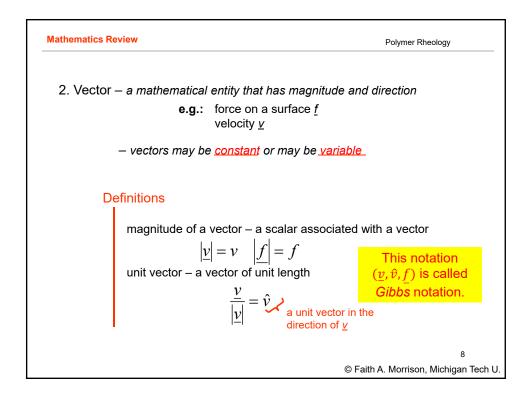
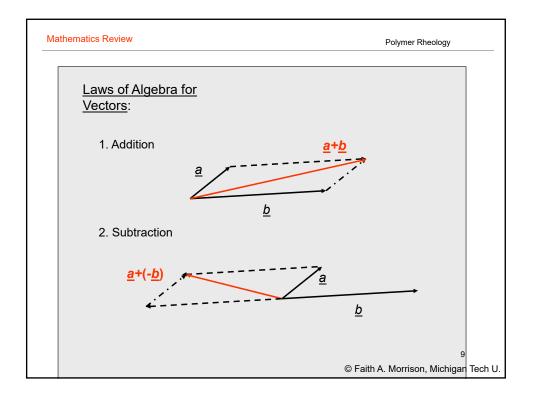
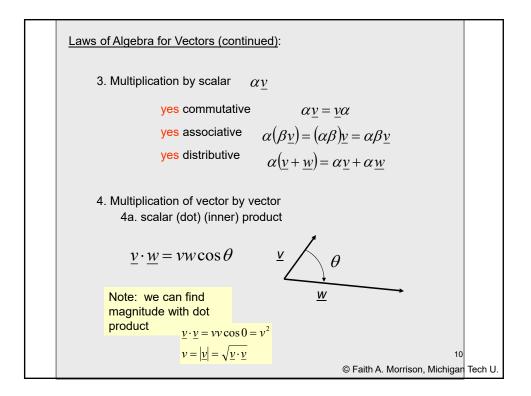
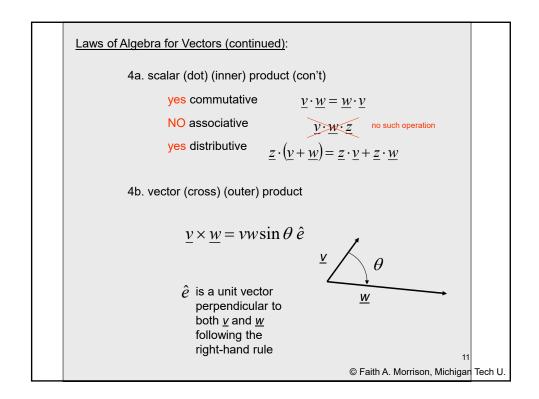


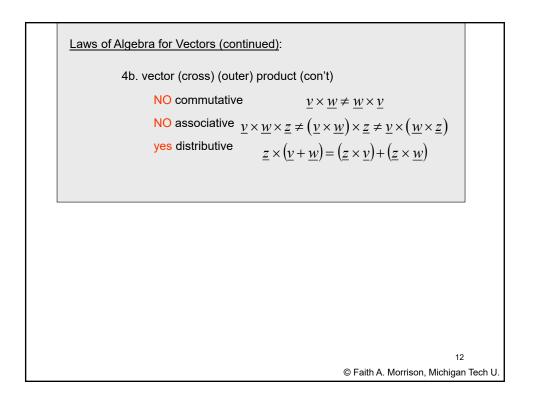
Chapter 2: Ma	thematics Review
1. Scalar – a mathematical	entity that has magnitude only
e.g.:	temperature T speed <i>v</i> time <i>t</i> density r
– scalars may be	e constant or may be variable
<u>Laws of Algebra for</u> <u>Scalars</u> :	yes commutative ab = ba yes associative a(bc) = (ab)c yes distributive a(b+c) = ab+ac
	7 © Faith A. Morrison, Michigan Tec

