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Key to deformation and flow is the momentum balance:
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Chapter 2. Mathematics Review

1. Scalar — a mathematical entity that has magnitude only

e.g.. temperature T
speed v
time t
density r

— scalars may be constant or may be variable

Laws of Algebra for
Scalars:

yes commutative ab =ba
yes associative  a(bc) = (ab)c

yes distributive  a(b+c) = ab+ac

.
© Faith A. Morrison, Michigan Tech U.
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2. Vector — a mathematical entity that has magnitude and direction

e.g.: force on a surface f
velocity v

— vectors may be constant or may be variable

Definitions

magnitude of a vector — a scalar associated with a vector

|\—/| =V ‘ﬂ = f This notation
unit vector — a vector of unit length (v, 7, f) is called

\' Gibbs notation.

vinl 2

v

a unit vector in the
direction of v

8
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Polymer Rheology

Laws of Algebra for
Vectors:

1. Addition

lex

© Faith A. Morrison, Michigari

9

Tech U.

Laws of Algebra for Vectors (continued):

3. Multiplication by scalar v

yes commutative aV =\Vo

yes associative a( ,BY) = (aﬂ)y = afjV

yes distributive a(\_/ n v_v) =av+aw

4. Multiplication of vector by vector
4a. scalar (dot) (inner) product

V-W=VwCcoséd v 0
Note: we can find

magnitude with dot
product

I=

V-V =wcos0=v?

v==vy

© Faith A. Morrison, Michigari
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Laws of Algebra for Vectors (continued):

4a. scalar (dot) (inner) product (con’t)

yes commutative V-W=W-V

NO associative M no such operation

yes distributive Z‘(\_/"' v_v) =ZV+Z-W

4b. vector (cross) (outer) product

VxW=Vvwsing é

1<
N

@ is a unit vector
perpendicular to
both v and w
following the
right-hand rule

1=

11,
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Laws of Algebra for Vectors (continued):

4b. vector (cross) (outer) product (con’t)
NO commutative VXW#WXV
NO associative \_/xV_VxZ¢(yx\/_V)xZ¢yx(V—\/xZ)

yes distributive (V+w)=(zxv)+(zxw)

12
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Coordinate Systems

*Allow us to make actual calculations with vectors

Rule: any three vectors that are non-zero and linearly
independent (non-coplanar) may form a coordinate basis

Three vectors are linearly dependent if a, b, and g can
be found such that:

aa+pb+yc=0
for «a,p,y#0

If a, B, and y are found to be zero, the vectors are
linearly independent.

13
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How can we do actual calculations with vectors?

Rule: any vector may be expressed as the linear combination
of three, non-zero, non-coplanar basis vectors

coefficient of ainthe @

direction y
a)(
any vector
(aFag +a8 +a8 =|a,
a This notation
27 xyz is called
=af +a,6, +a,é, matrix
. notation.
= 2,958
=1

14
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Trial calculation: dot product of two vectors

Q’Q = (a1é1 + azéz + asés)' (b1é1 + bzéz + b3é3)
=a,6 '(blel + bzez + b3e3)+
azéz '(b1§1 + bzéz + bséa)"'
as€, '(blel + bzez + b3e3)
=a6 - blel + a6 'bzez + a6 - bses +
a,6,-be +ae,-be,+ae, be +
a.6,-bé +a.6,-be, +aé,-he,

If we choose the basis to be orthonormal - mutually perpendicular
and of unit length - then we can simplify.

15
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If we choose the basis to be orthonormal - mutually perpendicular
and of unit length, then we can simplify.

a-b=ag bé +ag be,+ab -be+
a6, D6 + 36, 0,6, + 3k, by +
;- b6 + a8 - b6, + af; - b
= ay +ah, +agh

We can generalize this operation with a technique called Einstein notation.

16
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Einstein Notation

a system of notation for vectors and tensors that allows for the
calculation of results in Cartesian coordinate systems.

a=2a6 +ak, +af;
3
=2 a;€; /\This notation
j=L called Einstein
= ajéj notation.

«the initial choice of subscript letter is arbitrary

the presence of a pair of like subscripts implies a
missing summation sign

17
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Einstein Notation (con't)

The result of the dot products of basis vectors can be
summarized by the Kronecker delta function

p = %p

6-6=1 .
66-0  §: 5—={1 =P
66,0

Kronecker delta

18
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Einstein Notation (con't)

To carry out a dot product of two arbitrary vectors . . .

