

Advanced Constitutive Modeling – Chapter 9
What does the GLVE Predict for CCW Rigid-Body
Rotation around the z-axis from t to t'?
From geometry

$$y = \bar{r} \sin \beta$$

$$x = \bar{r} \cos \beta$$
From trigonometry

$$y' = \bar{r} \sin(\beta + \tilde{\psi}) = \bar{r}(\sin\beta\cos\tilde{\psi} + \sin\tilde{\psi}\cos\beta)$$

$$= y\cos\tilde{\psi} + x\sin\tilde{\psi}$$

$$x' = \bar{r}\cos(\beta + \tilde{\psi}) = \bar{r}(\cos\beta\cos\tilde{\psi} - \sin\beta\sin\tilde{\psi})$$

$$= x\cos\tilde{\psi} - y\sin\tilde{\psi}$$

$$z = z'$$
From definitions of \underline{u} and $\underline{\gamma}$

$$\underline{u} = \bar{\underline{r}}' - \bar{\underline{r}} = \begin{pmatrix} x\cos\tilde{\psi} - y\sin\tilde{\psi} - x \\ y\cos\tilde{\psi} + x\sin\tilde{\psi} - y \\ 0 \end{pmatrix}_{xyz}$$

$$\underline{\gamma}(t, t') = \nabla \underline{u} + (\nabla \underline{u})^T =$$

$$12$$
© Faith A. Morrison, Michigan Tech U.

Advanced Co	onstitutive Modeling – Cha	pter 9	
Strain T Rotatior	ensor Prediction for (a around the <i>z</i> -axis fr	CCW Rigid-Body from t' to t :	
	$x' = \bar{r} \cos \beta$ $y' = \bar{r} \sin \beta$	From geometry From trigo	nometry
	$x = \bar{r}\cos(\beta + \psi)$	$ = \bar{r}(\cos\beta\cos\psi - \sin\beta\sin\psi) = x'\cos\psi - y'\sin\psi $	
	$y = \bar{r}\sin(\beta + \psi)$ $z = z'$	$ = \bar{r}(\sin\beta\cos\psi + \sin\psi\cos\beta) = y'\cos\psi + x'\sin\psi $	
From de	efinition: $\underline{\underline{F}}^{-1}(t',t) = \frac{\partial \underline{r}}{\partial \underline{r}'} = \frac{\partial \underline{r}}{\partial \underline{r}'}$	=	-
		© Faith A. Morrison, Mi	38 chigan Tech U.

