U.

calculate predictions of
material functions from
various constitutive
equations

194
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QUALITY CONTROL

compare with other
in-house data on
qualitative basis

conclude whether or
not a material is
appropriate for a

specific application

! \ 1

G'(w), G"(W), G(Y)

Role of Material Functions in Rheological Analysis

unknown
material

measure material
functions, e.g. 7,

/ conclude on the probable

We will
fOCUS here MODELING WORK calculate predictions of
i material functions from
first ‘ compare measured with predicted ‘():I various constitutive

QUALITATIVE ANALYSIS

compare data with
literature reports on
various fluids

physical behavior of the
fluid based on comparison
with known fluid behavior

equations

conclude which constitutive equation is
best for further modeling calculations o
it A. Morrison, Michigan Tech U.

Material function definitions

("1. Choice of flow (shear or elongation)

=~

2. 1

S . ——=£

('3() c(t)x, 2 £+b)x, Elongational flow: b=0, £(t) >0

% < v=| 0 V= —%é(t)(l—b)xz Biaxial stretching: b=0, £(t) <0

S 0 ()X Planar elongation: b=1, &(t) >0
123 ’

123

2. Choice of details of g(t) Or £(t).

3. Material functions definitions: will be based on

in elongational flows.
196

© Faith A. Morrison, Michigan Tech U.
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(I call these my “recipe cards”)
Steady Shear Flow Material Functions

Kinematics:
c®x , _
v=| 0 ¢(t) = o = constant
0 123

Material Functions:

First normal-stress ¥ = - (Tll - Z'22)

. . - . 2
_ —Tpq coefficient 70
70
) . Second normal- |\, — — (722 - 733)
Viscosity stress coefficient | = 2 7’5

197
© Faith A. Morrison, Michigan Tech U.

How do we predict material functions?

ANSWER: From the constitutive equation.

z=T1(v)

What does the Newtonian Fluid model predict in
steady shearing?

198
© Faith A. Morrison, Michigan Tech U.
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What does the Newtonian Fluid model predict
in steady shearing?

e

You try.

© Faith A. Morrison, Michigan Tech U.

199

What do we measure for these
material functions?

(for polymer solutions, for example)

© Faith A. Morrison, Michigan Tech U.
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Steady shear viscosity and first
normal stress coefficient

1.E+05
\PO
¥ O
o A
-E--EBE- g -- A
n, "w
Poise 1.E+04 - mA
R
v, N
(dyn/cm?)s? = n(y)
)
1.E+03 - A 1]
m
k<1 (7 ) A
1.E+02 T T
0.01 0.1 1 10 100
Figure 6.1, p. 170 Menzes and 7, g1

Graessley conc. PB solution

SOR Short Course Beginning Rheology

201
© Faith A. Morrison, Michigan Tech U.

Steady shear viscosity and first
normal stress coefficient

1.E+06 1.E+09
°
%, ® <:L n
1E+05 Ny % 1E+08
A A 0
BEoEE mm -A &
LE+04 5 o, LE+07
e = o
o X 0’!% £
@ 813 kg/mol § LE+03 5 g LE*06
A 517 kg/mol g g
@ 350 kg/mol & 1E+02 1E+05 ©
@ 200 kg/mol Dom =
i
LE+01 = LE+04
o (S )
1.E+00 5 1.E+03
0
LE-01 s 1E+02
Figure 6.2, p. 171 Menzes and = ‘ '
; 0.01 0.1 1 10 100
Graessley conc. PB solution; . -1
¢=0.0676 g/cm? vy S
202

SOR Short Course Beginning Rheology

© Faith A. Morrison, Michigan Tech U.
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Steady shear viscosity for linear
and branched PDMS

e
joe0e .,

4] tocoong o
+ linear 131 kg/mole "o

A pranched 156 kg/mole 5 U

[ linear 418 kg/mol g i

# branched 428 kg/mol *

7 (Pa.s)

[]
2 -mﬁMnAAﬁmhﬁ‘* Q%
B CY
&
Aat

Figure 6.3, p. 172 Piau et al.,

linear and branched PDMS
203

SOR Short Course Beginning Rheology © Faith A. Morrison, Michigan Tech U.

