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Advanced CM4650

Advanced Constitutive Modeling — Chapter 9

Fluids with Memory — Chapter 8

We have learned that the GLVE e —
is a good model for: Equations
e Deformations at low rates

Generalized Linear-Viscoelastic Constitutive

PRO: A first constitutive equation with memory

o Deformation to low strains «Can match SAOS, step-strain data very well
. H «Captures start-up/cessation effects
(l ! near reglme) +Simple to calculate with
+Can be used to calculate the LVE spectrum
The GLVE does not work for the S
i ) *Fails to predict shear-thinning/thickening
nonlinear regime, due to the problem ~Only vald at small strains, smal rates
of lack of frame invariance. GLVE: "ot frame-fnvariant

t

1©=-| 6e- ey

Fluids with Memory — Chapter 8

Shear flow in a rotating frame of reference.

Turntable
problem

GLVE:

3
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Advanced Constitutive Modeling — Chapter 9

Fiuids with Memory — Chapter 8

Shear flow in a rotating frame of reference

Strain-related issues?

= perhaps the problem with the GLVE
model is associated with how strain is

mathematically described.

The question then becomes, how is
strain mathematically described in the
GLVE Model?

7(t) = — G(t — t’))='/(t’)dt’

]

strain rate

4
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Advanced Constitutive Modeling — Chapter 9

What is the strain measure that is used in the GLVE model?

t
0=~ | G- pear

]

strain rate

(use integration by parts;
see hand calculations)

5
© Faith A. Morrison, Michigan Tech U.

Advanced Constitutive Modeling — Chapter 9

The infinitesimal
strain tensor is the
strain measure of the

Generalized Linear-
Viscoelastic Model:

(strain version) ¢ GLVE
1(t) = +f M(—t dt’
—00
0G(t—t")
Mt-tHh=s—=
(t=t) = ——5
memory
function
Infinitesimal Strain Tensor Turns out:
tr It is the use of the infinitesimal strain
"N _ " " tensor as the strain measure that causes
Z(t’ : ) o J; Z(t )dt the frame-variance in the GLVE model.

6
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Advanced Constitutive Modeling — Chapter 9

We have seen the infinitesimal strain tensor before: when we first
defined strain (when we discussed material functions).

Infinitesimal _ T
straintensor Y = Vu+ (Vw)
When formally Displacement  u(t,,t) = r(t) —r(t.)
developed, y(¢,t") is function
related to the
displacement function, X, (t)
u(t, t)).

Particle K(t): Xz(t)

tracking vector

7
© Faith A. Morrison, Michigan Tech U.

What is strain? Summary (from Chs)

Strain is our measure of deformation (change of shape)

For shear flow (steady or unsteady):

tz Strain is the strain
— g / / accumulates as
Y21(ty, t2) = J Y21(t)dt integral of strain the flow
t
2 rate progresses
The time The strain rate is
dyz1 _ Va1 () derivative of the rate of
dt 21 strain is the strain instantaneous
Deformation rate rate shape change
Applying this to each T
component of y and Infinitesimal y=Vu+ (Vw7

L = strain tensor
generalizing to all flows:

© Faith A. Morrison, Michigan Tech U.
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Advanced Constitutive Modeling — Chapter 9

Fluids with Memory — Chapter 8

Shear flow in a rotating frame of reference

In addition to the turntable
example, another “flow” we
can use to test the GLVE
model is rigid body
rotation (no strain).

Turntable
problem

Counter clockwise
rigid body rotation (no
strain).

No strain should 4
produce no stress.

9
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Advanced Constitutive Modeling — Chapter 9
No stress is generated when a fluid is rotated CCW through ) (from
position at time ¢ to position at time t’, what does the GLVE

redict? (Warning: later, we are going to consider
CCW rotation from t' to t through an angle
Y = —; see Table 9.3)

rcosf P(t)

1=l

B rsing

X

» calculate the infinitesimal strain tensor for rigid body rotation
» use the strain-evident version of the GLVE

10
(note: we need ]=/(t, t') in the GLVE) © Faith A. Morrison, Michigan Tech U.
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Advanced Constitutive Modeling — Chapter 9

What does the GLVE Predict for CCW Rigid-Body
Rotation around the z-axis from ¢t to t'?

),

xyz z' xyz

ut,t)=r"-r

y(t,t) =Vu+ (Vw)’

(see book for details)

11
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Advanced Constitutive Modeling — Chapter 9

What does the GLVE Predict for CCW Rigid-Body
Rotation around the z-axis from ¢t to t'?

From geometry
y=rsinf
X =T cos
From trigonometry
y' =7sin(f + ) = 7(sin f cos P + sinyp cos B)
= ycosd; +xsin1/)~
x' = fcos(,b’ i 1/7) = f(cosﬁ cosy — sin f sin 1/3)
= xcosyp — ysiny

1=y

z=17
From definitions of u and y _ _
- xcosy —ysiny —x
ycosd; +xsin1/; -y
0

u=r'-—-r

xXyz

12
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Advanced Constitutive Modeling — Chapter 9

GLVE Prediction for CCW Rigid-Body Rotation
around the z-axis from t to t;
¢ 2(cosyp — 1) 0 0
(@=+] Me-) o 2(cosg-1) o) o
- 0 0 0/ xyz

13
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Advanced Constitutive Modeling — Chapter 9

GLVE Prediction for CCW Rigid-Body Rotation
around the z-axis from t to t": WRONG

Stress depends on angle of rotation!

Why does GLVE make this erroneous prediction?

7t 1) = Vut,t) + Vuct.t)f
/\ u(t,t) = r(t) - r()

Because this vector, while accounting for
deformation, also accounts for changes in
orientation. 14
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Advanced Constitutive Modeling — Chapter 9

7(t,t) = Vu(t, t) + [Vu(t,t')]r Accounts for changes in
= - B shape and orientation.
ut,t) = r(t) —r()

wry=r'—r

Origin O
fixed in space
o) i wery RO wer
/0,

.....

Orientation changes Orientation changes
(r changes direction) Shape changes
Shape does not change

(length of r does not

change)

15
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Advanced Constitutive Modeling — Chapter 9

We desire a strain tensor that accurately captures large-strain
deformation without being affected by translation and rotation.

) time=t’
Consider:

Shape and position of a
What change does deforming body at ¢

the def_ormation time=t

cause in the vector '

that separates two P_.0 dr Shape and position of
very nearby material the same deforming
elements? body at ¢

' py
4 - r .~

y

fixed coordinate ! x
system (xyz)

16
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Advanced Constitutive Modeling — Chapter 9

How does dr map to dr’ along a particle path?

T particle label (reference time t)

' location at time t of the particle labeled r

Define change-of-shape
tensors that rely on
relative location of two
nearby particles

Particle position at t’

r' is a function of past

position, r' = f(r)

dr dr’ X
y r=ly | =f(r)
Z!
Xyz
dx’
df =/ dy’'| =?
dz’

Xyz

17
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Advanced Constitutive Modeling — Chapter 9

We can relate dr’ to dr using the chain rule.

!

X

! !

r=\y = f(x,y,2)

/
Z 7 xyz

dx' =?
dy' =?
dz' =?