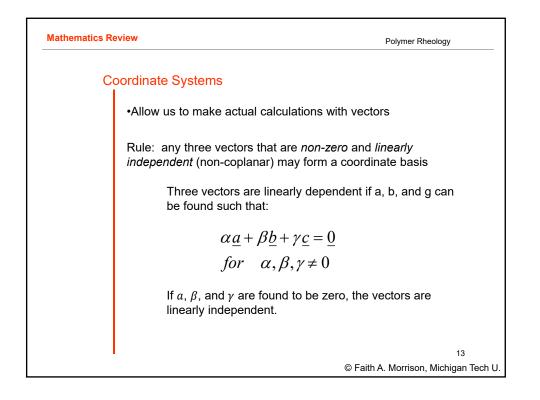


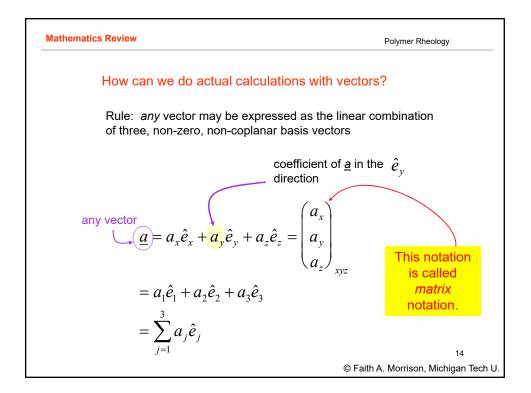


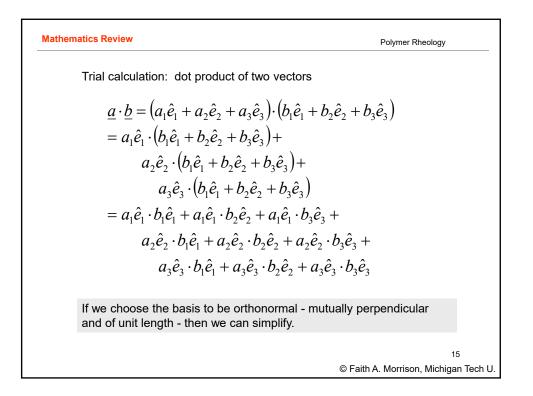




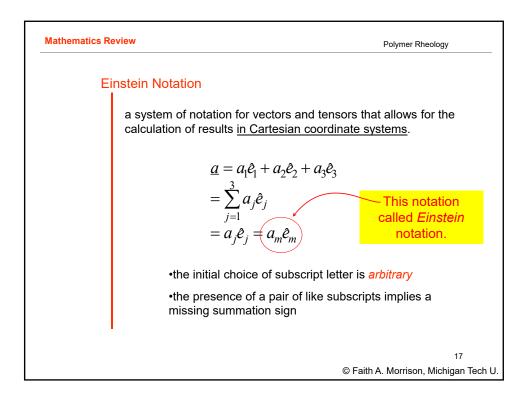


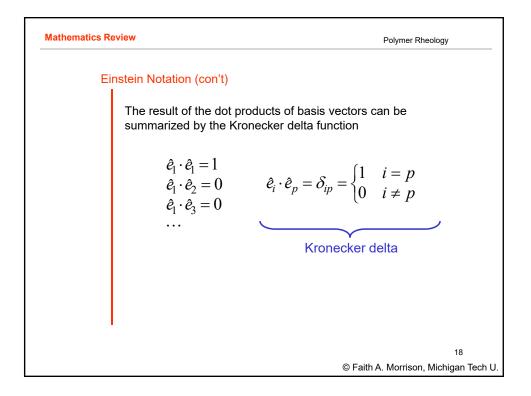


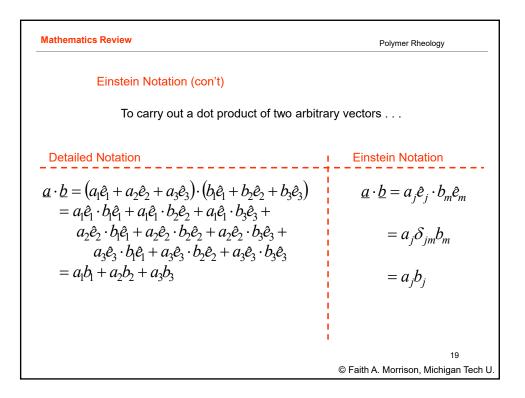


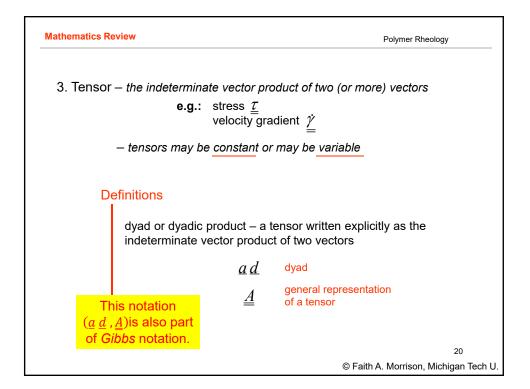


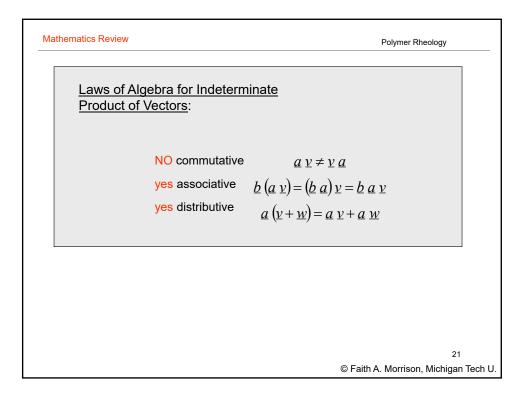
Mathematics Review	Polymer Rheology
If we choose the basis to be orthonormal - mutu and of unit length, then we can simplify.	ually perpendicular
$\hat{e}_1 \cdot \hat{e}_1 = 1$ $\hat{e}_1 \cdot \hat{e}_2 = 0$ $\hat{e}_1 \cdot \hat{e}_3 = 0$ \cdots	
$\underline{a} \cdot \underline{b} = a_1 \hat{e}_1 \cdot b_1 \hat{e}_1 + a_1 \hat{e}_1 \cdot b_2 \hat{e}_2 + a_1 \hat{e}_1 \cdot a_2 \hat{e}_2 \cdot b_1 \hat{e}_1 + a_2 \hat{e}_2 \cdot b_2 \hat{e}_2 + a_2 \hat{e}_3 \hat{e}_3 \cdot b_1 \hat{e}_1 + a_3 \hat{e}_3 \cdot b_2 \hat{e}_2 + a_3 \hat{e}_3 \cdot b_1 \hat{e}_1 + a_3 \hat{e}_3 \cdot b_2 \hat{e}_2 + a_3 \hat{e}_3 \cdot b_2 \hat{e}_3 \cdot b_2 \hat{e}_3 + a_3 \hat{e}_3 \cdot b_3 \hat{e}_3 \hat{e}_3 \cdot b_3 \hat{e}_3 \hat{e}_3 \cdot b_3 \hat{e}_3 \hat{e}_3 \cdot b_3 \hat{e}_3 \hat{e}_3$	$(e_2 \cdot b_3 e_3 + $
We can generalize this operation with a technique	e called Einstein notation.
	16 © Faith A. Morrison, Michigan Tech U.

