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Summary: Generalized Newtonian Fluid 
Constitutive Equations

•A first constitutive equation

•Can match steady shearing data very well

•Simple to calculate with

•Found to predict pressure-drop/flow rate 
relationships well

•Fails to predict shear normal stresses

•Fails to predict start-up or cessation effects 
(time-dependence, memory) – only a function of 
instantaneous velocity gradient

•Derived ad hoc from shear observations; 
unclear of validity in non-shear flows

PRO:

CON:

Done with Inelastic models (GNF).

Let’s move on to Linear Elastic models

Summary:

Rules for Constitutive Equations

•Must be of tensor order

•Must be a tensor (independent of coordinate system)

•Must be a symmetric tensor

•Must make predictions that are independent of the 
observer

•Should correctly predict observed flow/deformation 
behavior

The stress expression:

Innovate and improve constitutive equations

What we know so far…

Chapter 8:  Memory Effects: GLVE

© Faith A. Morrison, Michigan Tech U.
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 f

Dtotal

initial state
no force

final state
force,  f,  resists

displacement

Maxwell’s model combines viscous and elastic 
responses in series

dashpotspringtotal DDD 

Displacements are 
additive:

Spring (elastic) and 
dashpot (viscous) in series:
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Fluids with Memory - Chapter 8

© Faith A. Morrison, Michigan Tech U.

We seek a constitutive equation that includes memory effects.

calculates the 
stress at a 
particular time, 𝑡

2 Constitutive Equations so far:

So far, stress at 𝑡 depends on 
rate-of-deformation at 𝒕 only

3

Fluids with Memory – Chapter 8

𝜏 𝑡 𝑓 𝛾, 𝐼 , 𝐼𝐼 , 𝐼𝐼𝐼 , material info

𝜏 𝜇𝛾 𝑡

𝜏 𝜂 𝛾 𝛾 𝑡 𝛾 𝛾
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Newtonian

Generalized Newtonian

Neither can predict:

•Shear normal stresses - this will be wrong so long as we use 
constitutive equations proportional to 𝛾

•stress transients in shear (startup, cessation) - this flaw 
seems to be related to omitting fluid memory

Current Constitutive Equations

We will try to fix this now; we will address the first point when 
we discuss advanced constitutive equations

4

Fluids with Memory – Chapter 8

𝜏 𝜇𝛾 𝑡

𝜏 𝜂 𝛾 𝛾 𝑡 𝛾 𝛾
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Startup of Steady Shearing
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Figures 6.49, 6.50, p. 208 Menezes 
and Graessley, PB soln 5

Fluids with Memory – Chapter 8

𝑣 ≡
𝜍 𝑡 𝑥

0
0

𝜍 𝑡
0 𝑡 0
𝛾 𝑡 0

𝜂 ≡
𝜏 𝑡
𝛾

Ψ ≡
𝜏 𝜏

𝛾

Cessation of Steady Shearing
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Figures 6.51, 6.52, p. 209 Menezes and 
Graessley, PB soln
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Fluids with Memory – Chapter 8

𝑣 ≡
𝜍 𝑡 𝑥

0
0

𝜍 𝑡 𝛾 𝑡 0
0 𝑡 0

𝜂 ≡
𝜏 𝑡
𝛾

Ψ ≡
𝜏 𝜏

𝛾
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How can we incorporate time-dependent effects?

First, we explore a simple memory fluid.

© Faith A. Morrison, Michigan Tech U.

Let’s construct a new constitutive equation that remembers the 
stress at a time t0 seconds ago

“Newtonian” 
contribution

contribution 
from fluid 
memory

𝜼 is a parameter of the 
model (it is constant)

This is the 
rate-of-
deformation 
tensor 𝑡0
seconds before
time 𝑡
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𝜏 𝑡 𝜂𝛾 𝑡 0.8𝜂 𝛾 𝑡 𝑡
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What does this model predict?

Steady shear
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Fluids with Memory – Chapter 8

𝜏 𝑡 𝜂𝛾 𝑡 0.8𝜂 𝛾 𝑡 𝑡
Simple memory fluid
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What does this model predict?

Steady shear

?

?
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Shear start-up
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Fluids with Memory – Chapter 8

Let’s 
try.