(see text)

18
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Advanced Constitutive Modeling — Chapter 9

_ o ox' oy ot
Combine answers from 3 directions: - =
oX OX OX
ox' ‘oz
(dX’ dy’ dZ’)Xyz = (dX dy dz)xyz E % a
X' oy oz
0L 07 0Ly,
dri=dr-F
Deformation-gradient 6_)( Q 6_2
tensor OX OX OX
ox' "oz or' or'. .
E(Lt!)E ~ Q - =__=_Iepe|
= oy oy oy or 6|’p
ox' oy ot
In Einstein notation: 0z 07 01)y,
r'=r1¢g
I __ ! I __ ! I __ 14 19
Uil =ty =l =4 © Faith A. Morrison, Michigan Tech U.
Advanced Constitutive Modeling — Chapter 9
We can calculate F~1 as follows:
. -1
Define: F F=1
Then use: dr'=dr-F
=7

20
© Faith A. Morrison, Michigan Tech U.
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Advanced Constitutive Modeling — Chapter 9
Deformation-gradient ' ' '
tensor a_x ﬂ 8_2
. 6x| 6x' axl . ‘
dr'=dr-F F(Lt) = ox' oy oz za_izaiépél
- o oy oy or or,
x oy
01 01 01)y,
Inverse deformation-
gradient tensor ﬁ ﬂ ﬂ
. ox' ox' ox'
= "F~ _ X VA r | (PR
dr=dr-B" P2 X 21 L _Thge
= oy' oy' oy or'  or;
x oy @
o' 01" 01')yy,
These strain measures get rid of N
the w prOblem . © Faith A. Morrison, Michigan Tech U.

Advanced Constitutive Modeling — Chapter 9

We desire a strain tensor that accurately captures large-strain
deformation without being affected by translation and rotation.

These strain measures include translation,
deformation and orientation

These strain measures include
deformation and orientation

_n
I TIm s S

We canlseparate the deformation and orientation information in E
and E "using a technique called polar decomposition.

(en.wikipedia.org/wiki/Polar_decomposition) 2

© Faith A. Morrison, Michigan Tech U.
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Advanced Constitutive Modeling — Chapter 9

Polar Decomposition Theorem

(en.wikipedia.org/wiki/Polar_decomposition)

Any tensor for which an inverse exists has two
unique decompositions:

A = B 0 Q/‘\
é — Z : 5 Pure rotation tensor
Q = (éT : é)l/z Right stretch tensor 5_1 = QT Orthogonal tensor

— TN\1/2 i
V= (é ’ é ) / Left stretch tensor gL §ymmetrlc,
= nonsingular tensors

[[=s]

=44V =4-U"

23
© Faith A. Morrison, Michigan Tech U.

Advanced Constitutive Modeling — Polar Decomposition

EXAMPLE: Calculate the right stretch tensor and rotation tensor for a
given tensor. Calculate the angle through which R rotates the vector u.

1 0 2 1
A=|0 3 2 u=|2
2 00 1
Xyz Xyz
A=R-U
A-u=R-U-u
w
Pure All the stretch;
rotation some of the
rotation

24
© Faith A. Morrison, Michigan Tech U.
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Advanced Constitutive Modeling — Polar Decomposition

We have partially isolated the effect of rotation through
polar decomposition.

pure rotation tensor

( (‘ left stretch tensor
A=R-U=V R

(—/ right stretch tensor

original (strain) tensor

o=

We can further isolate stretch from rotation by considering
the eigenvectors of U and V.

25

© Faith A. Morrison, Michigan Tech U.

Advanced Constitutive Modeling — Polar Decomposition

A=R-U
A=V-R
U - & = Ak
eigenvectors V. fj = Vjé:j eigenvalues
Physical Interpretation
A=R-U P —
4-§k=§-g-§k R-¢é, =0,
== 5 . Akfk /111 = Vn
(stretch first;
then rotate, or
Pure the reverse)
Pure stretch
rotation

PATH II

26
© Faith A. Morrison, Michigan Tech U.
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Advanced Constitutive Modeling — Polar Decomposition

4=RU
A=V-R
U-& =i
eigenvectors \4(’?] :Vjéj eigenvalues
Physical Interpretation
A=R-U o
é§;=§£’§k PATH | R-$n=0
=R Ak An = Vn
/ \_YJ (stretch first;
then rotate, or
P Pure the reverse)
P
Omitting the ogion el —h T %
details, the idea is: " eamHl
e F,F~!are plausible strain measures (translation has been
eliminated, but they contain rotation)
 Eliminate rotation by decomposing F, F~! into pure stretch
tensors using polar decomposition
agp p g:(éT_é)l/Z
Z — (é . éT)l/Z
27

© Faith A. Morrison, Michigan Tech U.

Advanced Constitutive Modeling — Polar Decomposition

A=R-U
A=V-R
Finite Strain Tensors A V2 U2
U=@ar-nv T T
V=i (E | EE ET-E
proposed ET ET -F JE o ET
deformation tensors;
contain stretch and F1 F1. (F—l)T (F—l)T .F-1
rotation; ¥ and U are = = = = =
symmetric (FDT| (FDT-F~t F~1.(F~1)T
= = L = =
- J
Y

Cauchy tensor C = F - ET

Fingertensor €~ 1= (F~1)T.F1

proposed deformation
tensors; contain stretch
of eigenvectors, BUT NO
ROTATION

28
© Faith A. Morrison, Michigan Tech U.
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Advanced Constitutive Modeling — Finite Strain Tensors

Now we can construct new constitutive
eguations using the new strain measures:

Replace: y(t,t") with: —C(t',t)

Finite Strain Hooke’s Law of elastic solids:
z(t) = +GC71(t,0)

Finite Strain Maxwell Model:

© Faith A. Morrison, Michigan Tech U.

(we use the
negative so that at
small strains we
recover y(t,t'),
like in the GLVE)

29

Advanced Constitutive Modeling — Chapter 9

Now we can construct new constitutive
eguations using the new strain measures:

Replace: y(t,t") with: —C(t',t)

Finite Strain Hooke’s Law of elastic solids: Time to
take these
7(t) = +GC71(t,0) out for a
spin
Finite Strain Maxwell Model:
g (t=tn
7’0 —(t—tr 1
7(t) = — 2° A Ci(t, ) at’

—00

© Faith A. Morrison, Michigan Tech U.
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Advanced Constitutive Modeling — Chapter 9

EXAMPLE: Calculate stress predicted in rigid-body rotation (around z
through a counter-clockwise angle i) by a finite-strain Hooke’s law.

() = +GC7'(t, 0)

(this didn’t work when the infinitesimal
strain tensor y(t, t') was used)

31

© Faith A. Morrison, Michigan Tech U.

Advanced Constitutive Modeling — Chapter 9

EXAMPLE: Calculate stress predicted in rigid-body rotation (around z
through a counter-clockwise angle i) by a finite-strain Hooke’s law.

() = +GC7'(t, 0)

Usual solution steps:
1. Begin with kinematics of the flow
Calculate the needed tensor elements (y before, €~ now)

2
3. Calculate the stress
4. Calculate functions that rely on stress (material functions)

32
© Faith A. Morrison, Michigan Tech U.
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Advanced Constitutive Modeling — Chapter 9

EXAMPLE: Calculate stress predicted in rigid-body rotation (around z
through a counter-clockwise angle i) by a finite-strain Hooke’s law.

z(t) = +GC7'(¢,0)
Usually, start with

Usual solution steps: v,¢(t)ore(t), -y ..
1. Begin wit of the flow
. Calculate theTreeded tensor elements (y before, €~ now)

2
3. Calculate the stress
4. Calculate functions that rely on stress (material functions)

33
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Advanced Constitutive Modeling — Chapter 9

Our old constitutive
equations were y-based:

() = —uy(t)
(t) = =ny@)

t
sl
o) = f’;—oe T y(t)Hdt'
=

7(t) = — JG(t = t)p(t)dt

etc.