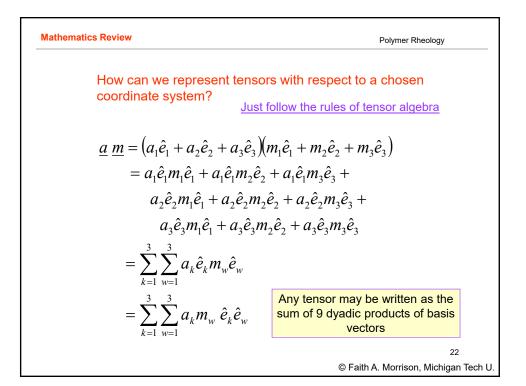


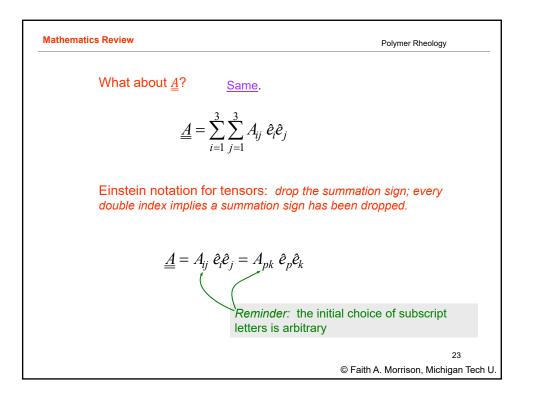


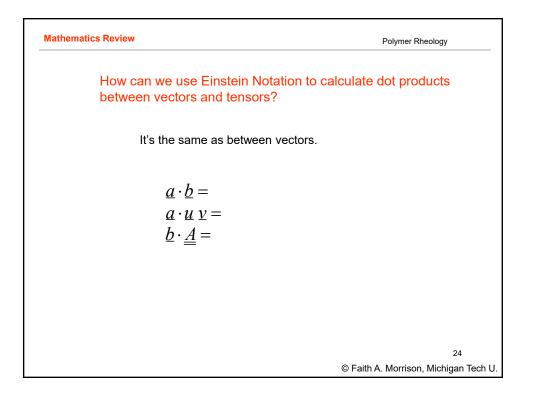


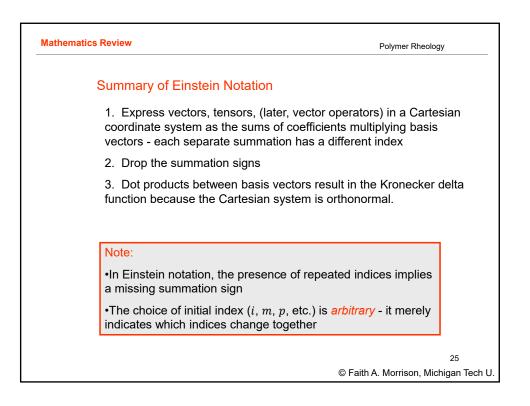


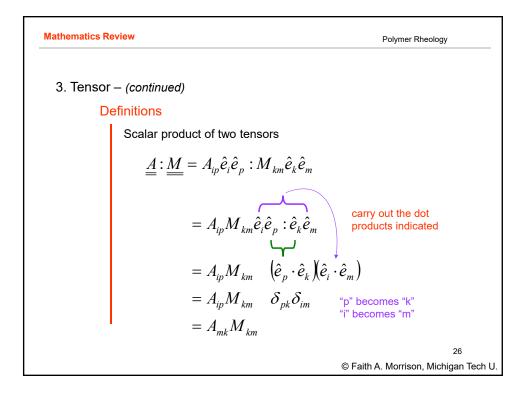


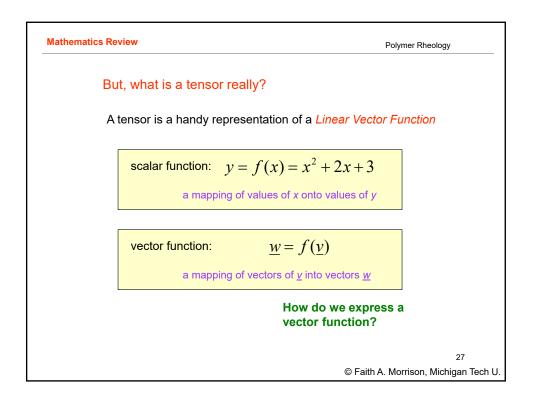


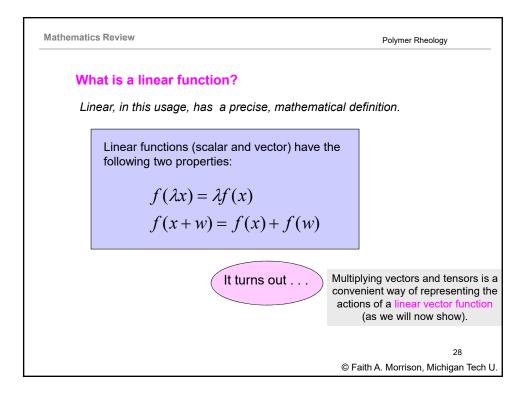


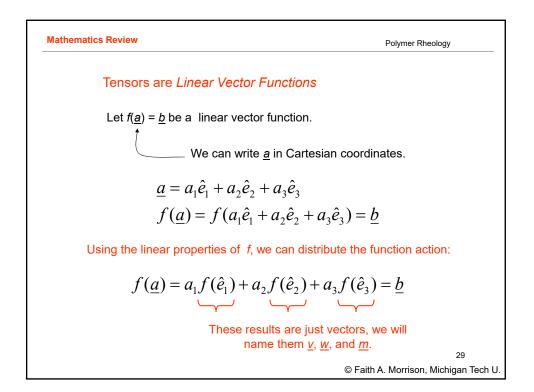


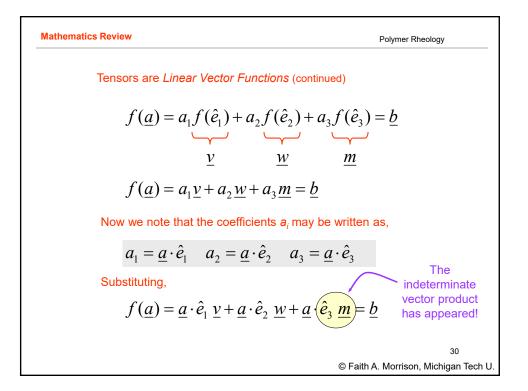


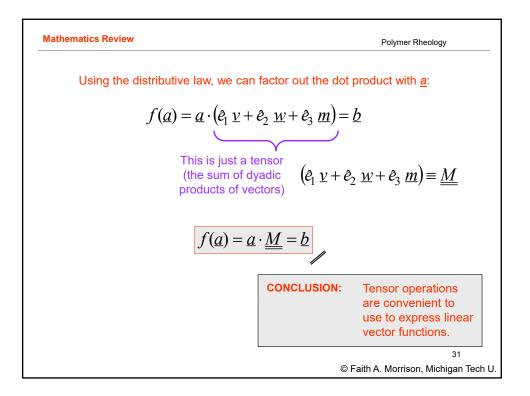




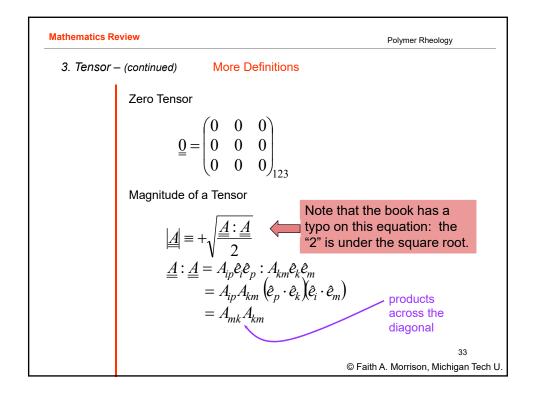








Mathematics Review	Polymer Rheology
3. Tensor – (continued)	
More Definitions	
Identity Tensor	
$\underline{\underline{I}} = \hat{e}_i \hat{e}_i = \hat{e}_1 \hat{e}_1 + \hat{e}_2 \hat{e}_2 + \hat{e}_3 \hat{e}_3$ $= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}_{123}$	
$\underline{\underline{A}} \cdot \underline{\underline{I}} = A_{ip} \hat{e}_i \hat{e}_p \cdot \hat{e}_k \hat{e}_k$ $= A_{ip} \hat{e}_i \delta_{pk} \hat{e}_k$	
$= A_{ik} \hat{e}_i \hat{e}_k$ $= \underline{\underline{A}}$	