Detailed Notation

a-b=(a8 +ae +as) be+be+be)
—a0-bg+af b +ag-be+ |

a6, - b + a6, -be, +ak, b+ ! =20 by
;- b6 + a8 - b6, + af; - b !

= ab +ah, +ah; =ayb,
19
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3. Tensor — the indeterminate vector product of two (or more) vectors

e.g.. stress T
velocity gradient

— tensors may be constant or may be variable

Definitions

dyad or dyadic product — a tensor written explicitly as the
indeterminate vector product of two vectors

ad  dyad
A general representation
= of a tensor

This notation =
(ad,A)is also part

of Gibbs notation.
20
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Laws of Algebra for Indeterminate
Product of Vectors:

NO commutative av+va

yes associative  p (3 v)= (b a)v =bav
yes distributive

21
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How can we represent tensors with respect to a chosen

coordinate system?
Just follow the rules of tensor algebra

am= (a1é1 + azéz + a3é3 )(mlél + mzéz + m3é3)
= alélmlél + aiélmzéz + aié1m3é3 +
a,e,me, +a,e,m,e, +a,e,m,e, +
a,6,;me€, +a,6;m,é, + a,e,m.e,

3 3
= Z Z ak ek mwew
k=1 w=1
3 3 Any tensor may be written as the
= Z am,ece, sum of 9 dyadic products of basis
k=1 w=1 vectors

22
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What about 4? Same.
3
A=3 Y Aje4
i=1 j=1

Einstein notation for tensors: drop the summation sign; every
double index implies a summation sign has been dropped.

A=A &= Ay 6

Reminder: the initial choice of subscript
letters is arbitrary

23
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How can we use Einstein Notation to calculate dot products
between vectors and tensors?

It's the same as between vectors.

o
I> = o
<
Il

24
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Summary of Einstein Notation

1. Express vectors, tensors, (later, vector operators) in a Cartesian
coordinate system as the sums of coefficients multiplying basis
vectors - each separate summation has a different index

2. Drop the summation signs

3. Dot products between basis vectors result in the Kronecker delta
function because the Cartesian system is orthonormal.

Note:

«In Einstein notation, the presence of repeated indices implies
a missing summation sign

*The choice of initial index (i, m, p, etc.) is arbitrary - it merely
indicates which indices change together

25
© Faith A. Morrison, Michigan Tech U.

Mathematics Review Polymer Rheology

3. Tensor — (continued)
Definitions

Scalar product of two tensors

A Aa carry out the dot
= AipM km iep e products indicated

:AipMkm (épékxé|ém)

= Aip M km 5pk é‘im p becomes “k”
Aﬂ M “I" becomes “m”

= Pk Vlm

26
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Mathematics Review Polymer Rheology

But, what is a tensor really?

Atensor is a handy representation of a Linear Vector Function

scalar function: 'y = f (X) =x>+2x+3

a mapping of values of x onto values of y

vector function: w= f(v)

a mapping of vectors of v into vectors w

How do we express a
vector function?

27
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What is a linear function?

Linear, in this usage, has a precise, mathematical definition.

Linear functions (scalar and vector) have the
following two properties:

f (Ax) = Af (X)
f(x+w)=f(x)+ f(w)

Multiplying vectors and tensors is a
convenient way of representing the
actions of a linear vector function
(as we will now show).

28
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Tensors are Linear Vector Functions

Let f(a) = b be a linear vector function.

L We can write a in Cartesian coordinates.

a= aiél + azéz + a3é3
f(@)=f (aiél + azéz + a3é3) =b

Using the linear properties of f, we can distribute the function action:

f@-):a1f(él)+a2f(é2)+a3f(é3)zg
e

These results are just vectors, we will

name them v, w, and m.
29

© Faith A. Morrison, Michigan Tech U.

Mathematics Review Polymer Rheology

Tensors are Linear Vector Functions (continued)

f(@):aif(él)+azf(é2)+a3f(é3):9
—— —— ——
Vv W m

f(a)= av+a,W+a,m= b
Now we note that the coefficients a; may be written as,
4 :Q'él a, :Q'éz a3 :Q'é3
Substituting, /\ indetlrhrreﬂnate

~ a vector product
fl@)=a-ev+a-e, v_v+§9 has appeared!