Adva	nced C	onstitutive Model	ing – Cha	oter 9					
	tensor	shear in 1-direction with gradient in 2-direction	uniaxia in 3-	d elongation direction	CCW a1	v rotatio ound ê ₃)n	Ta ha	ble 9.3 s strain
	$\underline{F}(t, t')$	$\left(\begin{array}{rrrr} 1 & 0 & 0 \\ -\gamma & 1 & 0 \\ 0 & 0 & 1 \end{array}\right)_{123}$	$\left(\begin{array}{c} e^{\frac{e}{2}} \\ 0 \\ 0 \end{array}\right)$	$\begin{pmatrix} 0 & 0 \\ e^{\frac{4}{2}} & 0 \\ 0 & e^{-\epsilon} \end{pmatrix}_{123}$	$\left(\begin{array}{c} \cos\psi \\ \sin\psi \\ 0 \end{array} \right)$	$-\sin \psi$ $\cos \psi$ 0	$\begin{pmatrix} 0\\0\\1 \end{pmatrix}_{123}$	sta flo	andard ws
-	$F^{-1}(t', t)$	$\left(\begin{array}{rrrr} 1 & 0 & 0 \\ \gamma & 1 & 0 \\ 0 & 0 & 1 \end{array}\right)_{123}$	$\left(\begin{array}{c} e^{-\frac{\epsilon}{2}} \\ 0 \\ 0 \end{array}\right)$	$egin{array}{ccc} 0 & 0 \ e^{-rac{\epsilon}{2}} & 0 \ 0 & e^{\epsilon} \end{array} ight)_{123}$	$\begin{pmatrix} \cos \psi \\ -\sin \psi \\ 0 \end{pmatrix}$	$\sin \psi$ $\cos \psi$ 0	$\begin{pmatrix} 0\\0\\1 \end{pmatrix}_{123}$		
	$\underline{\underline{C}}(t,t')$	$\left(\begin{array}{rrr} 1 & -\gamma & 0 \\ -\gamma & 1+\gamma^2 & 0 \\ 0 & 0 & 1 \end{array}\right)_{123}$	$\left(\begin{array}{cc} e^{\epsilon} & 0\\ 0 & \epsilon\\ 0 & 0\end{array}\right)$	$\begin{pmatrix} 0 & 0 \\ e^{c} & 0 \\ 0 & e^{-2c} \end{pmatrix}_{123}$		Ī			
ſ	$\underline{\mathcal{Q}}^{-1}(t',t)$	$\left(\begin{array}{ccc} 1+\gamma^2 & \gamma & 0 \\ \gamma & 1 & 0 \\ 0 & 0 & 1 \end{array}\right)_{123}$	$\begin{pmatrix} e^{-\epsilon} \\ 0 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 \\ e^{-\epsilon} & 0 \\ 0 & e^{2\epsilon} \end{pmatrix}_{123}$		Ī			
	$\underline{\gamma}^{[o]}(t, t')$	$\left(egin{array}{ccc} 0 & -\gamma & 0 \ -\gamma & \gamma^2 & 0 \ 0 & 0 & 1 \end{array} ight)_{123}$	$ \left(\begin{array}{ccc} e^{\epsilon} - 1 & 0 \\ 0 & e^{\epsilon} - 0 \\ 0 & 0 \end{array}\right) $	$\begin{pmatrix} 0 & 0 \\ -1 & 0 \\ 0 & e^{-2\epsilon} - 1 \end{pmatrix}_{123}$		<u>0</u>		(Note there is a typo in the definition of ψ in the	
	$\underline{\underline{\gamma}}_{[o]}(t,t')$	$\left(\begin{array}{ccc} -\gamma^2 & \gamma & 0 \\ \gamma & 0 & 0 \\ 0 & 0 & 0 \end{array}\right)_{123}$	$\left(\begin{array}{cc} e^{-\epsilon}-1\\ 0 & e^{-\epsilon}\\ 0 \end{array}\right)$	$\begin{pmatrix} 0 & 0 \\ e^{\epsilon} - 1 & 0 \\ 0 & e^{2\epsilon} - 1 \end{pmatrix}_{123}$		<u>0</u>		there <u>r</u> ', whic	is says from \underline{r} to the solution of the set of the
	$\gamma = \gamma$	$v(t',t) = \int_{t'}^{t} \dot{\varsigma}(t'') dt''$	dt''	ψ is the a ccw rotati	ngle fr on aro	om <u>1</u> und	<u>c'</u> to <u>r</u> ê _z	in 🔶	This is correct
	$\epsilon = \epsilon$	$\dot{\epsilon}(t',t) = \int_{t'} \dot{\epsilon}(t'') dt$	dt''						46
							© Faith	A. Morriso	on, Michigan Tech U.

Advanced Constitutive Modeling - Chapter 9
Turntable Example: Lodge Model

$$\underline{\tau}(t) = -\int_{-\infty}^{t} \left[\frac{\eta_{0}}{\lambda^{2}} e^{-\frac{(t-t')}{\lambda}} \right] \underline{C}^{-1}(t',t) dt'$$