	32 © Faith A. Morrison, Michigan Tech U.

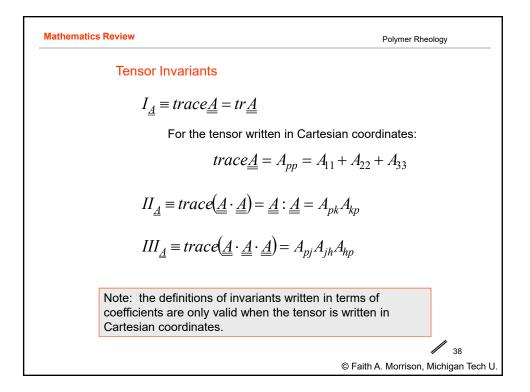


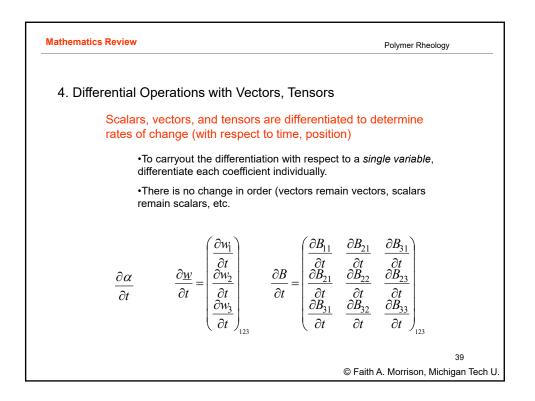
Mathematics R	eview	Polymer Rheology
3. Tensor	- (continued) More Definitions	
	Tensor Transpose	
	$\underline{\underline{M}}^{T} = \left(M_{ik} \hat{e}_{i} \hat{e}_{k} \right)^{T} = M_{ik} \hat{e}_{k} \hat{e}_{i}$	Exchange the coefficients across the diagonal
	CAUTION:	
	$\left(\underline{\underline{A}} \cdot \underline{\underline{C}}\right)^{T} = \left(A_{ik}\hat{e}_{i}\hat{e}_{k} \cdot C_{pj}\hat{e}_{p}\hat{e}_{j}\right)^{T} =$	$= \left(A_{ik} C_{pj} \ \hat{e}_i \hat{e}_j \delta_{kp} \right)^T$
	$= \left(A_{ip}C_{pj} e_i e_j\right)^T$	
	$= A_{ip} C_{pj} \ \hat{e}_j \hat{e}_i$	I recommend you always
	It is not equal to: $(\underline{\underline{A}} \cdot \underline{\underline{C}})^T = (\underline{A}_{ip}C_{pj})^T$	$(\hat{e}_i \hat{e}_j)^T$ interchange the indices on the basis vectors
	$\neq A_{pi}C_{pp}$	coefficients.
		34
		© Faith A. Morrison, Michigan Tech U.