And our “recipe cards” were, therefore, y-based

34
© Faith A. Morrison, Michigan Tech U.
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. . ] Michigan T
Steady Shear Flow Material Functions - = .
Traditional “recipe card”
Imposed K|nemat|cs: 0 Vi (0,6)
¢(0)x;
v=| 0 1 :
0 /123 }io Yo
7
¢(t) = yo = constant 0 ¢ 0 ‘
Material Stress Response: i,,) Ny (D)
i :
i
0 t 0 t
Material Functions: First normal-stress W, (7,) = T11=%22 _ —(T11-T22)
coefficient 1Yo) = w2 72
Viscosi .y _t21 T2
iscosity  1(¥o) = )/_ R Second normal- (o) = Ta2—T33 _ —(T22—733)
0 g stress coefficient o) =7 = 72
. , .35
© Faith A. Morrison, Michigan Tech U.

Advanced Constitutive Modeling — Chapter 9

Our NEW constitutive
eguations are strain-based,
y(t, ), C7H(t',b), ete.:

z(t) = —Goy(0,1) z(t) = +GoC 7' (¢, 0)
t - t
—(t=t") Mo —C=th .,
() =+ %e Tyt t)at’ z(t) = - A—ge 107N, 0dt
_og Eage— o
aG(t —t") o __f t—t) ,
I(t) = + fT)zx(t,t)dt () = —¢ & (t', t)dt
- etc. etc.

Our recipe cards must now be deformation-based, r,r" ...

36
© Faith A. Morrison, Michigan Tech U.
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Advanced Constitutive Modeling — Chapter 9

What is the Finger Tensor C~1(¢',t) in CCW Rigid Body
Rotation from t’ to t through an angle y?

t' t

feosp  P(t)

rI

B rsing

O

X

37

© Faith A. Morrison, Michigan Tech U.

Advanced Constitutive Modeling — Chapter 9

Strain Tensor Prediction for CCW Rigid-Body
Rotation around the z-axis from t'to t:

x' =trcospf
y' = Fsinp From geometry

From trigonometry

x =7 cos(f + ) =7 (cos B cosp — sin B siny)
=x'cosyp —y'siny

y =tsin(f + ¢) = 7(sin  cos Y + sin cos )
=y'cosy + x'siny

z=17

From definition:

ar
E71(t'¢) = Pk

38

© Faith A. Morrison, Michigan Tech U.
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Advanced Constitutive Modeling — Chapter 9

Strain Tensor Prediction for CCW Rigid-Body
Rotation around the z-axis from t'to t:

or cosy siny 0
Flt',t)==—=(—siny cosyp 0
or 0 0 1

xXyz

(matches answer in Table 9.3)

NOTE: caption definition of i is in error

g—l(tl' t) — (£—1)T . E_l

39
© Faith A. Morrison, Michigan Tech U.

CCW Rigid Body Rotation “Material Functions” & icuarmen
Strain-centered “recipe card”

Imposed Kinematics:

v=0 (in a coordinate system with
- origin within the fluid)
x' X x' cosy —y'siny
r __ !
r=\y r:<y) =| y'cosy + x'siny
Z/ xyz Z/ xyz z' xyz
o cosyp siny O
El1tt)====|—siny cosy O cCit,t)=1
or 0 0o 1 N )

xyz

(no deformation

T = unchanged
= = no stress)

40
© Faith A. Morrison, Michigan Tech U.
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Advanced Constitutive Modeling — Chapter 9

EXAMPLE: Calculate stress predicted in shear by a finite-strain
Hooke’s law. Compare with experimental results.

z(t) = +GC~1(t,0)

41
© Faith A. Morrison, Michigan Tech U.

Steady Shear Flow Material Functions

Imposed Kinematics:

(g"(t)x2>
V= 0
0 /123

¢(t) =y, = constant

Material Stress Response:

Material Functions:

: . . o1 — T2
Viscosity n(yp) = — = —
0 Yo Yo

Mifrhigan Tech
Traditional “recipe card”

¢(t) ¥21(0, )
1 .
Yo Yo
|
7
0 t 0 t
T21(8) Ny ()
l ;
0 1,0
| !
0 t 0 t

First normal-stress LN T11—Tap _ —(T11-T23)
coefficient P1(vo) = w2 72

Second normal-
stress coefficient

o\ — T22=T33 _ —(T22—T33)
q’z (YO) = 2 - 2
Yo Yo
42
© Faith A. Morrison, Michigan Tech U.
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. . Michigan Tech
Steady Shear Flow Material Functions . = .
Strain-centered “recipe card”
Imposed K|nemat|cs: 0 Vi (0,6)
¢(0)x;
v=( o 1 :
0 /123 }lo Yo
¢(t) = ¥, = constant o . ! 2
, x' x x' + Yot —1t")
7'/ 123 Z/ 123 z' 123
100 L 1+y? v 0 . ,
E7Xt,t)=(y 1 0 cree)=( y 1 0 Y =vot—t")
0 0 1 123 0 0 1 123
Material Functions: First normal-stress W ( ) — T1a—Ta2 _ —(T11-T23)
coefficient 1Yo) = w2 72
VisCosi .y _t21 T2
iscosity  (yo) = ——=— Second normal- (o) = T22—T33 _ —(T22—733)
Yo Yo stress coefficient 2ro) = o 72
43
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Advanced Constitutive Modeling — Chapter 9

EXAMPLE: Calculate stress predicted in shear by a finite-strain
Hooke’s law. Compare with experimental results.

1+y2 ¥y 0
=14/ —
From shear kinematics: | £ "8 ={ y 10
0 0 1/423

Yy =y, t) =yo(t—t")

z(t) = +GoC7'(t, 0)

1+7y4t2 —yt 0
0 0 1/ .5 (recaII_S|gn
convention on
stress)
44

© Faith A. Morrison, Michigan Tech U.
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Advanced Constitutive Modeling — Chapter 9

EXAMPLE: Calculate stress predicted in shear by a finite-strain
Hooke’s law. Compare with experimental results.

60
60

100
£ ) ('r 1 u]
00 1/,

1 -y 0

) =7 L4790
D 123

1+9 v 0

<) y 10
U1 123

L]

M, ) -1 0
= 00 1),

T 0
(6,1} v 00
L ( 0o u)m

cost  siny 0
singd cosgd 0

0 ¢ 1

I

—

=

=

).

&
7 =0 = f Heyde?
{4

&
€= e(te) = I (t")de
-]

NOTE: for the
first time we
have predicted 40 1
nonzero normal - = (11— 722) y
. S
stresses In 20 1
shear. T
o
=
[} o
G 04 -0.2 0.2 ola
@ 20 ] Y =Yot
™
-40 -
Solid lines, G = 160 kPa
Figure 9.6, p. 325 DeGroot; 45
solid rubber . ) L
© Faith A. Morrison, Michigan Tech U.
Advanced Constitutive Modeling — Chapter 9
) shear in
tensor L-direction uniaxial clongation cow tolation Table 93
with gradisnt in A-directicn around & h as strain
in 2-direetion
= tensors for
1 0o ef 0 0 cosyp —sing 0
F(t, ) ( - 1 G) 0 et 0 ) ( sing  cosyp 0 ) Standard
0o, 0o e 0 LIS flows

(Note there is a typo in
the definition of ¥ in the
caption of Table 9.3;
there is says from r to
', which is backwards. )

This is correct

Y is the angle from r' to r in
ccw rotation around é,

© Faith A. Morrison, Michigan Tech U.