$$\underline{F}^{-1}(t',t) \equiv \frac{\partial \underline{r}}{\partial \underline{r}'} = \frac{\partial r_{m}}{\partial r_{j}'} \hat{e}_{j} \hat{e}_{m} = \begin{bmatrix} \frac{\partial x}{\partial x'} & \frac{\partial y}{\partial x'} & \frac{\partial z}{\partial x'} \\ \frac{\partial x}{\partial y'} & \frac{\partial y}{\partial y'} & \frac{\partial z}{\partial y'} \\ \frac{\partial x}{\partial z'} & \frac{\partial y}{\partial z'} & \frac{\partial z}{\partial z'} \\ \frac{\partial x}{\partial z'} & \frac{\partial y}{\partial z'} & \frac{\partial z}{\partial z'} \\ \frac{\partial x}{\partial z'} & \frac{\partial y}{\partial z'} & \frac{\partial z}{\partial z'} \\ \frac{\partial x}{\partial z'} & \frac{\partial y}{\partial z'} & \frac{\partial z}{\partial z'} \\ \frac{\partial x}{\partial z'} & \frac{\partial y}{\partial z'} & \frac{\partial z}{\partial z'} \\ \frac{\partial x}{\partial z'} & \frac{\partial y}{\partial z'} & \frac{\partial z}{\partial z'} \\ \frac{\partial x}{\partial z'} & \frac{\partial y}{\partial z'} & \frac{\partial z}{\partial z'} \\ \frac{\partial x}{\partial z'} & \frac{\partial y}{\partial z'} & \frac{\partial z}{\partial z'} \\ \frac{\partial x}{\partial z'} & \frac{\partial y}{\partial z'} & \frac{\partial z}{\partial z'} \\ \frac{\partial x}{\partial z'} & \frac{\partial y}{\partial z'} & \frac{\partial z}{\partial z'} \\ \frac{\partial x}{\partial z'} & \frac{\partial y}{\partial z'} & \frac{\partial z}{\partial z'} \\ \frac{\partial x}{\partial z'} & \frac{\partial y}{\partial z'} & \frac{\partial z}{\partial z'} \\ \frac{\partial x}{\partial z'} & \frac{\partial y}{\partial z'} & \frac{\partial z}{\partial z'} \\ \frac{\partial x}{\partial z'} & \frac{\partial y}{\partial z'} & \frac{\partial z}{\partial z'} \\ \frac{\partial x}{\partial z'} & \frac{\partial y}{\partial z'} & \frac{\partial z}{\partial z'} \\ \frac{\partial x}{\partial z'} & \frac{\partial y}{\partial z'} & \frac{\partial z}{\partial z'} \\ \frac{\partial x}{\partial z'} & \frac{\partial y}{\partial z'} & \frac{\partial z}{\partial z'} \\ \frac{\partial x}{\partial z'} & \frac{\partial y}{\partial z'} & \frac{\partial z}{\partial z'} \\ \frac{\partial y}{\partial z'} & \frac{\partial z}{\partial z'} \\ \frac{\partial z}{\partial z'} & \frac{\partial z}{\partial z'} \\ \frac{$$

Advanced Constitutive Modeling – Chapter 9 Deformation in shear flow (strain) $\underline{r}(t_{ref}) = \begin{pmatrix} x_1(t_{ref}) \\ x_2(t_{ref}) \\ x_3(t_{ref}) \end{pmatrix}_{123} \qquad \gamma_{21}(t_{ref}, t) \equiv \frac{\partial u_1}{\partial x_2} \text{ Shear strain}$ $\underline{r}(t) = \begin{pmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \end{pmatrix}_{123} = \begin{pmatrix} x_1(t_{ref}) + (t - t_{ref})\dot{\gamma}_0 x_2 \\ x_2(t_{ref}) \\ x_3(t_{ref}) \end{pmatrix}_{123}$ $\underline{u}(t_{ref}, t) \equiv \underline{r}(t) - \underline{r}(t_{ref}) = \begin{pmatrix} (t - t_{ref})\dot{\gamma}_0 x_2 \\ 0 \\ 0 \end{pmatrix}_{123} \qquad \text{Displacement function}$ $\frac{57}{\text{@ Faith A. Morrison, Michigan Tech U.}}$