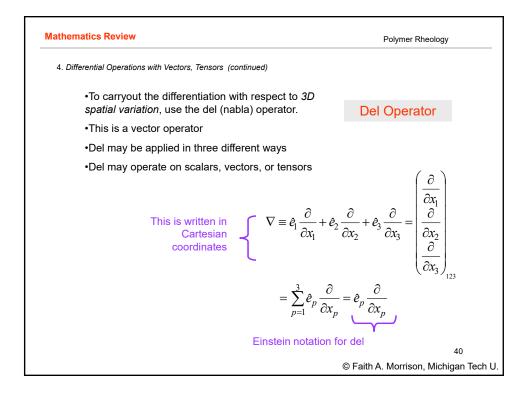
Mathematics R	leview	Polymer Rheology
3. Tensor	- (continued) More Definition	ons
	Symmetric Tensor	e.g.
	$\underline{\underline{M}} = \underline{\underline{M}}^{T} \\ \overline{M}_{ik} = \overline{M}_{ki}$	$ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{pmatrix}_{123} $
	Antisymmetric Tensor	e.g. $(0, -2, -3)$
	$\underline{\underline{M}} = -\underline{\underline{M}}^{T}$ $\underline{\overline{M}}_{ik} = -\overline{M}_{ki}$	$ \begin{pmatrix} 0 & -2 & -3 \\ 2 & 0 & -5 \\ 3 & 5 & 0 \end{pmatrix}_{123} $
		35 © Faith A. Morrison, Michigan Tech I

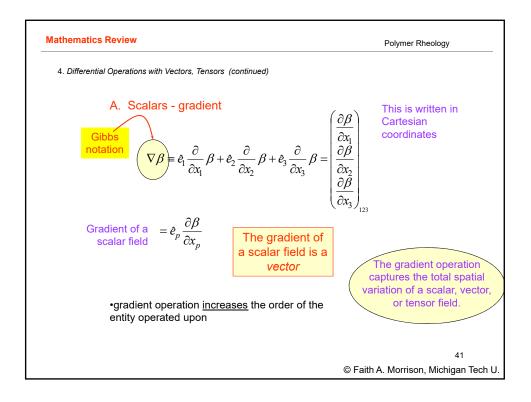
Mathematics Revie	}W		Polymer Rheology
3. Tensor – (a	Tensor order	More Definitions	
	be tensor	s (entities that exist inc	ay all be considered to dependent of coordinate fferent <mark>orders</mark> , however.
	order = de	egree of complexity	
	scalars	0 th -order tensors	30
	vectors	1 st -order tensors	3 ¹ Number of coefficients
	tensors	2 nd -order tensors	3 ² heeded to express the
	higher- order tensors	3 rd -order tensors	3 ³ tensor in 3D space
			36
			© Faith A. Morrison, Michigan Tech U.

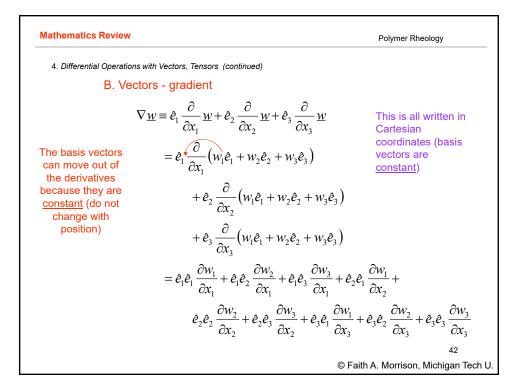
Mathematics R	eview		Polymer Rheology				
3. Tensor -	3. Tensor – (continued) More Definitions						
	Tensor Invariants						
	Scalars that are associated with tensors; these are numbers that are independent of coordinate system.						
	vectors:	v = v	The magnitude of a vector is a scalar associated with the vector				
			It is independent of coordinate system, i.e. it is an invariant.				
	tensors:	<u>A</u>	There are three invariants associated with a second-order tensor.				
			37 © Faith A. Morrison, Michigan Tech U.				