𝜏 𝑡 𝜂𝛾 𝑡 0.8𝜂 𝛾 𝑡 𝑡
Simple memory fluid

Imposed Kinematics: 

𝑣 ≡
𝜍 𝑡 𝑥

0
0

Steady Shear Flow Material Functions

Material Functions: 

Viscosity

© Faith A. Morrison, Michigan Tech U.
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𝜍 𝑡 𝛾 constant

𝜂 𝛾 ≡
�̃�
𝛾

𝜏
𝛾

Ψ 𝛾 ≡

Ψ 𝛾 ≡

Material Stress Response: 𝜏 𝑡

𝜏

𝑡0

𝑡0

𝛾

𝜍 𝑡

𝑡0

𝛾

𝛾 0, 𝑡

𝑁 𝑡

𝑁 ,

𝑡0

First normal-stress 
coefficient

Second normal-
stress coefficient
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𝑣 ≡
𝜍 𝑡 𝑥

0
0

Start-up of Steady Shear Flow Material Functions

Shear stress 
growth 

function

© Faith A. Morrison, Michigan Tech U.
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𝜍 𝑡
0 𝑡 0
𝛾 𝑡 0

Ψ 𝑡, 𝛾 ≡

Ψ 𝑡, 𝛾 ≡

𝑡0

𝛾

𝜍 𝑡

𝑡0

𝛾

𝛾 0, 𝑡

𝜏 𝑡

𝑡0

𝑁 𝑡

𝑡0

First normal-stress 
growth coefficient

Second normal-stress 
growth coefficient

𝛾 ,

𝛾 ,

𝛾 ,

𝛾 ,

𝛾 ,

𝛾 ,

Imposed Kinematics: 

Material Functions: 

Material Stress Response:

𝜂 𝑡, 𝛾 ≡
�̃� 𝑡
𝛾

𝜏 𝑡
𝛾

Predictions of the simple memory fluid

© Faith A. Morrison, Michigan Tech U.

Steady shear

0

~8.1

21 
  The steady viscosity reflects 

contributions from what is currently 
happening and contributions from 
what happened t0 seconds ago.

Shear start-up
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Fluids with Memory – Chapter 8

𝜏 𝑡 𝜂𝛾 𝑡 0.8𝜂 𝛾 𝑡 𝑡
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Shear start-up
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Figures 6.49, 6.50, p. 208 Menezes 
and Graessley, PB soln
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Predictions of the simple memory fluid

𝜏 𝑡 𝜂𝛾 𝑡 0.8𝜂 𝛾 𝑡 𝑡

© Faith A. Morrison, Michigan Tech U.

Shear start-up

~ ~8.1

)(t

t

0 t

)(21 t

What the data show:

What the GNF models predict:

0 t

)(21 t

Increasing 𝛾

Increasing 𝛾

What the simple memory fluid 
model predict:

t0
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Fluids with Memory – Chapter 8

Predictions of the simple memory fluid

For all rates, 𝛾

𝜏 𝑡 𝜂𝛾 𝑡 0.8𝜂 𝛾 𝑡 𝑡
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Increasing 𝛾

Increasing 𝛾
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~ ~8.1

)(t

t

0 t

)(21 t

What the data show:

What the GNF models predict:

0 t

)(21 t

What the simple memory fluid 
model predict:

t0

Adding that contribution 
from the past introduces 
the observed “build-up” 
effect to the predicted  

start-up material 
functions.
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Fluids with Memory – Chapter 8

Predictions of the simple memory fluid

For all rates, 𝛾

Shear start-up

𝜏 𝑡 𝜂𝛾 𝑡 0.8𝜂 𝛾 𝑡 𝑡

We can make the stress rise smoother by adding more 
fading memory terms.

© Faith A. Morrison, Michigan Tech U.

Newtonian 
contribution

contribution 
from t0

seconds ago

contribution 
from 2t0

seconds ago

~ ~8.1

)(t

tt0 2t0

~4.2

The memory 
is fading
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For all rates, 𝛾

𝜏 𝑡 𝜂𝛾 𝑡 0.8𝜂 𝛾 𝑡 𝑡 0.6𝜂 𝛾 𝑡 2𝑡
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)(t

t

The fit can be made to be perfectly smooth by using a sum of 
exponentially decaying terms as the weighting functions.

0 1.00

1 0.37

2 0.14

3 0.05

4 0.02

/0pte


0pt

(𝑡 /𝜆 scales the decay)
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start-up 
prediction:

For all rates, 𝛾

𝜏 𝑡 𝜂 𝛾 𝑡 0.37 𝛾 𝑡 𝑡

0.14 𝛾 𝑡 2𝑡 0.05 𝛾 𝑡 3𝑡 ⋯

𝜂 ∑ 𝑒 / 𝛾 𝑡 𝑝𝑡

© Faith A. Morrison, Michigan Tech U.