30
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Using the distributive law, we can factor out the dot product with a:

f@=a-(@v+&w+6m)=b
1\ J

This is just a tensor

(the sum of dyadic (él V+6 W+6 m) =M
products of vectors) _

f@=a-M=Db

7

CONCLUSION: Tensor operations
are convenient to
use to express linear
vector functions.

31
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3. Tensor — (continued)

More Definitions

Identity Tensor

1=66=66+66+68

1 0O
=0 1 O
0 0 1 23
él = Apéiép : ékék
= Apéi5pkék
= Akéiék
=A

32
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3. Tensor — (continued)

Polymer Rheology

More Definitions

Zero Tensor

000
0=(0 0 0
00 0),

Magnitude of a Tensor

A:A
A=
A:A= Apéiép : A
= Appkm (ép 'ékxéi ém) products
— AnkA<m across the

diagonal

33
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3. Tensor — (continued)

Polymer Rheology

More Definitions

Tensor Transpose

MT = (Mikéiék)T =M;&¢8

Exchange the
coefficients across
the diagonal

CAUTION:

(AQT = (’A!kélék 'ijépéj = (Akcpj éléjé‘kp)r
= (ACy 88)
= ApCpj 6
! recommend you a]ways
Itis not equal to: (é Q)T _ (Apcpj eéJ)F interchange the indices

on the basis vectors
rather than on the
coefficients.

M

34
© Faith A. Morrison, Michigan Tech U.
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Mathematics Review

3. Tensor — (continued)

Polymer Rheology

More Definitions

Symmetric Tensor e.g.
M=M" 12 3
IV 2 45
! ! 3 5 6),
Antisymmetric Tensor e.g.
M=-M" 0 -2 -3
VI Y 2 0 -5
M; =-My 3 5 0

123

35
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3. Tensor — (continued)

Polymer Rheology

More Definitions

Tensor order

Scalars, vectors, and tensors may all be considered to
be tensors (entities that exist independent of coordinate
system). They are tensors of different orders, however.

order = degree of complexity

scalars Ot -order tensors 30

"""""""""""""""""""""""""""""""""" Number of
st _ 1

vectors 1st -order tensors 3 coefficients
tensors 2nd _order tensors 32 needed to
77777777777777777777777777777777777777777777777 express the

higher- 3 -order tensors 33 tensor in 3D

order space

tensors

36
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Mathematics Review Polymer Rheology

3. Tensor — (continued) More Definitions

Tensor Invariants

Scalars that are associated with tensors; these are
numbers that are independent of coordinate system.

vectors: M =V The magnitude of a vector is a
scalar associated with the
vector

It is independent of coordinate
system, i.e. it is an invariant.

tensors: There are three invariants
associated with a second-order

tensor.

>

37
© Faith A. Morrison, Michigan Tech U.
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Tensor Invariants

|, =traceA=trA

For the tensor written in Cartesian coordinates:

traceA= Ay, = A+ Ay, + Ay
I, =trace(A-A)=A: A= Ay A,

11, =trace(A- A- A)= A;ALA,

Note: the definitions of invariants written in terms of
coefficients are only valid when the tensor is written in
Cartesian coordinates.

/38
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4. Differential Operations with Vectors, Tensors

Scalars, vectors, and tensors are differentiated to determine
rates of change (with respect to time, position)

To carryout the differentiation with respect to a single variable,
differentiate each coefficient individually.

*There is no change in order (vectors remain vectors, scalars
remain scalars, etc.

o 9By 9By By
ot o ot ot
da ow _ | ow, OB _| 0By 0B, 0By
ot ot ot ot ot ot ot
oW oB;; 0B;, 0By
ot ot ot ot

123 123

39
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4. Differential Operations with Vectors, Tensors (continued)

«To carryout the differentiation with respect to 3D
spatial variation, use the del (nabla) operator. Del Operator

*This is a vector operator
*Del may be applied in three different ways

*Del may operate on scalars, vectors, or tensors

o
%
This is written in Vzéli+é2i+ési= i
Cartesian 0% 0% TOX | O%
coordinates 0
ax3 123
3

Einstein notation for del
40

© Faith A. Morrison, Michigan Tech U.
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Mathematics Review

Gibbs
notation

4. Differential Operations with Vectors, Tensors (continued)

A. Scalars - gradient

Gradient of a
scalar field

% Cartesian
0%, coordinates
o 0 0 op
- + - + - = £
el@xlﬂ 926X2ﬂ %6x3'3 OXy
925
ax3 123
o B
- paixp The gradient of

egradient operation increases the order of the
entity operated upon

Polymer Rheology

This is written in

a scalar field is a
vector

The gradient operation
captures the total spatial
variation of a scalar, vector,
or tensor field.

