Experiments Data
Summary

1. Shear Stress Flow

A. Linear polymers

\[\psi \approx -\frac{1}{10} \psi \] (the effect of shear rate)
B. Effect of MW

- Increasing MW

\[\log \eta \]

- Strong
 - Linear in \(\eta \)
 - MW at low rates
 - MW at high rates becomes independent of MW

\[(\text{MW} = \text{mol} \cdot \text{wt.}) \]
There are different M_c's for different polymers. For entanglement, M_c = critical molecular weight.
C. Effect of Molecular Weight Distribution

\[\log \eta \]

\[\text{broad MWD} \]

\[\text{narrow MWD} \]

D. Branching
- Slows down relaxation
- Has complex effect on \(\eta \)
E. Effect of filler

\[\log \eta \] \quad \text{no increases with increasing filler concentration} \quad \log \eta

F. Temperature effect:

it's an important effect
2. Time Dependent

 A. Startup
 \[\log \eta^+ \] \[
 \log t \quad \text{increasing } \psi^+ \]

 B. Cessation
 \[\log \eta^- \] \[
 \log t \quad \text{decreasing } \psi^- \]
c. SAOS (G', G'')

- log G', G''
- G''
- G'
- terminal zone
- log W
- rubbery zone
- glassy zone
- entanglement plateau
- 10^9 Pa
- 10^4 - 10^5 Pa

breadth of plateau increases with MW
\[\text{Cox-Mroz Rule} \]

\[\text{C}_x = 0.05 \text{ unit} \]

\[27 \text{ m/s} \]

\[x = 3 \text{ m} \]

\[\frac{v}{g} \]

\[s_{100} \]

\[\theta \]

\[\text{form} \]

\[\triangle y = \frac{7 \text{ in}}{5/2} \]
3. Strain Dependence

A. Skip Strain Exp

\[\log G(t, \delta_0) = \delta_0 = \text{strain} \]

If we shift high \(\delta \) curves up we get a master curve

\[\log (G(t, \delta_{\text{shifted}})) \]

\[\log t \]

\[\log \delta_0 \]
1. Elongational Data

- Zero shear elongation
- Make zero shear elongation in SAOE
- Strain dependence + dependence separable

\[\eta_0 = 370 \]

Traction's Law