This sum can be rewritten as an integral.
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New model:

~ ~8.1

)(t

tt0 2t0

~4.2

(Actually, it takes a bit of renormalizing 
to make this transformation actually 
work.)

In the current 
formulation, 
𝜂 𝑡 grows 
as N goes to 
infinity.

Fluids with Memory – Chapter 8

𝜏 𝑡 𝜂 ∑ 𝑒 𝛾 𝑡 𝑝𝑡  

→ 𝑒 𝛾 𝑡 𝑝Δ𝑡′
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Maxwell Model 
(integral version)

Relaxation time 𝜆 - quantifies how fast 
memory fades

Zero-shear viscosity 𝜂 – gives the value 
of the steady shear viscosity

Two parameters:

19

With proper reformulation, we obtain:

Steps to arrive here:
•Add information about past deformations
•Make memory fade

Fluids with Memory – Chapter 8

Often we write in terms of  a 
modulus parameter, 𝐺

𝜏 𝑡
𝜂
𝜆
𝑒 𝛾 𝑡 𝑑𝑡′

© Faith A. Morrison, Michigan Tech U.

We’ve seen that including terms that invoke past deformations (fluid 
memory) can improve the constitutive predictions we make.

This same class of models can be derived in differential form, beginning 
with the idea of combining viscous and elastic effects.

20

Fluids with Memory – Chapter 8
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Hooke’s Law for elastic solids

© Faith A. Morrison, Michigan Tech U.
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Newton’s Law for viscous liquids

The Maxwell Models

The basic Maxwell model is based on the 
observation that at long times viscoelastic 

materials behave like Newtonian liquids, while at 
short times they behave like elastic solids.

Fluids with Memory – Maxwell Models

𝜏 𝜂𝛾

𝜏 𝐺𝛾

 f

Dtotal

initial state
no force

final state
force,  f,  resists

displacement

© Faith A. Morrison, Michigan Tech U.

Maxwell’s model combines viscous and elastic 
responses in series

dashpotspringtotal DDD 

Displacements are 
additive:

Spring (elastic) and 
dashpot (viscous) in series:

22

Fluids with Memory – Maxwell Models
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In the spring:

In the dashpot:

dt

dD

dt

dD

dt

dD

DDD

dashspringtotal

dashspringtotal





dt

dD
f

DGf

dash

springsp





dt

dD

dt

df

G
f

f
dt

df

G

total

sp

sp








11
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Fluids with Memory – Maxwell Models

(proportional to 
displacement)

(proportional to 
rate)

© Faith A. Morrison, Michigan Tech U.

dt

dD

dt

df

G
f total

sp




By analogy:

shear

all flows

G
0  Relaxation time

Two parameter 
model:

0 Viscosity
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Fluids with Memory – Maxwell Models

𝜏
𝜂
𝐺
𝜕𝜏
𝜕𝑡

𝜂 𝛾

𝜏
𝜂
𝐺
𝜕𝜏
𝜕𝑡

𝜂 𝛾

Also by analogy:
(we’re taking a leap here)
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The Maxwell Model

G
0  Relaxation time

Two parameter 
model:

0 Viscosity

25

Fluids with Memory – Maxwell Models

𝜏
𝜂
𝐺
𝜕𝜏
𝜕𝑡

𝜂 𝛾

© Faith A. Morrison, Michigan Tech U.

How does the Maxwell model behave at steady 
state?  For short time deformations?

26

Fluids with Memory – Maxwell Models

𝜏
𝜂
𝐺
𝜕𝜏
𝜕𝑡

𝜂 𝛾

The Maxwell Model
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Example:  Solve the Maxwell Model for an expression explicit in the 
stress tensor

Fluids with Memory – Maxwell Models

𝜏
𝜂
𝐺
𝜕𝜏
𝜕𝑡

𝜂 𝛾

To solve first-order, linear differential equations:

Use an integrating function, 𝑢 𝑥

  xdxaexu )()(

Fluids with Memory – Maxwell Models

Recall:

𝑑𝒚
𝑑𝑥

𝑎 𝑥 𝒚 𝑏 𝑥 0
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Example:  Solve the Maxwell Model for an expression explicit in the 
stress tensor

Fluids with Memory – Maxwell Models

Let’s 
try.

𝜏
𝜂
𝐺
𝜕𝜏
𝜕𝑡

𝜂 𝛾

© Faith A. Morrison, Michigan Tech U.

Maxwell Model 
(integral version)

30

We arrived at this equation following two different paths:

•Add up fading contributions of past deformations
•Add viscous and elastic effects in series

Fluids with Memory – Maxwell Models

𝜏 𝑡
𝜂
𝜆
𝑒 𝛾 𝑡 𝑑𝑡′

This is the same equation we “made up” when 
starting from the simple memory model!