41
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The basis vectors
can move out of
the derivatives
because they are
constant (do not
change with
position)

4. Differential Operations with Vectors, Tensors (continued)

B. Vectors - gradient

széliw+éziw+ésiw

Polymer Rheology

This is all written in
X, 0X, 0Xq Cartesian
coordinates (basis

- élvf(\wl € +W,6, + Wsés) vectors are
X

9 constant)
0
+6, . (W&, +W,8, +W,6,)
2
0
+6, o (W6, +W,8, +W,6,)
3
ow, OW. oW, oW,
=66 —L 4 €6, —2 4 €6, — 4 6,6, —L 4
X, 0%, X, OX,

OW. OW. oW, OW. OW.
6,6, —2+4+66,—2+66—+66 —2+66—
ZZaX 2¥3 316)( 326)( 3¥3

2 2 3 3 3
42
© Faith A. Morrison, Michigan Tech U.
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Mathematics Review
4. Differential Operations with Vectors, Tensors (continued)

B. Vectors - gradient (continued)

Gradient of a

Polymer Rheology

constants may appear
on either side of the
differential operator

vector field
3.3 oW, oW,
k _ k
Gibbs ZZéjék x. = €& ox.
notation J=1k=1 ] i

The gradient of
a vector field is a
tensor

J

LY_J

Einstein notation
for gradient of a
vector

w0
= axj éék

43
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4. Differential Operations with Vectors, Tensors (continued)

C. Vectors - divergence

Gibb
notlatic?n — %4_%4_%
X OX 0%
_ oW _ oW
i1 0% 0%

vector

Polymer Rheology

Divergence of a 0 0 0 j
- — +&— +6— | +WoE, + W,
vector field (él X1 2 X2 es OX3 Wiél 2%2 363;

The Divergence
of a vector field
is a scalar

Einstein notation
for divergence of a

44
© Faith A. Morrison, Michigan Tech U.
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Mathematics Review
4. Differential Operations with Vectors, Tensors (continued)

C. Vectors - divergence (continued)
constants may appear
on either side of the

differential operator
Using Einstein

entity operated upon

Polymer Rheology

This is all written in
Cartesian
coordinates (basis
vectors are
constant)

notation
(O ow o

VS o W = za_xn:&”"
_ oW
- OX;

«divergence operation decreases the order of the

45
© Faith A. Morrison, Michigan Tech U.
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4. Differential Operations with Vectors, Tensors (continued)
D. Vectors - Laplacian
Using . 0 0
Einstein ¥~ YW= 6p OXn, Pox
notation: p
Gibbs _ iiwj (5mp) 6,
notation 8)(m 8xp
0 O
=W §
OX, OX
Aw, w6
W, oW W
X OX 0%
oW, oW, Ow.
_ 2 2 2
ox 0% 0%
w, Awy,
s OV Wa
0% 0%  OX

Polymer Rheology

6 L we, =iﬁwj (RN

OXm OX,

The Laplacian of

<@ | a vector field is a | Einstein

vector notation

Laplacian operation does
not change the order of the

Column  entity operated upon
vector

notation

46
© Faith A. Morrison, Michigan Tech U.
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4. Differential Operations with Vectors, Tensors (continued)

E. Scalar - divergence ><a (impossible; cannot
’ 9 decrease order of a scalar)

F. Scalar - Laplacian V- -Va

G. Tensor - gradient

VA
H. Tensor - divergence
g V 'é
I. Tensor - Laplacian
V-VA
47
© Faith A. Morrison, Michigan Tech U.
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5. Curvilinear Coordinates
Note: my
2 spherical
Cylindrical z Spherical 6 comes
A
from the
Z-axis.
r.0,z €.,6,86 ro.¢ ¢€.6,¢,

48
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Mathematics Review: Curvilinear Coordinates