46

4/23/2018

23



Advanced CM4650

Advanced Constitutive Modeling — Chapter 9

Now, let’'s fix the Maxwell model.

t
Integral GLVE model E(t) = _f G(t - t’)Z(t’)dt’
(rate version): —o

t
Integral GLVE model I= t f_ooM(t —t )):/(t ! t)dt
(strain version):
aG(t—t")
Mt-ths—
(t=t)=—>;
Integral Maxwell model
(strain version): I= l l y(t', dt’
M(t _ tl) Y 47

© Faith A. Morrison, Michigan Tech U.

Advanced Constitutive Modeling — Chapter 9

Lodge model

E e _=t)
Integral Maxwell model ; — +J- —Oe_T y(t' t)dt'
(strain version): = o ’

substitute (-Finger tensor) for —C 1(t t)
infinitesimal strain tensor

Lodge Model:
t No _(&=tn _
(©=-| |Be 7 |cEode | wa
- —00 A - does it
predict?

A finite-strain, viscoelastic constitutive equation

48

© Faith A. Morrison, Michigan Tech U.
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Advanced Constitutive Modeling — Chapter 9

EXAMPLE: Calculate the material functions of steady shear flow for
the Lodge model.

t No _(t=tn g ,
Lodge Model: g(t)=—f = * CH(t', t)dt

49
© Faith A. Morrison, Michigan Tech U.

Advanced Constitutive Modeling — Chapter 9

EXAMPLE: Calculate the material functions of steady shear flow for
the Lodge model.

t (t—tn
Lodge Model: g(t)=—f —e 1 lg_l(t',t)dt'

— 00

50
© Faith A. Morrison, Michigan Tech U.
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Steady Shear Flow Material Functions

22| Michigan Tech

”

Imposed Kinematics:

<¢(t)x2>
v=( o
0 /123

¢(t) =y, = constant

xl
rI = yl
!

Z /123

1 0 0
g‘l(t’,t)=<y 1 0) ¢
123

0 0 1

Material Functions:

: . . o1 — T2
Viscosity n(yp) = — = —
0 Yo Yo

Strain-centered “recipe card

¢(t) ¥21(0, )
1 .
Yo Yo
|
7
0 t 0 t

First normal-stress
coefficient

Second normal-
stress coefficient

X" +yo(t —t")

yl

!
“ 123

0
0 Y =7vo(t—t")
123

W (o) = Tnjzz _ —(T11—73,)

Yo ]/g

l‘pz (YO) = Tzz}.l—ZT33 — —(t22-733)

1
51

© Faith A. Morrison, Michigan Tech U.
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t (t—tr)
Lodge model 7(t) = _j B_ge‘—z lg‘l(t’,t)dt’
—0co
107
A=1ls
G,=4x10" Pa
< 1068
7(€)
& | | R 2162)
Lodge Model = 10
Report card:
* 1 does not Y
shear thin n(¥)
+ ¥, is not zero! 10¢ ‘
. 1{12 =0 0.001  0.01 0.1 1 10 100 1000
yoré st

52
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Start-up of Steady Shear Flow Material Functions
Needs to become a Strain-centric “recipe card”

Imposed Kinematics:

<¢(t)x2>
v=( o
0 /123

v [0 t<o0
c(t)—{]-,0

t=>0
Material Stress Response:

Material Functions:

Shear stress . T51(t)
growth 71" (6.70) = Ve
function 0

Yoz Yo3
@ — 1_’0,2
0 t

22| Michigan Tech

¢(®) ¥21(0,0)
) ,
Yo Yo
I T .
0 /\ 0 t
Q&
O s Ny (6)

Yoa

First normal-stress + L T11-To2
growth coefficient Lpl (t' VO) = 72
—T21(8) 0
Yo Second normal-stress yry4 . -  _ T22—%33
growth coefficient Wy (t,v0) = 2

53
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Cessation of Steady Shear Flow Material Functions

Imposed Kinematics:

<¢(t)x2>
v=( o
0 /123

|y t<oO
C(t)_{o t>0

Material Stress Response:

Material Functions:

Shear stress T51(t)
decay 1 (7o) = 7 =
function g

wm

Needs to become a Strain-centric “recipe card”

¢(t) ¥21(0,t)
T
Yo
0 t /o t
Yo
T21(8)

}.,D,S
Yo
Yo1

First normal-stress
decay coefficient

W (7o) =52

.,'/2
=721 (%) 0

)'/0 Second normal-stress
decay coefficient

le (t' YO) = o2
Yo
54
© Faith A. Morrison, Michigan Tech U.
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EXAMPLE: Does the Lodge model pass the test of objectivity posed
by the turntable example? (remember, the GLVE failed this test)

(@ ©)

fluid

©

<l

x|

55
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Turntable Example: Lodge Model

t (D)
z(t)=—f [Z—;’e- 2 lg‘l(t’,t)dt’

® oy @
oxX ox oX
Ele =L -Tnge | X & 2
= o or o oy oy
x oy @
o 0 0r)yy,
X X'+ 7yt —tHy'
Z/ xyz Z' xyz

56
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Deformation in shear flow (strain) ‘

Xl (tref ) 0
_ou
F(te) =] X (te) Yo (b o) = Shear strain
oX,

X3 (tref ) 123

X1 (tref) + (t - tref))./OXZ

x1(t)
r(t) =| x(t) = xz(tref)
x3(t) 123 x3(tref) 123
(t—trep)Vox2\ ooy :
U(trer,t) =1(t) = 7(tres) = 0 function |
0 123

57
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Turntable Example ;
Lodge Model:  z(t) = —j

y 0
10
0 1
XyzZ
Lodge prediction: rotating frame
] B
770e 1 ¥

58
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Lodge turntable - from stationary frame
X Xo + (Y = Yo)|- SC'+ CS' + CC'y ]+ (X — xo)[SS' + CC' —CS'y
r=y| =| Yo+ —Yo)CT+S'S+SCy]+ (X —x)-CS +SC'—55%]
z 4
Xyz Xyz
S =sinQt
S'=sinQt’
Now, calculate F~* and €. C =cosQt
C' =cosQt’
=yt —t
x o a Y =Yolt—t)
ox ox oX
E_l(t',t) zﬂ:%ejem = ﬂ ﬂ ﬂ
= or' Grj' oy oy oy
x ¥ a ct=f £
or  or ')y, = =
59
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Ptplages.mt edul-fmonisolcmdsSOfLodge._turmtable e
Result: 1-2CSy +C%? (C?-S%y+SCy? 0
ct,)=|(C*-SHy+SCy? 1+2CSy+S5%?% 0O
0 0
Xyz
Lodge Model prediction in stationary frame:

. [ 1-2CSy+C%*  (C*-SP)y+SCy* 0
z=- %e 2 1(C2-s9y+sCy? 14208y +S%2 0| dt
o0 0 0 1

Xyz

S=sinOQt C=cosOt

I el ' r_ ' To compare to previous result,
S'=sinQt’" C’=cosQt must consider shear
coordinate system, e.g. t =0

60
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Lodge prediction: stationary frame, t=0

2
‘ e [y
r=- %e A y 1 dt’
— 0 0
XyZ
Lodge prediction: rotating frame
2
‘ e[+ v 0
r=- %e Ay 10| db
— 0 0
XyZ

61
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Lodge Model (Maxwell with Finger strain tensor)
passes test of objectivity! ‘/

What is the differential form of the Lodge model?

t No ——(t_t,) ’
Lodge Model: z(t) = —f —e  Z [CTI(t,t)dt

(see discussion in text...)
62
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Differential Lodge Equation
(Upper-Convected Maxwell Model)

Jdt
—=+v- V- ()" z-1-Vv|=—ney

T+ 1
= dat
N Upper-Convected
T+ AT = —1ngY Maxwell Model
v Dt
1=——-W»)l -1—17-Vv
1=5 ~ ()" 1-1- 7y
Looks like the Maxwell model, but with
a new type of time derivative. We call
Dt Jdt it the upper-convected time derivative.
—==|=+v-Vz
Dt at - = 63
© Faith A. Morrison, Michigan Tech U.
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The Upper-Convected time derivative can be understood to be the
time derivative calculated in a coordinate system that is translating

and deforming with the fluid (see section 9.3).