Generalized LVE CM4650 3/4/2020

16

© Faith A. Morrison, Michigan Tech U.

What are the predictions of the Maxwell model?

Need to check the predictions to see if 
what we have done is worth keeping.

Predictions:

•Steady shear 

•Steady elongation

•Start-up of steady shear

•Step shear strain

•Small-amplitude oscillatory shear

31

Fluids with Memory – Maxwell Models

What now?

© Faith A. Morrison, Michigan Tech U.

What are the predictions of the Maxwell model?

Need to check the predictions to see if 
what we have done is worth keeping.

Predictions:

32

Fluids with Memory – Maxwell Models

What now?

Let’s get 
to work.

•Steady shear 

•Steady elongation

•Start-up of steady shear

•Step shear strain

•Small-amplitude oscillatory shear
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Imposed Kinematics: 

𝑣 ≡
𝜍 𝑡 𝑥

0
0

Steady Shear Flow Material Functions

Material Functions: 

Viscosity

© Faith A. Morrison, Michigan Tech U.
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𝜍 𝑡 𝛾 constant

𝜂 𝛾 ≡
�̃�
𝛾

𝜏
𝛾

Ψ 𝛾 ≡

Ψ 𝛾 ≡

Material Stress Response: 𝜏 𝑡

�̃�

𝑡0

𝑡0

𝛾

𝜍 𝑡

𝑡0

𝛾

𝛾 0, 𝑡

𝑁 𝑡

𝑁 ,

𝑡0

First normal-stress 
coefficient

Second normal-
stress coefficient

Predictions of the (single-mode) Maxwell Model

© Faith A. Morrison, Michigan Tech U.

Steady shear

021

0


 Fails to predict shear normal 

stresses.

Fails to predict shear-thinning.

Steady 
elongation

Trouton’s rule

34

�̅� 3𝜂

Fluids with Memory – Chapter 8

𝜏 𝑡
𝜂
𝜆
𝑒 𝛾 𝑡 𝑑𝑡𝜏

𝜂
𝐺
𝜕𝜏
𝜕𝑡

𝜂 𝛾
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Steady shear viscosity and first normal 
stress coefficient

0.1

1

10

100

0.1 1 10 100

stress, Pa

1, sFigure 6.5, p. 173 Binnington 
and Boger; PIB soln

sPa ,

2
1, sPa 
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There are some 
systems with a 
constant 
viscosity but 
still start-up 
effects.

BOGER FLUIDS

35
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𝛾, 𝑠
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1 (Pa s2)

(Pa)

2 (Pa s2)

PS/TCP squares
PS/DOP circles

1, s

Steady shear viscosity and first and second
normal stress coefficient

Figure 6.6, p. 174 Magda et al.; 
PS solns

© Faith A. Morrison, Michigan Tech U.

BOGER FLUIDS

36

Fluids with Memory – Chapter 8

𝛾, 𝑠



Generalized LVE CM4650 3/4/2020

19

Step Strain Shear Flow Material Functions

Relaxation 
modulus

© Faith A. Morrison, Michigan Tech U.
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𝑣 ≡
𝜍 𝑡 𝑥

0
0

𝜍 𝑡 lim
→

0 𝑡 0
𝛾 /𝜀 0 𝑡 𝜀

0 𝑡 𝜀

𝐺 𝑡, 𝛾 ≡
�̃� 𝑡, 𝛾

𝛾
𝜏 𝑡, 𝛾
𝛾

𝐺 𝑡, 𝛾 ≡

𝐺 𝑡, 𝛾 ≡

𝑡0

𝛾 0, 𝑡

𝜏 𝑡

𝑡0

𝑁 𝑡

𝑡0

First normal-stress 
relaxation modulus

Second normal-stress 
relaxation modulus

𝛾 ,

𝛾 ,

𝛾 ,

𝛾 ,

𝛾 ,

𝛾 ,

𝛾

𝜀

𝜀

.

.

.

𝜀

𝑡0

𝜍 𝑡

𝜀

Imposed Kinematics: 

Material Functions: 

Material Stress Response:

𝛾
𝛾
𝜀

Predictions of the (single-mode) Maxwell Model

© Faith A. Morrison, Michigan Tech U.

Shear 
start-up

 
0)()(
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/
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tt

et t  Does predict a gradual 
build-up of stresses on 
start-up.