What have material functions taught us so far?

*Newtonian constitutive equation is inadequate

1. Predicts constant shear viscosity (not always
true)

2. Predicts no shear normal stresses (these
stresses are generated for many fluids)

*Behavior depends on the material (chemical structure,
molecular weight, concentration)

204
© Faith A. Morrison, Michigan Tech U.
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Can we fix the Newtonian Constitutive Equation?

Let’s replace p with

a function of shear

rate because we r=-M (70 ){VM . (VM)T ]
want to predict a

non-constant

viscosity in shear

205
© Faith A. Morrison, Michigan Tech U.

What does this model predict for steady shear viscosity?

£ =M (7, [Vu+ (Vo) |

206
© Faith A. Morrison, Michigan Tech U.
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What does this model predict for steady shear viscosity?

207
© Faith A. Morrison, Michigan Tech U.

What does this model predict for steady shear viscosity?

£ =M (7,)Vy-+(Vy) |

Answer: n=M (770)

208
© Faith A. Morrison, Michigan Tech U.
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If we choose: .
M }.,O ={ .n-1 =
My, %27

logn
slope = (n-1)

log 7,
Problem solved!

209
© Faith A. Morrison, Michigan Tech U.

But what about the normal stresses?

£ =M (7, vy -+ (Vv |

0O 0O 0 7, O It appears that z
. ] ) should not be
Vv=7, 0 0 =170 0 0 simply proportional
to y
0 00), 0 0 0/, L
Try something else ... Z=-#7+1 ()

= f(v) Vv- (V)
=A [Vv % ]+ BVv+C(Vv)

ML I

210
© Faith A. Morrison, Michigan Tech U.
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But which ones?

To sort out how to fix the Newtonian equation,
we need more observations (to give us ideas).

Let’s try another material function that’s not a
steady flow (but stick to shear).

211

© Faith A. Morrison, Michigan Tech U.

Start-up of Steady Shear Flow Material Functions

Kinematics:
c()x 0 t<0
V= 0 (1) =
¥=| 0 c(t) J 120

123

Material Functions:

. —Ty(t
G
Yo

Shear stress
growth
function

First normal-stress

growth function

Second normal-
stress growth
function

v _(711_722)

2
v _(722 _733)
2 .2

Yo

212

© Faith A. Morrison, Michigan Tech U.
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What does the Newtonian Fluid model predict in
start-up of steady shearing?

Again, since we know V, we can just
plug it in and calculate the stresses.

213
© Faith A. Morrison, Michigan Tech U.

What does the Newtonian Fluid model predict in start-
up of steady shearing?

214
© Faith A. Morrison, Michigan Tech U.
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Material functions predicted for start-up of steady
shearing of a Newtonian fluid

N
7 )
0 t<0 |
n(t) =
t>0 H
T+=_(T11_T22)—0 t
1 — .2 -
Yo
( ) Do these predictions
pr=_\'2"Ts)_ g match observations?
2 = .2
7o 215
© Faith A. Morrison, Michigan Tech U.
. c(t)x
Startup of Steady Shearing v=l o 2 ] 0 t<O0
= g(t)=+ . (50
123 7o -
10° T T T T
1
2 10| 4 4
: J:
;; 103 b S‘ h
b’ ;
1° 1(;-2 10"' 1(1)0 1:)1 102 * 1
s
+_"T (t) L
nt=—2 10! 10-1 100 10! 102
Yo Ls
Figures 6.49, 6.50, p. 208
Menezes and Graessley, PB soln 216

SOR Short Course Beginning Rheology

© Faith A. Morrison, Michigan Tech U.
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What about other non-steady flows?