	TABLE D.2 Predictions of Lodge Equation of Extensional Flows	or Upper Convected M	axwell Model in Shear and	
	1. Shear			
Ludge	Startup	$\eta^+(t, \dot{\gamma})$	$\eta_0 \left(1 - e^{-\frac{1}{2}}\right)$	
Equation		$\Psi_1^+(t, \dot{\gamma})$	$2\eta_0\lambda \left[1-e^{\frac{-t}{\lambda}}\left(1+\frac{t}{\lambda}\right)\right]$	
Lyuation		$\Psi_2^+(t,\dot{\gamma})$	0	
(UCM)	Steady	$n(\dot{v})$	$\eta_0 \equiv G_0 \lambda$	
(•••••)		$\Psi_1(\dot{\gamma})$	$2G_0\lambda^2 = 2\eta_0\lambda$	
		$\Psi_2(\dot{\gamma})$	0	
	Cessation	$\eta^{-}(t, \dot{\gamma})$	$\eta_0 e^{\frac{-r}{\lambda}}$	
		$\Psi_1^-(t,\dot{\gamma})$	$2\lambda\eta_0 e^{\frac{-1}{2}}$	
		$\Psi_2^-(t,\dot{\gamma})$	0	
	Step shear strain	$G(t, \gamma_0)$	$G_0 e^{-\frac{t}{2}}$	
		$G_{\Psi_1}(t, \gamma_0)$	$G_0 e^{-\frac{i}{2}}$	
		$G_{\Psi_2}(t,\gamma_0)$	0	
	2. Extension			
	Startup	== (4 3.)	No. (
	or biaxial $(b = 0, e_0 > 0)$	$\eta^{-}(t, \epsilon_0)$	$\frac{n}{\mathcal{AB}}\left(3-2\mathcal{B}e^{-\frac{n}{2}}-\mathcal{A}e^{-\frac{n}{2}}\right)$	
	or one on (0 = 0, c) (0)	or in Boundary	$\mathcal{A} = 1 - 2\dot{\epsilon}_0\lambda$ $\mathcal{B} = 1 + \dot{\epsilon}_0\lambda$	
	Planar ($b = 1, \dot{\epsilon}_0 > 0$)	$\bar{\eta}_{P_{1}}^{+}(t,\dot{\epsilon}_{0})$	$2\eta_0 \left(2 - \eta_e^{-\frac{2\gamma}{3}} - Ce^{-\frac{2\gamma}{3}}\right)$	
			$\mathcal{A}C \left(2 - \lambda \epsilon^{2} - 2\epsilon \lambda \right)$ $\mathcal{A} = 1 - 2\epsilon_{0}\lambda$	
			$C = 1 + 2\dot{\epsilon}_0 \lambda$	
		$\bar{\eta}_{P_2}^+(t, \dot{\epsilon}_0)$	$\frac{2\eta_0}{C}\left(1-e^{-\frac{C_1}{\lambda}}\right)$	
	Steady			
	Uniaxial $(b = 0, \dot{\epsilon}_0 > 0)$	$\bar{\eta}(\dot{\epsilon}_0)$	$\frac{3\eta_0}{(1-2)(1+1)} = \frac{3\eta_0}{2\pi}$	
	or blackal $(b = 0, e_0 < 0)$	OI 1/B(e0)	$(1-2\lambda\epsilon_0)(1+\lambda\epsilon_0)$ AB	
	Planar ($b = 1, \dot{\epsilon}_0 > 0$)	$\bar{\eta}_{P_1}(\dot{\epsilon}_0)$	$\frac{4\eta_0}{1-4\dot{\epsilon}_0^2\lambda^2} = \frac{4\eta_0}{\mathcal{A}C}$	
		$\tilde{\eta}_{P_2}(\dot{e}_0)$	$\frac{2\eta_0}{1-2\eta_0} = \frac{2\eta_0}{6}$	
			$1 + 2\epsilon_0\lambda$ C	60