2
material grid at time t' y;f
same material
grid at time t
P Q
i P
s
X, Rt
& ; N
< o >
upper-convected time derivative 7
v Dz
i==-W)-z-z-Vv 64
- t - T © Faith A. Morrison, Michigan Tech U.
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Other Convected Derivatives

Upper-convected time derivative

Dz
D—:—(VE)TZ_E'VB

Lower-convected time derivative

Dz
D—;+Vy-£+£-(l71_7)T

Corotational time derivative

D£+1 N
D—t s(@-1+1-0)
w=Vy— (V)

The vorticity vector 65
© Faith A. Morrison, Michigan Tech U.
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t _

Lodge Model: _ N -&=tny ., /

(upper-convected Maxwell) ® = _f P
—

t _

Cauchy-Maxwell Model: N _{&=t) -

(lower-convected Maxwell) z(t) = +j /1_29 A | C(t, t)dt
—o00

t
Lodge Rubberlike Liquid 7(¢) = — j M(t — t)C1 (¢, £)dt’
Model: = o = ’

66
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Lodge Model: _ _(@=tn t' o ,
(upper-convected Maxwell) z(t) = - l (t',t)dt

(fix Maxwell with the Finger tensor)

t -

Cauchy-Maxwell Model: N _{&=t) -

(lower-convected Maxwell) ~ £(t) = j =e 24 |C@t)dt
—00

(fix Maxwell with the Cauchy tensor)

t
Lodge Rubberlike Liquid () = j M(t—t)CI(t', t)dt’
Model: _ =

(fix GLVE with the Finger tensor)

67
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t _

Lodge Model: _ Mo &t ., :

(upper-convected Maxwell) ®) = _f e 7 |C(r,t)dt
[ee)

(fIX I\/IaXV\”‘” sith thAa Cinnar tanecnr

Tlme to take

e them out fora
Lodge Spln| dt’

- = s

Model: = J_o

(fix GLVE with the Finger tensor)

68
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TABLE D.2
Predictions of Lodge Equation or Upper Convected Maxwell Model in Shear and
Extensional Flows

Lodge g w(i--1)

E Uation whir, ¥) :n—,l[l t:fl-:ll
q i) 0
(UCM) -
wiir)
WaiF)
Cessation wir ) moe T
wrin ¥ Zinge T
Wi ) o
Step shear serain Gue
Gge™
0
2. Extension
Startap
Unbaxiad (b = 0, dg = B it it dgd k. (| 2B~ - Ar '_J]
or bixxial (b = 0, ég < 0 apir da) AR
or biaxial iy <) or iyl Ea—
B =1 4dgh
Planar (b o= |, dg = 0) i it da)
i, (e, dal
Steady
Usiaxial b s 0
or biaxial (b = 0,
Planar (b= 1, g > ) i, (o) dng 4y
L—difad  AC
iy L 2 m

o 69
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TABLED.3
Predictions of Cauchy-Maxwell Equation or Lower Convected Maxwell Model in Shear and
Extensional Flows

Cauchy- e

Starrup ot )

Maxwell
Equation

Sarady

Cenation noir ¥h nge T
L X Linge
) -7

Step shear sarain Git. ) Gpe~t
Gw . ) Gpe~t
Gaylt. 1) ~Gw

Srartap
Unias =0,dy > 0) 3
o biaxial (b =0, dp < 0) @
D=l —igh
Planr (b = 1,dg > 0) iif, (1. 4a) (2- 2% - ce¥)
TAm - 2igh
i, 1. do) “Imy
n (- )
Sweady
Unbaxiad (6 = 0, dg = 0) iitéa)
or biaxial (b = 0,y < 0) ar fnlén)
Planse (b = 1, 4g > 0) fin lie)
finléo)

-— — - - N .' . ~ 70
© Faith A. Morrison, Michigan Tech U.
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SUMMARY:
Approaches to finite-strain R
constitutive equations replace with 7, z,
’ ‘ or other,
Non-objective time_derivative objective, time
__ | derivatives
e ’a \
differential Maxwell 7(t) + )l = —
E model ( ) \at 7]0]’
£< -
> t =
8 integral Maxwell Mo (=) t,) r
moc?el E(t) - )LZ 22°€ ):/(t t )dt

/
-

“ replace with —C~1, ¢,

or other, objectlve
strain measures

71
© Faith A. Morrison, Michigan Tech U.
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Methods of Improving Constitutive Equations

Advanced Constitutive Modeling — Chapter 9

We have seen two techniques SUMMARY:
- R Approaches to finite-strain oA
tOI ge_nerate flnlte-straln constitutive equations zerellaﬁeerwnh iz
constitutive equations from the Non-abiectve fime dervative q objective, ime
Maxwell equation. | derivatives

a1
differential Maxwell O+ AZ =y
model ® A@tl,‘: oY

equivalent

¢ Fix the time derivative .
. . integral Maxwell (t) = j [n%e_gth]y(t t )dtr
¢ Fix the strain measure model 2

replace with —C~1,C,
or other, objecnve
strain measures

We can also change the
form of the basic equation.

elinear modifications

*non-linear modifications 7

© Faith A. Morrison, Michigan Tech U.
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Maxwell Model - Mechanical Analog

61’21

TZl(t) + A at

Jeffreys Model - Mechanical Analog

07>
= —ni 7., + 2
Mo <V21 + 4z T

0T,
t

T1(t) + A4 3

= —NoV21

We can also change the
form of the basic equation.

)

73
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Other Constitutive Approaches

=

e
(e

Simple Maxwell Model,
shear flow only

Upper-Convected Maxwell
Model, general flow

We can also change the
form of the basic equation.

0721 .
721 (t) + AW = —NoV21

7(t) + AL = —no¥

Wz
7777

=5

retardation time

; at v
Simple Jeffreys Model,  7,,(t) + A, _612_“1 = -1, ()-,21 + A, ;’;1)

shear flow only

Upper-Convected Jeffreys

v v
Model, general flow () + 4T =1 (L’ + Azlz/)

(Oldroyd B Fluid)

74
© Faith A. Morrison, Michigan Tech U.
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We can also change the
form of the basic equation.

Non-linear modifications of the Maxwell Model

White-Metzner Model ny)v >
(brute force shear thinning) g(t) + G_£ = —TI(Y)Y
0 L

Oldroyd 8-Constant Model: comprehensive continuum mechanics

1 1 1
z(t) +/11£ + E(/ll - 1) ()=/ Ttz )=/) +E,u0(tr E)L/ tow (g:);/)i

= <o+ 228 + G =2 (71) + 3% (1))

The Oldroyd 8-constant contains many UCM
other constitutive equations as special

cases. UCM _|_ terms = UCJ
75
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We can also change the
form of the basic equation.