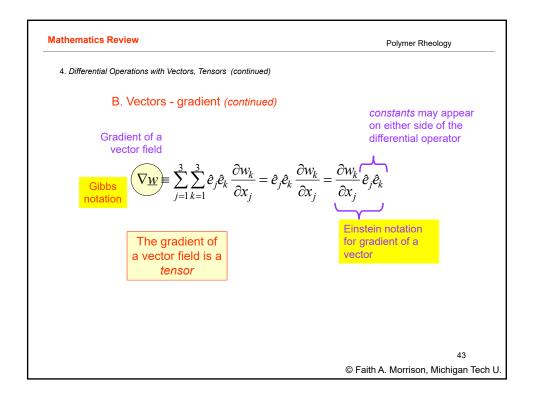


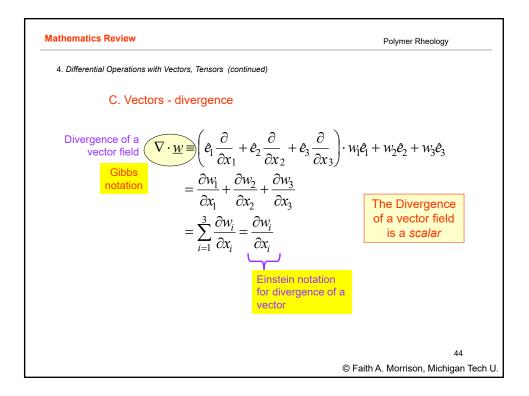


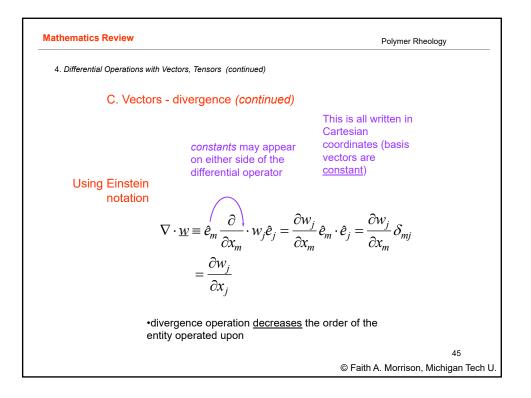




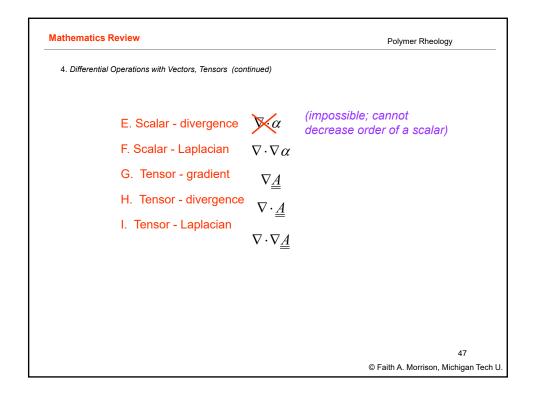


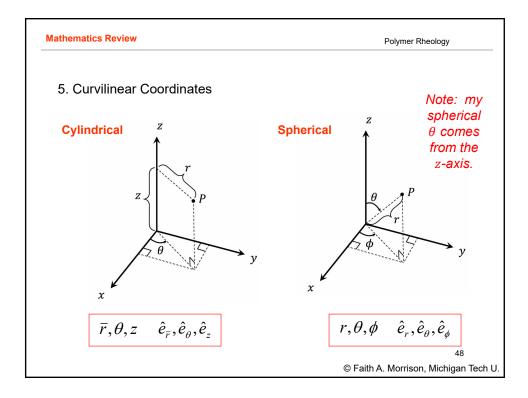






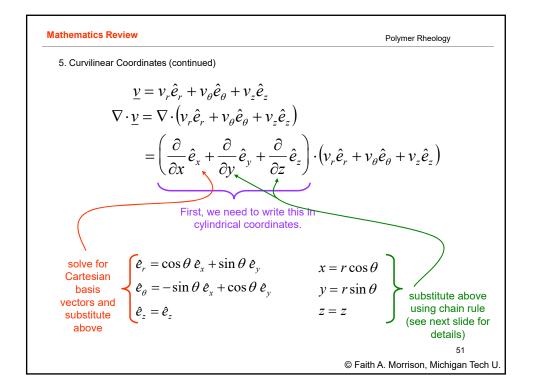
Mathematics Re	view	Polymer Rheology
	perations with Vectors, Tensors (continued) D. Vectors - Laplacian	
Using Einstein notation: Gibbs notation	$\nabla \cdot \nabla \underline{w} \equiv \hat{e}_m \frac{\partial}{\partial x_m} \cdot \hat{e}_p \frac{\partial}{\partial x_p} w_j \hat{e}_j = \frac{\partial}{\partial x_p}$ $= \frac{\partial}{\partial x_m} \frac{\partial}{\partial x_p} w_j \left(\delta_{mp} \right) \hat{e}_j$ $= \frac{\partial}{\partial x_p} \frac{\partial}{\partial x_p} w_j \hat{e}_j$	$\frac{\partial}{\partial x_m} \frac{\partial}{\partial x_p} w_j \left(\hat{e}_m \cdot \hat{e}_p \right) \hat{e}_j$ The Laplacian of a vector field is a vector field is a vector
	$= \begin{pmatrix} \frac{\partial^2 w_1}{\partial x_1^2} + \frac{\partial^2 w_1}{\partial x_2^2} + \frac{\partial^2 w_1}{\partial x_3^2} \\ \frac{\partial^2 w_2}{\partial x_1^2} + \frac{\partial^2 w_2}{\partial x_2^2} + \frac{\partial^2 w_2}{\partial x_3^2} \\ \frac{\partial^2 w_3}{\partial x_1^2} + \frac{\partial^2 w_3}{\partial x_2^2} + \frac{\partial^2 w_3}{\partial x_3^2} \end{pmatrix}_{12}$	 Column vector notation Column vector notation Faith A. Morrison, Michigan Tech U.