	TABLE D.3 Predictions of Cauchy–Maxwel Extensional Flows	Equation or Lower Co	onvected Maxwell Model in Shear and	
Cauchy-	1. Shear			
Maxwoll	Startup	$\eta^+(t,\dot{\gamma})$	$\eta_0 \left(1 - e^{-\frac{1}{\lambda}}\right)$	
Maxwell		$\Psi_1^+(t,\dot{\gamma})$	$2\eta_0\lambda \left[1-e^{\frac{t}{\lambda}}\left(1+\frac{t}{\lambda}\right)\right]$	
Equation		$\Psi_2^+(t,\dot{\gamma})$	$-\Psi_1^+$	
Equation	Steady	$\eta(\dot{\gamma})$	$\eta_0 \equiv G_0 \lambda$	
		$\Psi_1(\dot{\gamma})$	$2G_0\lambda^2 = 2\eta_0\lambda$	
		$\Psi_2(\dot{\gamma})$	$-\Psi_1$	
	Cessation	$\eta^{-}(t, \dot{\gamma})$	$\eta_0 e^{\frac{-1}{2}}$	
		$\Psi_1^-(t,\dot{\gamma})$	$2\lambda\eta_0 e^{\frac{-t}{L}}$	
		$\Psi_2^-(t,\dot{\gamma})$	$-\Psi_{1}^{-}$	
	Step shear strain	$G(t, \gamma_0)$	$G_0 e^{-\frac{f}{2}}$	
		$G_{\Psi_1}(t, \gamma_0)$	$G_0 e^{-\frac{1}{2}}$	
		$G_{\Psi_2}(t,\gamma_0)$	$-G_{\Psi_1}$	
	2. Extension			
	Startup			
	Uniaxial $(b = 0, \hat{\epsilon}_0 > 0)$	$\bar{\eta}^+(t, \dot{\epsilon}_0)$	$\frac{\eta_0}{CD}\left(3-2De^{-\frac{tC}{\lambda}}-Ce^{-\frac{tD}{\lambda}}\right)$	
	or braxial $(b = 0, \epsilon_0 < 0)$	or $\eta_B(r, e_0)$	$C = 1 + 2\dot{\epsilon}_0\lambda$ $D = 1 - \dot{\epsilon}_0\lambda$	
	Planar ($b = 1, \dot{\epsilon}_0 > 0$)	$\bar{\eta}_{P_{1}}^{+}(t, \dot{\epsilon}_{0})$	$-2\eta_0 \left(2 - \frac{q}{2} - \frac{q}{2} - \frac{q}{2} \right)$	
			$\mathcal{A}C$ $(2 - \mathcal{A}e^{\lambda} - Ce^{-\lambda})$ $\mathcal{A} = 1 - 2\dot{\epsilon}_0\lambda$	
		$\bar{\eta}^+_{P_2}(t,\dot{\epsilon}_0)$	$\frac{-2\eta_0}{(1-e^{-\frac{3\mu}{2}})}$	
			д ()	
	Steady Uniaxial ($b = 0, \dot{\epsilon}_0 > 0$)	$\bar{\eta}(\dot{\epsilon}_0)$	3η0 3η0	
	or biaxial $(b = 0, \dot{\epsilon}_0 < 0)$	or $\bar{\eta}_B(\dot{\epsilon}_0)$	$\frac{1}{(1+2\lambda\dot{\epsilon}_0)(1-\lambda\dot{\epsilon}_0)} = \frac{1}{CD}$	
	Planar ($b = 1, \dot{\epsilon}_0 > 0$)	$\bar{\eta}_{P_1}(\dot{\epsilon}_0)$	$-4\eta_0$ $-4\eta_0$	
			$\frac{1}{1-4\dot{\epsilon}_0^2\lambda^2} = \frac{1}{\mathcal{A}C}$	
		$\bar{\eta}_{P_2}(\dot{\epsilon}_0)$	$-2\eta_0$ _ $-2\eta_0$	
			$\frac{1}{1-2\dot{\epsilon}_0\lambda}=-\mathcal{A}$	-