The Oldroyd 8-Constant model contains all terms linear in stress
tensor and at most quadratic in rate-of-deformation tensor that are also
consistent with frame invariance.

v 1 . N1 1 .
() + 4z + 5(21 — 1) ()z’ Itz Z) + E#o(tr l))z’ + e} (£- L’)i
. v N, Lo
== ()zf + 2y + (A2 — 12) ()=/ . )=/) tov, (1; )zf) i)
Giesekus Model ‘[(t) + A; + a_/l‘[: T= _770]7
= = 0 = = =
——
quadratic
The only way to choose among in stress

these nonlinear models is to

compare predictions. 76
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We can also change the
form of the basic equation.

Predictions of White-Metzner Equation in Shear and Extensional Flows [26]°

TABLE D.5
White-
1. Shear
Metzner Startap .9
LA
Wy, ¥)
Steady n(¥)
wily)
¥2(¥)
2. Extension
Steady
Uniaxial (b =0, é > 0) filéo)
or biaxial (b = 0,ép < 0) or Nalén)
Planar (b = 1, ég > 0) i, (€0)
e (€0)

ne) (1-e77)
WG 11— (14 g;)]
i}
n(y)

2n(p)Ay)
0

3n(y) __3n(p)
[1-2amé] [1 +A0)&] — AGFIBG)

A(p) =1 - 2éh(y)

B(y) = 1+ égAly)

an(y)  _ _ 4n(y)

1-4ApR  AGICH)
Aly) = 1 — 2égA(y)
Ciy) = 1 + 2ép0A(¥)

_me) _ 200)
1+ 2épa(y) Ciy)

"M = n(p)/ Go and y = |¥].

77
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Advanced Constitutive TABLE D.4
Modeling — Appendix D

1. Shear
Susnap atin ¥
¥l
Wi ¥y
Steady nlyd
L]
Oldroyd B )
(Convected Shaite
L8]
Jeffreys)
SAOS [rg™}
G (=)
1 Eowemsion
Startap
Uniaxdal (& = 0, dg = 0 i dgh
or binial (b = 0, dg < 0} or figif, da)
Planar (b= 1,ds > 0) g, e dad
L]
Steady
Usiaxial (b = 0, ég > 0) fifde)
o biaxial (& = 0,4y < Q) or falda)
Planar (b = 1,dp > 0) g (da)
We can also change the )
fim(da)

form of the basic equation.

Predictions of Oldroyd B or Convected Jeffreys Model in Shear and Extensional Flows [26]

(-2
Iy = m[l e {’ ¥ xj. J]

o
%=

200 (A = da)
0

~(-2)-

2alA = dahe N
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Advanced Constitutive Modeling — Chapter 9 We can also change the
form of the basic equation.

We can also to add non-linearity and thus
produce new constitutive equations.

Factorized Rivlin-Sawyers Model

g(t) =+ .t[ M (t _t,)((DZ(Il! |z)£—®1(|1’ |2)gil)dt’

Factorized K-BKZ Model

z(t) = +j|v|(t t)2—C 2%0 dt’

I, I, are the invariants
of the Finger or
Cauchy strain tensors
(these are related).
Again, the only way to choose among these nonlinear
models is to compare predictions

(see R. G. Larson, Constitutive Equations for Polymer Melts).

79
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Advanced Constitutive Modeling — Appendix D We can also change the
form of the basic equation.
: TABLE D.6
DN prodictions o Factorized Riviie-Savwyers Model in Shear and Extesionsl Flaws 1261
Rivlin- L. Shear " =
Steady () : 2)
SaWyerS cady niy j; M{s)s(P) + D2) ds
Wi (y) ";m M(5)s*(®) + ®) ds
¥a(y) —j; M(s)s*®; ds
SA0S ' (w) fw M(s){1 = cos ws) ds
0
G"(w) ];x M (s5) sin ws ds
2. Extension
Steady
Uninxial (5= 0,60 > 0)  i7(éo) .‘_! f M(s) [«,, (& - ) 1 0, (o e :.q,)] e

or biaxial (b= 0,4y <0) orfalé)
: = g 1= ” 1
Planar (b= 1,65 > 0) N (€0) _—f M(s) {W[ ((H“’ - e"‘“’) + {e"“‘ - e“h‘”)] ds
€0 Jo

O o 2 S ;
o B M D100 L B, elor) (plor _ iar
o) f.nfa m[{ 167 + ele!) (e - 6~0%)] ds

80

© Faith A. Morrison, Michigan Tech U.

4/23/2018

40



Advanced CM4650

Advanced Constitutive Modeling — Chapter 9

We have fixed all the obvious flaws in our constitutive
equations, and now we have too many choices!

We could make predictions and compare with
experimental data, but some of the models (Rivlin
Sawyer, K-BKZ) have undefined functions that must be
specified.

How to proceed? ( We need some guidance.

All along we have taken a continuum-mechanics
approach. We have run that course all the way through.
Now we must go back and seek some insight from
molecular ideas of relaxation and polymer dynamics.

81
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Some of what we have learned from Continuum Modeling

*We can model linear viscoelasticity. The GMM does a good job; there is no
reason to play around with springs and dashpots to improve linear viscoelasticity

*We can model shear normal stresses. The kind of deformation described by
the Finger tensor (affine motion) gives a first normal stress difference and zero
second-normal stress; the kind of deformation described by the Cauchy tensor
gives both stress differences, but too much N,.

*We can model shear thinning. But only by brute force (GNF, White-Metzner)

*We can model elongational flows. But we predict singularities that do not
appear to be present.

*Frame-Invariance is important. Calculations outside the linear viscoelastic
regime are incorrect if the equations are not properly frame invariant.

*Thinking in terms of strain is an advantage. When we think only in terms of
rate, we can only model Newtonian fluids.

sLooking for contradictions when stretching a model to its limits is productive.

*Continuum models do not give molecular insight. We can fit continuum
models and obtain material functions (viscosity, relaxation times) but we cannot
predict these functions for new, related materials
82
© Faith A. Morrison, Michigan Tech U.
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It's time for a new approach.

Molecular Constitutive Modeling R

*Begin with a picture (model) of the kind of material
that interests you

*Derive how stress is produced by deformation of that
picture

*Write the stress as a function of deformation
(constitutive equation)

83
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Chapter 9: Advanced CoTTstitutive Models

.!l Michigan Tech
Two A, hes to Stre =]
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Continuum Molecular olyme eology
Modeling ;’ Modeling .| ~>Q%
— %p ]
. 3\’3‘ ' Rheology
- Thisis the ultimate smosthed aver « Wi piciure elem ents that can be
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strudure i - B identil
= Worked for Newtonian fluids! thatare common and demonsirate
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efr.

Professor Faith A. Morrison

Department of Chemical Engineering
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At the beginning of the course we started with materials . . .

Chapter 3: Newtonian Fluid Mechanics Polymer Rheology

Molecular Forces (contact)— this is the tough one

choose a surface
. through P
f=|atP"dS

/' on dS

the

force on P

that

surface /—\—/

We need an expression for the
state of stress at an arbitrary
point P in a flow.

85
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At the beginning of the course we started with materials . . .

Molecular Forces (continued)

Think back to the molecular
picture from chemistry:

At that ~\ L

. 7/

time we ® \'\/' i
1

wanted to ) @ / i

avoid @ !

. . V2 A

specifying RS N

much

about our

materials. he specifics of these forces; he

connections, and interactions
must be captured by the

molecular forces term that we

seek.

86
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At the beginning of the course . . .we turned to continuum mechanics.

Molecular Forces (continued)

*We will concentrate on expressing the molecular
forces mathematically;

*We leave to later the task of relating the resulting
mathematical expression to experimental observations.

First, choose a
surface: A~
n
arbitrary shape
esmall
v

stress /\

atP jdS=f What is f ?

on dS

87
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At the beginning of the course . . .we turned to continuum mechanics.