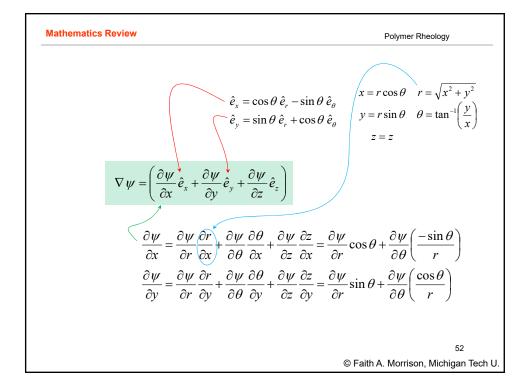




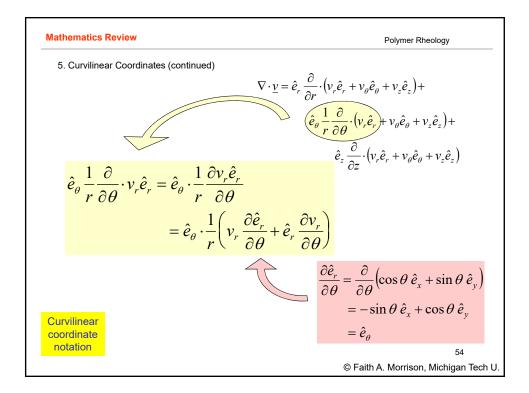
Mathematics Review: Curvilinear Coordinates		ear Coordinates	Polymer Rheology
z	Cylindrical	Coordinates	
↑ (System	Coordinates	Basis vectors
r	Cylindrical	$r = \sqrt{x^2 + y^2}$	$\hat{e}_r = \cos\theta \hat{e}_x + \sin\theta \hat{e}_y$
z S.p	Cylindrical	$\theta = \tan^{-1}\left(\frac{y}{x}\right)$	$\hat{e}_{\theta} = (-\sin\theta)\hat{e}_x + \cos\theta\hat{e}_y$
	Cylindrical	z = z	$\hat{e}_z = \hat{e}_z$
A. D.	Cylindrical	$x = r \cos \theta$	$\hat{e}_x = \cos\theta \hat{e}_r + (-\sin\theta)\hat{e}_{\theta}$
per ,	Cylindrical	$y = r \sin \theta$	$\hat{e}_y = \sin\theta \hat{e}_r + \cos\theta \hat{e}_\theta$
, /	Cylindrical	$\mathbf{z} = \mathbf{z}$	$\hat{e}_z = \hat{e}_z$
	Culture -1		
z	System	Coordinates	Basis vectors
Î	Spherical	$x = r \sin \theta \cos \phi$ $y = r \sin \theta \sin \phi$	$\hat{e}_x = (\sin\theta\cos\phi)\hat{e}_r + (\cos\theta\cos\phi)\hat{e}_\theta + (-\sin\phi)\hat{e}_\phi$ $\hat{e}_x = (\sin\theta\sin\phi)\hat{e}_x + (\cos\theta\sin\phi)\hat{e}_\theta + (-\sin\phi)\hat{e}_\phi$
Î	Spherical	$y = r\sin\theta\sin\phi$	$\hat{e}_y = (\sin\theta\sin\phi)\hat{e}_r + (\cos\theta\sin\phi)\hat{e}_\theta + \cos\phi\hat{e}_\phi$
$\theta \mathcal{A}^P$	Spherical Spherical	$y = r \sin \theta \sin \phi$ $z = r \cos \theta$	$\hat{e}_{y} = (\sin\theta\sin\phi)\hat{e}_{r} + (\cos\theta\sin\phi)\hat{e}_{\theta} + \cos\phi\hat{e}_{\phi}$ $\hat{e}_{z} = \cos\theta\hat{e}_{r} + (-\sin\theta)\hat{e}_{\theta}$
	Spherical Spherical Spherical	$y = r \sin \theta \sin \phi$ $z = r \cos \theta$ $r = \sqrt{x^2 + y^2 + z^2}$	$ \hat{e}_y = (\sin\theta\sin\phi)\hat{e}_r + (\cos\theta\sin\phi)\hat{e}_\theta + \cos\phi\hat{e}_\phi $ $ \hat{e}_z = \cos\theta\hat{e}_r + (-\sin\theta)\hat{e}_\theta $ $ \hat{e}_r = (\sin\theta\cos\phi)\hat{e}_x + (\sin\theta\sin\phi)\hat{e}_y + \cos\theta\hat{e}_z $
H P P	Spherical Spherical	$y = r \sin \theta \sin \phi$ $z = r \cos \theta$	$\hat{e}_{y} = (\sin\theta\sin\phi)\hat{e}_{r} + (\cos\theta\sin\phi)\hat{e}_{\theta} + \cos\phi\hat{e}_{\phi}$ $\hat{e}_{z} = \cos\theta\hat{e}_{r} + (-\sin\theta)\hat{e}_{\theta}$
Alote: my	Spherical Spherical Spherical	$y = r \sin \theta \sin \phi$ $z = r \cos \theta$ $r = \sqrt{x^2 + y^2 + z^2}$	$ \hat{e}_y = (\sin\theta\sin\phi)\hat{e}_r + (\cos\theta\sin\phi)\hat{e}_\theta + \cos\phi\hat{e}_\phi $ $ \hat{e}_z = \cos\theta\hat{e}_r + (-\sin\theta)\hat{e}_\theta $ $ \hat{e}_r = (\sin\theta\cos\phi)\hat{e}_x + (\sin\theta\sin\phi)\hat{e}_y + \cos\theta\hat{e}_z $
νote: my spherical θ	Spherical Spherical Spherical Spherical	$y = r \sin \theta \sin \phi$ $z = r \cos \theta$ $r = \sqrt{x^2 + y^2 + z^2}$ $\theta = \tan^{-1} \left(\frac{\sqrt{x^2 + y^2}}{z} \right)$	$\hat{e}_{y} = (\sin\theta\sin\phi)\hat{e}_{r} + (\cos\theta\sin\phi)\hat{e}_{\theta} + \cos\phi\hat{e}_{\phi}$ $\hat{e}_{z} = \cos\theta\hat{e}_{r} + (-\sin\theta)\hat{e}_{\theta}$ $\hat{e}_{r} = (\sin\theta\cos\phi)\hat{e}_{x} + (\sin\theta\sin\phi)\hat{e}_{y} + \cos\theta\hat{e}_{z}$ $\hat{e}_{\theta} = (\cos\theta\cos\phi)\hat{e}_{x} + (\cos\theta\sin\phi)\hat{e}_{y} + (-\sin\theta)\hat{e}_{z}$
Note: my spherical θ comes from	Spherical Spherical Spherical Spherical	$y = r \sin \theta \sin \phi$ $z = r \cos \theta$ $r = \sqrt{x^2 + y^2 + z^2}$ $\theta = \tan^{-1} \left(\frac{\sqrt{x^2 + y^2}}{z} \right)$	$\hat{e}_{y} = (\sin\theta\sin\phi)\hat{e}_{r} + (\cos\theta\sin\phi)\hat{e}_{\theta} + \cos\phi\hat{e}_{\phi}$ $\hat{e}_{z} = \cos\theta\hat{e}_{r} + (-\sin\theta)\hat{e}_{\theta}$ $\hat{e}_{r} = (\sin\theta\cos\phi)\hat{e}_{x} + (\sin\theta\sin\phi)\hat{e}_{y} + \cos\theta\hat{e}_{z}$ $\hat{e}_{\theta} = (\cos\theta\cos\phi)\hat{e}_{x} + (\cos\theta\sin\phi)\hat{e}_{y} + (-\sin\theta)\hat{e}_{z}$
Note: my spherical θ	Spherical Spherical Spherical Spherical	$y = r \sin \theta \sin \phi$ $z = r \cos \theta$ $r = \sqrt{x^2 + y^2 + z^2}$ $\theta = \tan^{-1} \left(\frac{\sqrt{x^2 + y^2}}{z} \right)$	$\hat{e}_{y} = (\sin\theta\sin\phi)\hat{e}_{r} + (\cos\theta\sin\phi)\hat{e}_{\theta} + \cos\phi\hat{e}_{\phi}$ $\hat{e}_{z} = \cos\theta\hat{e}_{r} + (-\sin\theta)\hat{e}_{\theta}$ $\hat{e}_{r} = (\sin\theta\cos\phi)\hat{e}_{x} + (\sin\theta\sin\phi)\hat{e}_{y} + \cos\theta\hat{e}_{z}$ $\hat{e}_{\theta} = (\cos\theta\cos\phi)\hat{e}_{x} + (\cos\theta\sin\phi)\hat{e}_{y} + (-\sin\theta)\hat{e}_{z}$
Note: my spherical θ comes from	Spherical Spherical Spherical Spherical	$y = r \sin \theta \sin \phi$ $z = r \cos \theta$ $r = \sqrt{x^2 + y^2 + z^2}$ $\theta = \tan^{-1} \left(\frac{\sqrt{x^2 + y^2}}{z} \right)$	$\hat{e}_{y} = (\sin\theta\sin\phi)\hat{e}_{r} + (\cos\theta\sin\phi)\hat{e}_{\theta} + \cos\phi\hat{e}_{\phi}$ $\hat{e}_{z} = \cos\theta\hat{e}_{r} + (-\sin\theta)\hat{e}_{\theta}$ $\hat{e}_{r} = (\sin\theta\cos\phi)\hat{e}_{x} + (\sin\theta\sin\phi)\hat{e}_{y} + \cos\theta\hat{e}_{z}$ $\hat{e}_{\theta} = (\cos\theta\cos\phi)\hat{e}_{x} + (\cos\theta\sin\phi)\hat{e}_{y} + (-\sin\theta)\hat{e}_{z}$