Cylindrical Coordinates

Polymer Rheology

System Coordi Basis vectors
Cylindrical r=,i+yt &, =cosf e, +sinfé,
Cylindrical &= tan™1 (I) &5 = (—sin@)é, +cosbé,
X
Cylindrical z=1z &, =8,
Cylindrical x=rcost &, = cosB &, + (—sin@)é,
Cx-l[ndrica[ y=rsinf g, =sinBé, +cosdé,
Cylindrical z=2z 8, =2,
Spherical Coordi
E System Coordinates Basis vectors
Spherical x =rsinfcosd &, = (sin@cosp)é, + (cosOcosPplég + (—sing ) &,
Spherical y=rsin@sing &, = (sin@sind)&, + (cosBsind)&, + cosgp iy
Spherical z=rcosh &, = cosf &, + (—sin0)é,
Spherical r=Jx 1yt r2? &, = (sin 8 cos )&, + (sin @ sin p)é, + cos &,
Spherical " i (‘;‘xi + yZ) &y = (cosBcosd)é, + (cosBsing)e, + (—sind)e,
=tan~!| ——
z
Spherical ¢ = tan™! Z) By = (—sing)e, +cosgé,
Note: my o
spherical 8
comes from
the z-axis.

49
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Polymer Rheology
5. Curvilinear Coordinates
Cylindrical r,o0,z er,é‘g,é‘Z See text
figures
) A A oa 2.11 and
Spherical r,9,¢ er,eg,e¢ 512

These coordinate systems are ortho-normal, but they are not
constant (they vary with position).

This causes some non-intuitive effects when derivatives are taken.

50
© Faith A. Morrison, Michigan Tech U.
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Mathematics Review
5. Curvilinear Coordinates (continued)

V=V +V,E,+V,E

~ 2
~

First, we need to write thisT
cylindrical coordinates.

0, 0. 0. ~ ~ ~
=| =8 +—8, +—8&,|-(v8 +v,8 +V8)

solve for € =Cosd €, +sinde, X=rcosd
Cartesian . .
basis €,=-sind ¢ +coso e, y=rsingd > Jisiitute above
vectors and i i
substitute €, =¢, z=1 e Chalr'] o
Lot (see next slide for
details)
51
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Mathematics Review

. =C0s@ € —sind e,
s

, =SINOE +cosdéE,

Oy _oyer\ oy 20 oy oz _ody
0L Ox or

h

X or ox/) 06 ox

oy oroy o0 ey oz oy or

[ 'y=rsing 6= tan’{lj
X

Oy _Oyor 0ydf Oyadr Oy .,

Polymer Rheology

ércose r=yx2+y?

=1
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5. Curvilinear Coordinates (continued)
0 . 0
Result V:(ex+ey+ez)
X z
.0 10 L. 0
=€ —+t€——+¢€, —
or roe oz
Now, proceed
.0 10 .0
V.v=|6 —+€,——+€, — (v € +V,e,+V,E )
or rog ‘oz
(We cannot use
Einstein notation . 0 R " n
because these are =€ — (Vr r TVeE, + vzez)+
not Cartesian 6[’
coordinates)
~ 1 a ( )
Curvilinear € — v e +V9e9 +V, é
. r oo
coordinate
notation 0 ( ~ ~ )
a— Vgeg + VzeZ
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© Faith A. Morrison, Michigan Tech U.

Mathematics Review

5. Curvilinear Coordinates (continued)

Polymer Rheology

ag C+V,8, +V,8,)
10 . . love
e —— V6, =€, —
rog r oo
.~ 1( 08 . ov,
=e9-— Vv, +6€,
el 00
% _ 9 (cosee +sing é )
20 00
=-singé, +cosf e,
Curvilinear .
coordinate =€,
notation
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5. Curvilinear Coordinates (continued)

A

€

| =

o 4 1 0v,€,
0 " A U6 =6 ————
r oo r 06

. l( 08, Aav,j
ea'FV +e —

(D>

‘00 06
=€ l(v €, +¢€ %j
[ r r~e r 80
1
=—V This term is not intuitive,

r and appears because the
basis vectors in the
curvilinear coordinate
systems vary with position.