Step shear 
strain

0

)(

21

/0









GG

etG t 


 Does predict a reasonable 

relaxation function in step 
strain (but no normal 
stresses again).
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𝜏 𝑡
𝜂
𝜆
𝑒 𝛾 𝑡 𝑑𝑡𝜏

𝜂
𝐺
𝜕𝜏
𝜕𝑡

𝜂 𝛾
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Step-Shear-Strain Material Function G(t) for Maxwell Model

39
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𝜏 𝑡
𝜂
𝜆
𝑒 𝛾 𝑡 𝑑𝑡

10

100

1,000

10,000

1 10 100 1,000 10,000
time, s

G(t), Pa

© Faith A. Morrison, Michigan Tech U.

Comparison to experimental data

Figure 8.4, p. 274 data from Einaga et al., PS 
20% soln in chlorinated diphenyl

s

Pg

150

25000









 

Pa
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Fluids with Memory – Chapter 8
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We can improve this fit by adjusting the Maxwell model to 
allow multiple relaxation modes

Generalized 
Maxwell 

Model

2𝑁 parameters (can fit anything)

41

Fluids with Memory – Chapter 8

2𝑁 model parameters: 
𝑔 , 𝜆 (constants) 

𝜂 𝑔 𝜆

𝜏 𝑡
𝜂
𝜆
𝑒 𝛾 𝑡 𝑑𝑡

𝜏
𝜂
𝜆

𝑒 / 𝛾 𝑡′ 𝑑𝑡′

𝜏 𝑡 𝜏

© Faith A. Morrison, Michigan Tech U.

Generalized 
Maxwell 

Model

42

Fluids with Memory – Chapter 8

•Steady shear 

•Steady elongation

•Start-up of steady shear

•Step shear strain

•Small-amplitude oscillatory shear

Let’s 
try.

What are the predictions of the Generalized Maxwell model?

𝜏 𝑡
𝜂
𝜆
𝑒 𝛾 𝑡 𝑑𝑡
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© Faith A. Morrison, Michigan Tech U.

Generalized 
Maxwell 

Model

43

Fluids with Memory – Chapter 8

What are the predictions of the Generalized Maxwell 
model?

•Steady shear 

•Steady elongation

•Start-up of steady shear

•Step shear strain

•Small-amplitude oscillatory shear

Let’s 
try.

𝜏 𝑡
𝜂
𝜆
𝑒 𝛾 𝑡 𝑑𝑡

Imposed Kinematics: 

𝑣 ≡
𝜍 𝑡 𝑥

0
0

Steady Shear Flow Material Functions

Material Functions: 

Viscosity

© Faith A. Morrison, Michigan Tech U.
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𝜍 𝑡 𝛾 constant

𝜂 𝛾 ≡
�̃�
𝛾

𝜏
𝛾

Ψ 𝛾 ≡

Ψ 𝛾 ≡

Material Stress Response: 𝜏 𝑡

�̃�

𝑡0

𝑡0

𝛾

𝜍 𝑡

𝑡0

𝛾

𝛾 0, 𝑡

𝑁 𝑡

𝑁 ,

𝑡0

First normal-stress 
coefficient

Second normal-
stress coefficient
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Step Strain Shear Flow Material Functions

Relaxation 
modulus

© Faith A. Morrison, Michigan Tech U.
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𝑣 ≡
𝜍 𝑡 𝑥

0
0

𝜍 𝑡 lim
→

0 𝑡 0
𝛾 /𝜀 0 𝑡 𝜀

0 𝑡 𝜀

𝐺 𝑡, 𝛾 ≡
�̃� 𝑡, 𝛾

𝛾
𝜏 𝑡, 𝛾
𝛾

𝐺 𝑡, 𝛾 ≡

𝐺 𝑡, 𝛾 ≡

𝑡0

𝛾 0, 𝑡

𝜏 𝑡

𝑡0

𝑁 𝑡

𝑡0

First normal-stress 
relaxation modulus

Second normal-stress 
relaxation modulus

𝛾 ,

𝛾 ,

𝛾 ,

𝛾 ,

𝛾 ,

𝛾 ,

𝛾

𝜀

𝜀

.

.

.

𝜀

𝑡0

𝜍 𝑡

𝜀

Imposed Kinematics: 

Material Functions: 

Material Stress Response:

𝛾
𝛾
𝜀

Predictions of the Generalized Maxwell Model

© Faith A. Morrison, Michigan Tech U.