Molecular Forces (continued)

Assembling the force vector:

f=dS N[0 + 1,00 + ;08
+ 111,66, +116,8, + 113,68,
+ 1,366 + 1,66, + Hsﬁ%]

We swept all
molecular contact
forces into the

3 3
=dSn- I,.6.6
stress tensor. 2, 2 Mo

p=1lm=1
=dSn-TT 6.6,

Total stress tensor

Now, we seek to (molecular stresses)

calculate molecular
contact forces
directly from a

molecular picture.

88
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Two Approaches to Stress-
Deformation Modeling:

Michigan Tech
Continuum Molecular
Modeling Modeling

R

N

control volume

e This is the ultimate smoothed over ¢ We picture elements that can be
model—matter is a continuum field modeled and use models to predict
that abstracts all the molecular observable behavior
structure to averaged properties ¢ Modeling efforts identify features

¢  Worked for Newtonian fluids! that are common and demonstrate

* p (density), u (viscosity), C,, (heat links to observable behavior
capacity), k (thermal conductivity),
etc.

89
© Faith A. Morrison, Michigan Tech U.

Advanced Molecular Modeling in Rheology (Chapter 9, 2" half)

Two Approaches to Stress- g Michigan Tech|
Deformation Modeling:
L]
ReSta rt ° Continuum Molecular
Modeling |
™
.
A
. N
Molecular Modeling? g
= Thisis the ultimate smoothed over = We picture elements that can be
moded i fied i d use models to predicc
that N the molecul hehav
St cture d i - i !
= Woiked for Newtontan fluids! thatare common and demonsirate
« pidensity), p {viscosity), C, (heat Tinks 0 ohservable behavior
* Start with a specific material (known apacil & thermsl conducnio
chemistry, structure)

¢ Postulate a dominant physics that produces an
observed behavior

e Seeifit’s TRUE

* Use model to address engineering,
technology, end-use questions

4/23/2018
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Long-Chain Polymer Constitutive Modeling

molecular tension ~ R . t
force onarbirary  f =dAN- (-7 stress tensor

surface \/

We now attempt to calculate
molecular forces by considering
molecular models.

|70

Polymer Dynamics end-to-end
vector, R

Long-chain polymers
may be modeled as

random walks.
91
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Long-Chain Polymer Constitutive Modeling

molecular tension ~ R . t
force onarbirary  f =dAN- (-7 stress tensor

rf
surface ~_ Vs

We n WARNING.

w: There is way more to
this than we can
cover; we're taking a

tour only

may be modeled as VAN,
random walks.

)
Polyme

92
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Polymer coil responds to deformation

A polymer chain adopts the
most random configuration

at equilibrium.
end-to-end

vector, R

When deformed, the chain
tries to recover that most
random configuration,
giving rise to a spring-like
restoring force.

We will model the chain dynamics
with a random walk.

|70

spring of equilibrium length
and orientation R

93
© Faith A. Morrison, Michigan Tech U.
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Gaussian Springs (random walk)

Equilibrium configuration distribution
function - probability a walk of N steps
of length a has end-to-end distance R

From an entropy calculation of the work needed to
extend a random walk, we can calculate the force
needed to deform a the polymer coil

If we can relate this force, the force to
extend the spring, to the force on an
arbitrary surface, we can predict rheological
properties

surface ~__

forceonabirary  f =—dAfA-z

3
B _B%RR
R)=| 2 | e
o (R) \/; 3
P =N
3kT
Ll
— Na
molecular tension g 7

stress tensor

95
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Molecular force generated by deforming chain

f = (e )= 1

Force on surface
dA due to chains

o of ETER
A
- N
Er:g?nag:‘lléyTE R || Probability Force exerted
crosses surface || Cain has ETE || by chain w/
R ETER
dA
1>
(A-R)? 3T
(see next slide) = R
v (R)dR,dR,dR, Na
95

v = number of polymer

chains per unit volume © Faith A. Morrison, Michigan Tech U.

Advanced Constitutive Modeling — Molecular modeling
Probability chain of ETE R crosses surface dA

intersection

a'With dA

Probability - o 3
chain of ETE R (n R)v
crosses surface | = 7 159

A (V 1/3)3 d.

96

1/v = volume per polymer chain
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Molecular force generated by deforming chain

~ 3kTv? (.
f==7 (R R)

(R-R)=[[[R-Ry(R)IR.dR,dR;

BUT, from before . . .
molecular tension

f =—dAN-r force on arbitrary
— = surface in terms of 7
Comparing these two
we conclude, 3kTv 2
r=-a RR) (dA=v )
= Na

Molecular force generated by

deforming chain 97
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How can we convert this equation,

3kTv

Molecular stress in a fluid generated
by a deforming chain

="

which relates molecular ETE vector and stress, into a constitutive
equation, which relates stress and deformation?

We need an idea that connects ETE vector
motion to macroscopic deformation of a polymer
network or melt.

a “model”
98
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Elastic (Crosslinked) Solid

Between every two crosslinks there is a
polymer strand that follows a random
walk of N steps of length a.

2 ETE = end-to-end vector R

Distribution of ETE
vectors

99
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Affine motion

How can we relate changes in end-to-end vector
to macroscopic deformation?

ANANSWER:  affine-motion assumption: the macroscopic

dimension changes are proportional to the
microscopic dimension changes

before after

& =N

There is no internal slippage of polymer chains:
deformation with length scale.

100
© Faith A. Morrison, Michigan Tech U.
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Consider a general elongational deformation:

0
Inverse deformation 0
gradient tensor, F~1

Fi-lo
0 0 %),

For affine motion we can relate the components of the

initial and final ETE vectors as, “ETE"=“end-to-end”

ETE after

N 4R

R R R '

A=t =2 A=2 R(t)=| 4,R;

/ Rl RZ R3 R’
ETE before 23 3/128

101
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We are attempting to calculate the stress tensor with this

equation:
3kTv
T=- R-R
= Na2 <— —>

B

(R-R)=|[|R-Ry(R)ARR, AR,

ﬂ'lRl But, where do
R(t)=| LR, we get this?
/?'3 RS 123 Configuration

distribution function

102
© Faith A. Morrison, Michigan Tech U.

4/23/2018

o1



Advanced CM4650

Advanced Constitutive Modeling — Molecular modeling

Probability chain has ETE
between R and R+dR: Q w(R)dR,dR,dR,

Configuration distribution
function

3
Equilibrium configuration distribution R) = ,B —-BR'R
function: Yo (_) - €
\NTT

2Na’
But, if the deformation is affine, then the number of
ETE vectors between R and R+dR at time t is equal to
the number of vectors with ETE between R’ and
R+dR’ att’

Conclusion: y/(R) =y, (R') = [%j p A RR

103
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Now we are ready to calculate the stress tensor.

3kT
(R-R)=[]|R-Ry(RIRAR AR, ¢
AR '””'
R(t) =| 4R}

) _ “N_[ B i —pPRR
AR )L, V/(B)—WO(B)—(J;) e

(much algebra Final solution: 7 = —Vleizéi )

omitted; solved in
Problem 9.57)

104
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2 0 0
Final solution for stress: 7 =-vkTA66 =—vkT| 0 22 0
2
0 0 ﬂg 123

Compare this solution with the Finger strain tensor for this flow.

i 2 0 0
Ql(t',t)=(5l) E'=|0 % 0
2

0 0 ﬂ% 123

Affine motion

_ . -1
Since the Finger tensor for Z =—y kT 9

any deformation may be
written in diagonal form

(symmetric tensor) our Which is the same as the finite-strain

derivation is valid for all Hooke's law discussed earlier, with G = vkT.
deformations.