Advanced Constitutive	e Modeling – Appendix D		We can also change the
	TABLE D.5		form of the basic equation.
White- Metzner	1. Shear Startup	$\eta^+(t, \dot{\gamma})$	$n(\dot{y}) \left(1 - e^{-\frac{t}{\lambda(y)}}\right)$
		$\Psi_1^+(t,\dot{\gamma})$ $\Psi_2^+(t,\dot{\gamma})$	$2\eta(\dot{\gamma})\lambda(\dot{\gamma})\left[1-e^{-\frac{1}{\lambda(\gamma)}}\left(1+\frac{t}{\lambda(\dot{\gamma})}\right)\right]$
	Steady	$\eta(\dot{\gamma}) \ \Psi_1(\dot{\gamma}) \ \Psi_2(\dot{\gamma})$	$\eta(\dot{\mathbf{y}}) \ 2\eta(\dot{\mathbf{y}})\lambda(\dot{\mathbf{y}}) \ 0$
	2. Extension Steady Uniaxial $(b = 0, \dot{\epsilon}_0 > 0)$ or biaxial $(b = 0, \dot{\epsilon}_0 < 0)$	$ar{\eta}(\dot{\epsilon}_0)$ or $ar{\eta}_B(\dot{\epsilon}_0)$	$\frac{3\eta(\dot{\gamma})}{\left[1-2\lambda(\dot{\gamma})\dot{\epsilon}_{0}\right]\left[1+\lambda(\dot{\gamma})\dot{\epsilon}_{0}\right]} = \frac{3\eta(\dot{\gamma})}{\mathcal{A}(\dot{\gamma})\mathcal{B}(\dot{\gamma})}$ $\frac{\mathcal{A}(\dot{\gamma}) = 1-2\dot{\epsilon}_{0}\lambda(\dot{\gamma})}{\mathcal{B}(\dot{\gamma}) = 1+\dot{\epsilon}_{0}\lambda(\dot{\gamma})}$
	Planar ($b = 1, \dot{\epsilon}_0 > 0$)	$\bar{\eta}_{P_1}(\dot{\epsilon}_0)$	$\frac{4\eta(\dot{y})}{1-4\dot{\epsilon}_{0}^{2}\lambda(\dot{y})^{2}} = \frac{4\eta(\dot{y})}{\mathcal{A}(\dot{y})C(\dot{y})}$ $\frac{\mathcal{A}(\dot{y}) = 1 - 2\dot{\epsilon}_{0}\lambda(\dot{y})}{C(\dot{y}) = 1 + 2\dot{\epsilon}_{0}\lambda(\dot{y})}$
	$(\dot{\psi}) = n(\dot{\psi})/G_0$ and $\dot{\psi} = \dot{\psi} $	$\bar{\eta}_{P_2}(\dot{\epsilon}_0)$	$\frac{2\eta(\dot{\gamma})}{1+2\dot{\epsilon}_{0}\lambda(\dot{\gamma})} = \frac{2\eta(\dot{\gamma})}{C(\dot{\gamma})}$
	$(q_{1}) = q(q_{1}) \otimes q_{max} q = \underline{y} .$		77
			© Faith A. Morrison, Michigan Tech U.