Steady shear

021

1






N

k
k Fails to predict shear 

normal stresses

Fails to predict shear-
thinning

Step shear 
strain

0
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This function can fit any
observed data (we show 
how)

Note that the GMM does not 
predict shear normal 
stresses.
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2𝑁 model parameters: 
𝑔 , 𝜆 (constants) 

𝜂 𝑔 𝜆
𝜏 𝑡

𝜂
𝜆
𝑒 𝛾 𝑡 𝑑𝑡
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Fitting 𝐺 𝑡 to Generalized Maxwell Model

Figure 8.4, p. 274 data 
from Einaga et al., PS 20% 
soln in chlorinated diphenyl

(s) (Pa)
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2𝑁 model parameters: 
𝑔 , 𝜆 (constants) 

𝜂 𝑔 𝜆

© Faith A. Morrison, Michigan Tech U.

The Linear-Viscoelastic Models

Differential Maxwell 
(one mode):

Integral Maxwell 
(one mode):

Generalized Maxwell 
model (N modes):

48
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2𝑁 model parameters: 
𝑔 , 𝜆 (constants) 

𝜂 𝑔 𝜆

𝜏 𝑡
𝜂
𝜆
𝑒 𝛾 𝑡 𝑑𝑡

𝜏 𝑡
𝜂
𝜆
𝑒 𝛾 𝑡 𝑑𝑡

𝜏
𝜂
𝐺
𝜕𝜏
𝜕𝑡

𝜂 𝛾
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Predictions of the Generalized Maxwell Model

© Faith A. Morrison, Michigan Tech U.

Step shear 
strain
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Note:  The time-dependent  function in the integral of 
the GMM is the same form as the step strain result:

𝜏 𝑡
𝜂
𝜆
𝑒 𝛾 𝑡 𝑑𝑡

© Faith A. Morrison, Michigan Tech U.

The Linear-Viscoelastic Models

Differential Maxwell 
(one mode):

Integral Maxwell 
(one mode):

Generalized Maxwell 
model (N modes):

50
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𝜏 𝑡
𝜂
𝜆
𝑒 𝛾 𝑡 𝑑𝑡

Since the term in brackets is just the predicted relaxation modulus 
G(t), we can write an even more general linear viscoelastic model
by leaving this function unspecified.

𝜏 𝑡
𝜂
𝜆
𝑒 𝛾 𝑡 𝑑𝑡

𝜏
𝜂
𝐺
𝜕𝜏
𝜕𝑡

𝜂 𝛾
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© Faith A. Morrison, Michigan Tech U.

The Linear-Viscoelastic Models

Differential Maxwell 
(one mode):

Integral Maxwell 
(one mode):

Generalized Maxwell 
model (N modes):

Generalized Linear-
Viscoelastic Model:
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𝜏 𝑡
𝜂
𝜆
𝑒 𝛾 𝑡 𝑑𝑡

𝜏 𝑡 𝐺 𝑡 𝑡′ 𝛾 𝑡 𝑑𝑡

𝜏 𝑡
𝜂
𝜆
𝑒 𝛾 𝑡 𝑑𝑡

𝜏
𝜂
𝐺
𝜕𝜏
𝜕𝑡

𝜂 𝛾

© Faith A. Morrison, Michigan Tech U.

Generalized 
Maxwell Model

52
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What are the predictions of these models?

•Steady shear 

•Steady elongation

•Start-up of steady shear

•Step shear strain

•Small-amplitude oscillatory shear

Let’s 
try.

𝜏 𝑡
𝜂
𝜆
𝑒 𝛾 𝑡 𝑑𝑡

Generalized Linear-
Viscoelastic Model 𝜏 𝑡 𝐺 𝑡 𝑡′ 𝛾 𝑡 𝑑𝑡
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𝛿

Small-Amplitude Oscillatory Shear Material Functions

SAOS stress

© Faith A. Morrison, Michigan Tech U.
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𝑣 ≡
𝜍 𝑡 𝑥

0
0

𝜍 𝑡 𝛾 cos 𝜔𝑡

𝛾
𝛾
𝜔

, ,
�̃� sin 𝜔𝑡 𝛿 𝐺 sin 𝜔𝑡 𝐺 cos 𝜔𝑡

𝐺′ 𝜔 ≡
 

cos 𝛿 𝐺′′ 𝜔 ≡
 

sin 𝛿

𝑡0

𝛾 0, 𝑡

𝜏 𝑡

𝑡0

𝑁 𝑡 𝑁 𝑡 0
(linear viscoelastic regime)

Storage 
modulus

Loss 
modulus

𝑡0

𝜍 𝑡

𝛾 cos 𝜔𝑡 𝛾 sin 𝜔𝑡

𝜏 sin 𝜔𝑡 𝛿

𝛿 phase difference between 
stress and strain waves

Imposed Kinematics: 

Material Functions: 

Material Stress Response:

Predictions of the Generalized Maxwell Model (GMM) and 
Generalized Linear-Viscoelastic Model (GLVE)

© Faith A. Morrison, Michigan Tech U.