217
© Faith A. Morrison, Michigan Tech U.

Cessation of Steady Shear Flow Material Functions
Kinematics:
~(t)x: .
s®x . 7, t<0
v=| 0 ¢(t) =
. 0 t>0
123
Material Functions:
First normal-stress - _ — (711 ~ T )
=T, (t decay function ~1 — .2
0 2
Yo ( )
- _ —\T,, —T
Shear stress Second normal- gy~ _ 7 1722 — 733)
decay function stress tlecay — 2 2
Y function 7o
218
© Faith A. Morrison, Michigan Tech U.
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. _ cO%) 7y t<0
Cessation of Steady Shearing B ()=
v=| 0 0 t>0
0 123
100 100
IX1071F

3
~ 3
Ke 10~! E = g0t
£ 3
= 5
Ne]
) 3% 10721
=

1072 10-2 I
0 2 4 6
1S
1 1 1 _ —\7.,. — T
0 5 4 6 ¥ = ( 11_ - 22)
Ls 7o
Figures 6.51, 6.52, p. 209 Menezes
and Graessley, PB soln
219
SOR Short Course Beginning Rheology © Faith A. Morrison, Michigan Tech U.

What does the model we guessed at predict
for start-up and cessation of shear?

£ =M (7, )Vu+ (V) |

MD 7D<713

M(7,)=
Ym0,

220
© Faith A. Morrison, Michigan Tech U.
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What does the model we guessed at predict
for start-up and cessation of shear?

£ =M (, )vu+ (V)]
M(7o)= M.

.n-1 . .
my, -

You try.

221
© Faith A. Morrison, Michigan Tech U.

Menzes and Graessley, conc. PB solution; 350 kg/mol
100000 ‘
@ viscosity poise
X Predicted by Fake-O model
® B8 ¥ & x
10000 ® %
2
2 R
Z &
g - 2
2 M, =18,000 poise ®
1000 1 =12,000 R
2
n=0.24
7, =0.67s
100
0.01 0.1 1 10 100
shear rate, 1/s 222
© Faith A. Morrison, Michigan Tech U.
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£ =M (3, vy (vu) |

N,
. M - - 0 0 c
Observations ) {mz’é‘“l P27,

*The model predicts an instantaneous stress
response, and this is not what is observed for
polymers

*The predicted unsteady material functions depend
on the shear rate, which is observed for polymers

n" =n"(t,y,) <= Progress here
*No normal stresses are predicted

223
© Faith A. Morrison, Michigan Tech U.

£ =M (7, 7y (vu) |

G
i M . - 0 0 c
Observations (7o) {myg"l 1=,
*The model predicts an instantaneous stress
response, and this is not what is observed for
polymers <4=mm | acks memory

*The predicted unsteady material functions depend
on the shear rate, which is observed for polymers

n"=n"(t,y,) <=m== Progress here

*No normal stresses are predicted <4=smm Related to
nonlinearities

224
© Faith A. Morrison, Michigan Tech U.
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To proceed to better-designed constitutive equations,
we need to know more about material behavior, i.e.
we need more material functions to predict, and we
need measurements of these material functions.

*More non-steady material functions (material functions that tell
us about memory)

*Material functions that tell us about nonlinearity (strain)

225
© Faith A. Morrison, Michigan Tech U.

Summary of shear rate kinematics (part 1)

a. Steady

b. Stress
Growth

c. Stress
Relaxation

é'(t) 721(0,t) TZl(t)
t
7 7o 7y
i
0 t 0 t 0 t
) 72 0,t) 75, )
; T =
} /
0 t 0 t 0 t
§(t) 721(0,t) 721(t)
Ea
7o
0 t
0 t 0 t

226
© Faith A. Morrison, Michigan Tech U.
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The next three families of material functions
incorporate the concept of strain.

227
© Faith A. Morrison, Michigan Tech U.
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