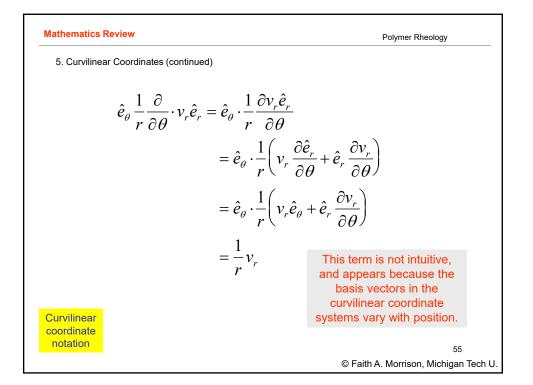
athematics	Review			Polymer Rheology
5. Curvil	inear Coordinates			
	Cylindrical	$\overline{r}, heta, z$	$\hat{e}_{ar{r}}, \hat{e}_{ heta}, \hat{e}_z$ $\hat{e}_r, \hat{e}_{ heta}, \hat{e}_{\phi}$	See text figures
	Spherical	$r, heta, \phi$	$\hat{e}_r, \hat{e}_ heta, \hat{e}_\phi$	2.11 and 2.12
	se coordinate systems stant (they vary with po		mal, <i>but they are</i>	e not
This	causes some non-int	uitive effects w	hen derivatives	are taken.
				50
				© Faith A

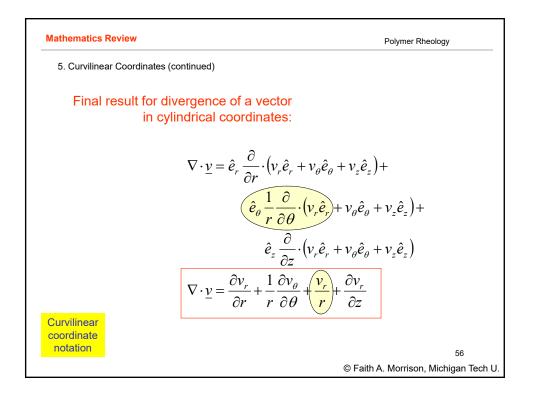




Mathematics Review	Polymer Rheology
5. Curvilinear Coordinates (continued)	
Result: $\nabla = \left(\frac{\partial}{\partial x}\hat{e}_x + \frac{\partial}{\partial y}\hat{e}_y + \frac{\partial}{\partial z}\hat{e}_z\right)$	
$= \hat{e}_r \frac{\partial}{\partial r} + \hat{e}_{\theta} \frac{1}{r} \frac{\partial}{\partial \theta} + \hat{e}_z \frac{\partial}{\partial z}$	
Now, proceed:	
$\nabla \cdot \underline{v} = \left(\hat{e}_r \frac{\partial}{\partial r} + \hat{e}_{\theta} \frac{1}{r} \frac{\partial}{\partial \theta} + \hat{e}_z \frac{\partial}{\partial z}\right) \cdot \left(v\right)$	$_{r}\hat{e}_{r}+v_{\theta}\hat{e}_{\theta}+v_{z}\hat{e}_{z}$
(We cannot use Einstein notation because these are not Cartesian coordinates) $= \hat{e}_r \frac{\partial}{\partial r} \cdot \left(v_r \hat{e}_r + v_\theta \hat{e}_\theta + v_z \hat{e}_z \right) + $	
$\hat{e}_{\theta} \frac{1}{r} \frac{\partial}{\partial \theta} \cdot \left(v_r \hat{e}_r + v_{\theta} \hat{e}_{\theta} + v_z \right)$	(\hat{e}_z) +
notation $\hat{e}_z \frac{\partial}{\partial z} \cdot \left(v_r \hat{e}_r + v_\theta \hat{e}_\theta + v_z \hat{e}_z \right)$	
	53
	© Faith A. Morrison, Michigan Tech U.







Mathematics Review	Polymer Rheology
5. Curvilinear Coordinates (continued)	
Curvilinear Coordinates (summary)	
•The basis vectors are ortho	-normal
•The basis vectors are non -	constant (vary with position)
 These systems are conveni mimics the coordinate surface systems. 	•
• <i>We cannot</i> use Einstein no Appendix C2 (pp464-468).	<i>tation</i> – must use Tables in Curvilinear coordinate notation
	57
	© Faith A. Morrison, Michigan Tech