Small-amplitude 
oscillatory shear

GMM
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2𝑁 model parameters: 
𝑔 , 𝜆 (constants) 

𝜂 𝑔 𝜆

𝜏 𝑡 𝐺 𝑡 𝑡′ 𝛾 𝑡 𝑑𝑡 𝜏 𝑡
𝜂
𝜆
𝑒 𝛾 𝑡 𝑑𝑡
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Predictions of (single-mode) Maxwell Model in SAOS
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Two model parameters: 
𝑔 , 𝜆 (constants) 

𝜂 𝑔 𝜆

𝜏 𝑡
𝜂
𝜆
𝑒 𝛾 𝑡 𝑑𝑡

S
A

O
S

 m
at
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l f
un

ct
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ns
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Predictions of (multi-mode) Maxwell Model in SAOS

Figure 8.8, p. 284 
data from 
Vinogradov, PS melt
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Predictions of (multi-mode) Maxwell Model in SAOS

Figure 8.10, p. 286 
data from Laun, PE 
melt
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© Faith A. Morrison, Michigan Tech U.
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http://pages.mtu.edu/~fmorriso/
cm4650/PredictionsGLVE.pdf

Predictions of the 
Generalized Linear 
Viscoelastic Model 

(the “report card”)
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Steady shear viscosity and first and second
normal stress coefficient

Figure 6.6, p. 174 Magda et al.; 
PS solns
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BOGER FLUIDS
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𝛾, 𝑠

x1

x2

x3

H

W V

v1(x2)

EXAMPLE:  Drag flow of a 
Generalized Linear-Viscoelastic 
fluid between infinite parallel 
plates

•steady state
•incompressible fluid
•infinitely wide, long

60
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𝜏 𝑡 𝐺 𝑡 𝑡′ 𝛾 𝑡 𝑑𝑡
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Limitations of the GLVE Models

•Predicts constant shear viscosity

•Only valid in regime where strain is additive (small-strain, low 
rates)

•All stresses are proportional to the deformation-rate tensor; 
thus shear normal stresses cannot be predicted

•Cannot describe flows with a superposed rigid rotation (as we 
will now discuss; see Morrison p296)

61

Fluids with Memory – Chapter 8

𝜏 𝑡 𝐺 𝑡 𝑡′ 𝛾 𝑡 𝑑𝑡

What else can we try?

© Faith A. Morrison, Michigan Tech U.

Jeffreys Model - Mechanical Analog

Maxwell Model - Mechanical Analog

62
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𝜏 𝑡 𝜆
𝜕𝜏
𝜕𝑡

𝜂 𝛾

𝜏 𝑡 𝜆
𝜕𝜏
𝜕𝑡

𝜂 𝛾 𝜆
𝜕𝛾
𝜕𝑡
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© Faith A. Morrison, Michigan Tech U.

Jeffreys Model

Now, solving for 𝜏 explicitly we obtain,

Other modifications of the Maxwell model 
motivated by springs and dashpots in series and 

parallel modify 𝐺 𝑡 𝑡’ but do not otherwise 
introduce new behavior.

(Might as well use the 
Generalized Maxwell model)
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𝜏 𝜆
𝜕𝜏
𝜕𝑡

𝜂 𝛾 𝜆
𝜕𝛾

𝜕𝑡

𝜏 𝑡
𝜂
𝜆

1
𝜆
𝜆

𝑒
2𝜂 𝜆
𝜆

𝛿 𝑡 𝑡 𝛾 𝑡 𝑑𝑡

Unfortunately, this change only modifies 𝐺 𝑡 𝑡 ;
the Jeffreys Model is a GLVE model

© Faith A. Morrison, Michigan Tech U.
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Limitations of the GLVE Models

•Predicts constant shear viscosity

•Only valid in regime where strain is additive (small-strain, low 
rates)

•All stresses are proportional to the deformation-rate tensor; 
thus shear normal stresses cannot be predicted

•Cannot describe flows with a superposed rigid rotation (as we 
will now discuss; see Morrison p296)

Fluids with Memory – Chapter 8

𝜏 𝑡 𝐺 𝑡 𝑡′ 𝛾 𝑡 𝑑𝑡

What else can we try?