Advanced Constitutive	TABLE D.4 Predictions of Oldroyd B or	TABLE D.4 Predictions of Oldroyd B or Convected Jeffreys Model in Shear and Extensional Flows [26]					
Modeling – Appendix D	1. Shear						
	Startup	$\eta^+(t,\dot{\gamma})$	$\eta_0 \left[\frac{\lambda_2}{\lambda_1} + \left(1 - \frac{\lambda_2}{\lambda_1} \right) \left(1 - e^{-\frac{1}{\lambda_1}} \right) \right]$				
		$\Psi_1^+(t,\dot{\gamma})$	$2\eta_0 (\lambda_1 - \lambda_2) \left[1 - e^{-\frac{t}{\lambda_1}} \left(1 + \frac{t}{\lambda_1} \right) \right]$				
		$\Psi_2^+(t,\dot{\gamma})$	0				
	Steady	$\eta(\dot{\gamma})$	ηο				
Oldroyd B		$\Psi_1(\dot{\gamma}) \\ \Psi_2(\dot{\gamma})$	$\frac{2\eta_0 (\lambda_1 - \lambda_2)}{0}$				
(Convected	Cessation	$\eta^-(t,\dot{\gamma})$	$\eta_0 \left(1 - rac{\lambda_2}{\lambda_1} ight) e^{-rac{t}{\lambda_1}}$				
loffrove)		$\Psi_1^-(t,\dot{\gamma})$	$2\eta_0 (\lambda_1 - \lambda_2) e^{-\frac{1}{\lambda_1}}$				
Jenneysj		$\Psi_2(t, \gamma)$	0				
	SAOS	$G'(\omega)$	$\frac{\eta_0 \frac{(\lambda_1 - \lambda_2)\omega^*}{1 + \lambda_1^2 \omega^2}}{1 + \lambda_1^2 \omega^2}$				
		$G''(\omega)$	$\eta_0\omega\frac{1+\lambda_1\lambda_2\omega^2}{1+\lambda_1^2\omega^2}$				
	2. Extension Startup			-i			
	Uniaxial ($b = 0$, $\dot{\epsilon}_0 > 0$) or biaxial ($b = 0$, $\dot{\epsilon}_0 < 0$)	$\bar{\eta}^+(t, \dot{\epsilon}_0)$ or $\bar{\eta}^+_B(t, \dot{\epsilon}_0)$	$ \begin{array}{c} 3\eta_0 \frac{\lambda_2}{\lambda_1} + \frac{\eta_0}{\mathcal{AB}} \left(1 - \frac{\lambda_2}{\lambda_1} \right) \left(3 - 2\mathcal{B}e^{-\frac{\lambda_1^2}{\lambda_1}} - \mathcal{A}e^{-\frac{\lambda_1^2}{\lambda_1}} \right) \\ \mathcal{A} = 1 - 2\dot{\epsilon}_0\lambda_1 \\ \mathcal{B} = 1 + \dot{\epsilon}_0\lambda_1 \end{array} $	Tech (
	Planar ($b = 1, \dot{e}_0 > 0$)	$\bar{\eta}^+_{P_{\rm l}}(t,\dot{\epsilon}_0)$	$ \begin{array}{l} 4\eta_0 \frac{\lambda_2}{\lambda_1} + \frac{2\eta_0}{\mathcal{A}C} \left(1 - \frac{\lambda_2}{\lambda_1}\right) \left(2 - \mathcal{A}e^{-\frac{\Omega_1}{\lambda_1}} - Ce^{-\frac{\partial U}{\lambda_1}}\right) \\ \mathcal{A} = 1 - 2\dot{e}_0\lambda_1 \\ C = 1 + 2\dot{e}_0\lambda_1 \end{array} $	lichigan			
		$\bar{\eta}^+_{P_2}(t,\dot{\epsilon}_0)$	$2\eta_0\frac{\lambda_2}{\lambda_1}+\frac{2\eta_0}{C}\left(1-\frac{\lambda_2}{\lambda_1}\right)\left(1-e^{-\frac{\zeta_1}{\lambda_1}}\right)$	on, N			
	Steady	- (1.)	$2 \left(\lambda_2 + \frac{1 - \frac{\lambda_2}{\lambda_1}}{\lambda_1} \right)$	-Lisi			
	Uniaxial ($b = 0, \dot{e}_0 > 0$) or biaxial ($b = 0, \dot{e}_0 < 0$)	$\eta(\hat{\epsilon}_0)$ or $\bar{\eta}_B(\hat{\epsilon}_0)$	$3\eta_0\left(\frac{1}{\lambda_1}+\frac{1}{\mathcal{AB}}\right)$	Mo			
We can also change th	Planar $(b = 1, \dot{\epsilon}_0 > 0)$	$\bar{\eta}_{P_1}(\dot{\epsilon}_0)$	$4\eta_0\left(rac{\lambda_2}{\lambda_1}+rac{1-rac{\lambda_2}{\lambda_1}}{\mathcal{A}C} ight)$	iith A			
form of the basic equation	<u>e</u> <u>1</u> .	$\bar{\eta}_{P_2}(\dot{\epsilon}_0)$	$2\eta_0\left(rac{\lambda_2}{\lambda_1}+rac{1-rac{\lambda_2}{\lambda_1}}{C} ight)$	78 Ľ ⊚			