Curvilinear
coordinate
notation 55
© Faith A. Morrison, Michigan Tech U.
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5. Curvilinear Coordinates (continued)

Final result for divergence of a vector
in cylindrical coordinates:

A~

0 [ A A
V-v=§ E-(vrer +V,8, +V,8, )+

. 0 A « «
e, E (V,er +V,€, + Vzez)
V‘Vzavurlavg ov,
- or rod oz
Curvilinear
coordinate
notation 56
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5. Curvilinear Coordinates (continued)

Curvilinear Coordinates (summary)

*The basis vectors are ortho-normal
*The basis vectors are non-constant (vary with position)

*These systems are convenient when the flow system
mimics the coordinate surfaces in curvilinear coordinate
systems.

*We cannot use Einstein notation — must use Tables in
Appendix C2 (pp464-468).

Curvilinear
coordinate

notation

57
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6. Vector and Tensor Theorems and n Chapter 3 we review Newtonian fluid
definitions mechanics using the vector/tensor

vocabulary we have learned thus far. We
just need a few more theorems to prepare
us for those studies. These are presented
without proof.

Gauss Divergence Theorem outwardly

directed unit

) [[[vbdv=[[a-bds “™
ibbs v S

notation

This theorem establishes the utility of the
divergence operation. The integral of the
divergence of a vector field over a volume is
equal to the net outward flow of that property
through the bounding surface.
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6. Vector and Tensor Theorems (continued)

Leibnitz Rule for differentiating integrals \
/\ i
constant limits I :J- f(X,t) dX
\_/0! one
dl d” > constant
—=—|f X, t dx imits
i J (x,1) i
B
of (x,t
= _[ . dx
bt
J
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6. Vector and Tensor Theorems (continued)
Leibnitz Rule for differentiating integrals \
B(t)
— J f (X,t) dx variable limits
a(t)v\_/
) one
dJ d dimension,
T I f(x1) dx variable
dt  dt ey
a(t) limits
B(t)
of (x,t) dﬁ
=] = f(ﬁt)——f( 1)
a(t)
61
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6. Vector and Tensor Theorems (continued)

Leibnitz Rule for differentiating integrals \

J:mf(x,y,z,t)dv

v (t)

three _
ol fenzoey \ varae i
—j_” of (x, y z,t) dv + ”’ Lsurface A) ds
V(t) S(t)

velocity of the surface element dS

J
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6. Vector and Tensor Theorems (continued)

Substantial Derivative

choose

time rate of
change of f
along a chosen
path

Polymer Rheology

Consider a function  f (X, Y, z,t)

rue for an
t path¥ df = (ﬂj dx + (ﬂ) dy + (ﬂj dz + (af j dt
ox yzt ay xzt oz Xyt ot e
special path: ﬂ A (ﬂj % + (ﬂj dy (61:) % + (ﬂ)
dt — \ox/, dt_\oy) dt \oz/,, dt \ot

yzt xzt xyt Xyz
x—compo*%jn the chosen path is

the path of a fluid particle,
then these are the
components of the
particle velocities.

of velocity
along that path

63
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6. Vector and Tensor Theorems (continued)

When the chosen
path is the path of
a fluid particle,

Polymer Rheology

Substantial Derivative

then the space df dx (8]" dy dz (af )
derivatives are the< — E — — — —+| —
components of the d yzt dt ay et dt yt dt ot xyz
particle velocities. l l
d of of
gt Jalong Ay V + Vit oo
dt a pagr]‘ucle yzt y xzt at Xyz
path /
Y
v- Vi
Substantial Derivative
df Df of
I
dt a pagrticle Dt 8t
path
Gibbs
notation ot
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Notation Summary:

Gibbs—no reference to coordinate system (a,4,Vp,V - a)
Einstein—references to Cartesian coordinate system
_ (ortho-normal, constant) (a;é;, Apképéx)
Matrix—uses column or row vectors for vectors and 3 x 3
matrix of coefficients for tensors 4, Ay Ay A
<a2> ,<A21 Az A23>
a3/123 \Az1 Azz Az 123
Curvilinear coordinate—references to curvilinear
coordinate system (ortho-normal, vary with
position) /a, A Avg Ary
(‘19) | Aor Ago  As:z
az r0z Azr A29 Azz roz
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Done with Math
background.

Let's use it with

- Newtonian fluids

Polymer Rheology
Michigan Tech

1. Vector review

2. Einstein notation

3. Tensors
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Chapter 3: Newtonian Fluids

CM4650
Polymer Rheology
Michigan Tech

Navier-Stokes Equation

p(%ww) =—Vp+uV?v+pg

67
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