Where do we go from here?
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Advanced Constitutive Modeling – Chapter 9

Limitations of the GLVE Models

•Predicts constant shear viscosity

•Only valid in regime where strain is additive (small-strain, low 
rates)

•All stresses are proportional to the deformation-rate tensor; 
thus shear normal stresses cannot be predicted

•Cannot describe flows with a superposed rigid rotation (as we 
will now discuss; see Morrison p296)

Fluids with Memory – Chapter 8

𝜏 𝑡 𝐺 𝑡 𝑡′ 𝛾 𝑡 𝑑𝑡

What else can we try?

Where do we go from here?

Let’s talk 
about this 

issue.

© Faith A. Morrison, Michigan Tech U.

fluid
 x

 y

 zyx ,,

 zyx ,,



Shear flow in a rotating frame of reference
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𝜏 𝑡 𝐺 𝑡 𝑡′ 𝛾 𝑡 𝑑𝑡

GLVE:
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fluid
 x

 y

 zyx ,,

 zyx ,,



Shear flow in a rotating frame of reference

Fluids with Memory – Chapter 8

GLVE:

𝑥,𝑦, 𝑧 coordinate system stationary
�̅�,𝑦, 𝑧̅ coordinate system rotating at Ω

The choice of coordinate 
system should make no 
difference.  Let’s check.

Predict:  𝜂

© Faith A. Morrison, Michigan Tech U.
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fluid
 x

 y

 zyx ,,

 zyx ,,



Shear flow in a rotating frame of reference

Fluids with Memory – Chapter 8

GLVE:

𝑥,𝑦, 𝑧 coordinate system  stationary
�̅�,𝑦, 𝑧̅ coordinate system  rotating at Ω

𝑣  𝑣 𝑣

                           𝛾 𝑦�̂� ̅ 𝑣

We write the fluid 
velocity two ways:

Both ways we should get 
the same answer for 𝜏

𝜏 𝑡 𝐺 𝑡 𝑡′ 𝛾 𝑡 𝑑𝑡

GLVE:
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Shear flow in a rotating frame of reference
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.P

© Faith A. Morrison, Michigan Tech U.

Shear flow in a rotating frame of reference
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𝑦 𝑦

𝑥 𝑥

Location of P:  
𝑥 𝑥 ,𝑦 𝑦

.
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Shear flow in a rotating frame of reference
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𝑦 𝑦

𝑥 𝑥

Location of P:  
𝑥 𝑥 ,𝑦 𝑦 𝑦 𝑑 𝑑 𝑏 𝑏

.

© Faith A. Morrison, Michigan Tech U.

Summary: Generalized Linear-Viscoelastic (GLVE) 
Constitutive Equations

•A first constitutive equation with memory

•Can match SAOS, step-strain data very well

•Captures start-up/cessation effects

•Simple to calculate with

•Can be used to calculate the LVE spectrum

•Fails to predict shear normal stresses

•Fails to predict shear-thinning/thickening

•Only valid at small strains, small rates

•Not frame-invariant

PRO:

CON:
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𝜏 𝑡 𝐺 𝑡 𝑡′ 𝛾 𝑡 𝑑𝑡

GLVE:
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Find the recipe card 
(has kinematics, 

definitions of material 
functions; 𝑣(t) is known)

Predict a 
material 
function for a 
constitutive 
equation

For the given 
kinematics, calc. needed 

stresses from the 
constitutive equation

From stresses, 
calculate the material 
function(s) from the 

definition on the recipe card

Sketch the situation 
and choose an appropriate 

coordinate system

Calculate a flow 
field or stress 

field for a fluid 
in a situation

Solve the differential equations  
(Solve EOM, continuity, and constitutive 

equation for 𝑣 and 𝑝 and apply the 
boundary conditions)

Model the flow
by asking yourself questions about the 
velocity field (are some components 
and derivatives zero?  The constitutive 

equationmust be known)

x1

x2

x3

H

W V

v1(x2)

EXAMPLE:  Drag flow 
between infinite parallel plates

•Newtonian
•steady state
•incompressible fluid
•very wide, long
•uniform pressure

2

Step Shear Strain Material Functions
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Material Functions:
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4

What kind of 
rheology calculation 
am I considering?

𝜏 𝑡 𝑓 𝑣
constitutive equation

© Faith A. Morrison, Michigan Tech U.
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Done with GLVE.
Let’s move on to 
Advanced 
Constitutive 
Equations

𝜏 𝑡 𝐺 𝑡 𝑡′ 𝛾 𝑡 𝑑𝑡
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Chapter 9:  Advanced Constitutive Models

© Faith A. Morrison, Michigan Tech U.
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