Advanced Constitutive	Modeling – Appendix	D		We can also <u>change the</u>
Factorized	TABLE D.6 Predictions of Factorized I	Rivlin-Saw	yers Model in S	Shear and Extensional Flows [26]
Rivlin- Sawyers	1. Shear Steady	$\eta(\dot{\gamma})$		$\int_0^\infty M(s)s(\Phi_1+\Phi_2)ds$
		$\Psi_1(\dot{\gamma})$		$\int_0^\infty M(s)s^2(\Phi_1+\Phi_2)ds$
		$\Psi_2(\dot{\gamma})$		$-\int_0^\infty M(s)s^2\Phi_2\ ds$
	SAOS	$G'(\omega)$		$\int_0^\infty M(s)(1-\cos\omega s)ds$
		$G''(\omega)$		$\int_0^\infty M(s) \sin \omega s ds$
	2. Extension Steady			
	Uniaxial ($b = 0$, $\dot{\epsilon}_0 > 0$) or biaxial ($b = 0$, $\dot{\epsilon}_0 < 0$)	$ar{\eta}(\dot{\epsilon}_0)$ or $ar{\eta}_B(\dot{\epsilon}_0)$	$\frac{1}{\dot{\epsilon}_0}\int_0^\infty M(s)\left[\right]$	$\Phi_1\left(e^{2\dot{\epsilon}_0 s}-e^{-\dot{\epsilon}_0 s}\right)+\Phi_2\left(e^{\dot{\epsilon}_0 s}-e^{-2\dot{\epsilon}_0 s}\right)\right]ds$
	Planar ($b = 1, \dot{\epsilon}_0 > 0$)	$\bar{\eta}_{P_1}(\dot{\epsilon}_0)$	$\frac{1}{\dot{\epsilon}_0}\int_0^\infty M(s) \left[\Phi \right]$	$\Phi_1\left(e^{2\dot{\epsilon}_0s}-e^{-2\dot{\epsilon}_0s}\right)+\Phi_2\left(e^{2\dot{\epsilon}_0s}-e^{-2\dot{\epsilon}_0s}\right)\right]ds$
	· · · · · · · · · · · · · · · · · · ·	$\bar{\eta}_{P_2}(\dot{\epsilon}_0)$	$\frac{1}{\dot{\epsilon}_0}\int_0^\infty M($	$s)\left[\left(\Phi_1e^{-i_0s}+\Phi_2e^{i_0s}\right)\left(e^{i_0s}-e^{-i_0s}\right)\right]ds$
				80
				© Faith A. Morrison, Michigan Tech U.

Advanced Constitutive Modeling – Chapter 9
Some of what we have learned from Continuum Modeling
*
 We can model <u>linear viscoelasticity</u>. The GMM does a good job; there is no reason to play around with springs and dashpots to improve linear viscoelasticity
•We can model <u>shear normal stresses</u> . The kind of deformation described by the Finger tensor (affine motion) gives a first normal stress difference and zero second-normal stress; the kind of deformation described by the Cauchy tensor gives both stress differences, but too much N_2 .
•We can model shear thinning. But only by brute force (GNF, White-Metzner)
•We can model elongational flows . But we predict singularities that do not appear to be present.
•Frame-Invariance is important. Calculations outside the linear viscoelastic regime are incorrect if the equations are not properly frame invariant.
•Thinking in terms of strain is an advantage. When we think only in terms of rate, we can only model Newtonian fluids.
 Looking for contradictions when stretching a model to its limits is productive.
 Continuum models do not give molecular insight. We can fit continuum models and obtain material functions (viscosity, relaxation times) but we cannot predict these functions for new, related materials
82
© Faith A. Morrison, Michigan Tech U.