105
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What about polymer melts?
Non permanent crosslinks

Green-Tobolsky
Temporary Network Model

The model: * v junction points per unit volume = constant
*ETE vectors have finite lifetimes

*when old junctions die, new ones are born
*newly born ETE vectors adopt the equilibrium
distribution

Use a statistical
approach:

Probability per unit
time that strand dies
and is reborn at =

l retains same ETE from t' to
equilibrium A

Probability that strand
[ - o ] =R,
t (survival probability) '

106
© Faith A. Morrison, Michigan Tech U.
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What is the probability that a strand retains the same ETE
vector between t’ and t’ + At?

Probability that strand
P, — | retains same ETE from t’
t.trAt to ¢ (survival probability)

Probability that
strand does not die
over interval At

1
Pt',t+At = Pt',t (1_ ZAtj

dP.

t't =_£ Pt't
dt A
Inp,, =—%+c1
_(t=t)

Pt',t:e *

107
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Affine
The contribution to the stress tensor of the motion

individual strands can be calculated from,

—
==

7

r
Stress at t from Probability that
strands born

—_ strand is born
between t’ and between t’ and
t'+dt’

t'+dt

Probability
that a strand
survives from

t'tot

Stress generated by
an affinely deforming
strand between
tand t

M1 (=) ] . .
dr = Zdt’} e + [-ect(t,)

Green-Tobolsky t [G (t=tD]
temporary network T(t) = _f [—e_—/l
= . A ]

mode (Lodge model)

ci(’, t)dt’

= o
A

G

108
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Oh no, back LG el
where we started! z(t) = _f l}e A lg L', at'

NO!

Green-Tobolsky temporary network
mode (Lodge model)

We now know that affine motion of strands with equal birth and death rates
gives a model with no shear-thinning, no second-normal stress difference.

To model shear-thinning, N,, etc., therefore, we must add something else to
our physical picture, e.g.,

*Anisotropic drag
*nonaffine motion of various types

109
© Faith A. Morrison, Michigan Tech U.
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Anisotropic drag - Giesekus

In a system undergoing deformation, the surroundings of a given molecule
will be anisotropic; this will result in the drag on any given molecule being

anisotropic too.

2

8kt
Starting with the dumbbell model (gives UCM), replace with an

anisotropic mobility tensor B/A. Assume also that the anisotropy in B is
proportional to the anisotropy in z.

B-1-=
= = G

v aAl .
Giesekus Model L(t) t+tAr+—nT= —MNoY

1o

see Larson, Constitutive Equations for Polymer Melts,
Butterworths, 1988 110
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Constitutive equations incorporating non-affine motion include:

Gordon and Schowalter: “strands of polymer slip with respect to the
deformation of the macroscopic continuum”; see Larson, p130 (this model has
problems in step-shear strains)

o

Dz
in—(Vy)T-z—g-Vy+%(z-l_"+l_'/-z) v,

strand slippage Non-Affine motion

Dt Affine p

motion '@
*Phan-Thien/Tanner
«Johnson-Segalman

Larson: uses non-affine motion that is a generalization of the motion in the Doi
Edwards model; see Larson, Chapter 5

Wagner: uses irreversible non-affine motion; see Larson, Chapter 5

see Larson, Constitutive Equations for Polymer
Melts, Butterworths, 1988

111
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Reptation Theory (de Gennes)

L e RS

Retraction (Doi-Edwards) Non-Affine motion

Affine P
motion '@

y ==
A S O

© Faith A. Morrison, Michigan Tech U.
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Step shear strain - strain dependence
10,000
G(t), Pa
® Z N : .
=]
) L By 8%,
Hoo P s AA.A"-:"» *<187
o X Sap, B m o m3.34
o+ 0% x, xhasla B, a522
o + %@ Xy A » 6.68
100 09 S Xy A B9, H
oy Ve FXy LI X 10
O oty Cogx * 0134
Cool 4y ®gX TN +187
Copts @ x A e 054
o F ° X A g
104 ®s 4+ eX A
< ot OX
ot oK A
ot®
14 ‘o
< +>t<.
<o
+
0 T T T
Figure 6.57, p. 212 Einaga 1 10 100 1000 10000
etal.; PS soln time, s
13
© Faith A. Morrison, Michigan Tech U.
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Step shear strain -
Damping Function
100000 =
JEREY [ ] [ ]
2 "
After retraction the relaxation % "
is governed by the memory é N
10000 . " function M(t — t") ] g™ -
AL u
”’ “:{ r N\ =
© 001
= ™
o .
3 Depenqlng on \Q‘b The Doi-Edwards
E 100 | SR ¥, model does a good job
5 different L X of predicting the
amount of 2 damping function, h(y)
stress is & (see Larson p108)
10/ relaxed during o
retraction «®
+
/rRetractlon time
1 ‘ ‘ ‘ Figure 6.58, p. 213
1 10 100 1000 1000 Einaga et al.; PS soln
time, t 114
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Non-Affine motion
Predicts a strain

' betare
measure Affine &
motion

Doi-Edwards Model

Her

===

= —jM (t-1)Q(t, tydt

Predicts a G =t 8G?
memory M(t—t’)=2—'e A G = 2_'\; A :ﬁz
function i odd /1. /| |
(Factorized K-BKZ type) Predicts a
., ) ) relaxation
U’ = unit vector that gives fima
orientation of strands at afisiien
time t’
M. Doi and S. Edwards J. Chem Soc. Faraday Trans Il 74, 1818 115

(1978); ibid 74 560, 918 (1978); ibid 75, 32 (1979); ibid 75, 38 (1979) . ) L
© Faith A. Morrison, Michigan Tech U.
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1
. Y

Doi-Edwards Model _—t B

Steady Shear Yo

SAOS

orl 1K 1 w101
M. Doi and S. Edwards J. Chem Soc.
Faraday Trans Il 75, 38 (1979) lIJZ

. lp2,0
r] 1 o ' 0" 1. ‘(o
- . Ty
No bk Fic. st and the second pormal sres cosficents () . i,(n]mnudyshmrﬂow [Mote

that $,(0) < 0, 50 that ¥y(x) < 0
n
Mo
01

’
U
Mo

[ ] 10

wTa, uTy
Fis, 3.—Non-linear viscosity w(«) in steady state, the modulus, |[7*(w)], and the real part, 5{w) of

the linear dynamic viscosity. All quantities are normalized by the steady state viscosity at zero

shear rate, 5(0).
116
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Doi-Edwards Model T51 (1) g,
Shear Start Up ——3%
T21,® ;
M. Doi and S. Edwards J. Chem Soc. §
Faraday Trans Il 75, 38 (1979)
0

1 2 3
1Ta
Fig. 6.—Shear stress when a shear flow is started at r = 0 with shear rate «.

N, (t)
Nl,oo(t)

[oxslt s x)= oyt ; )[oxsl0 ; ®) = opylc0; x)]

o 1 2 3

1Ty

FiG. 7.—Growth of the first normal stress component when a shear flow is started at £ = 0 with
shear rate x. 17

© Faith A. Morrison, Michigan Tech U.
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Doi-Edwards Model Elongation
Steady Elongation i;?:gg
Elongation Startup difference

M. Doi and S. Edwards J. Chem
Soc. Faraday Trans Il 75, 38 (1979)

[oslts ®)— ot ; lamlen ; k)= apleo; <]

! 3 (1) /710)
n
—_ mix)/ W0
T’O T
Fia. 13.—Growth of stress when an elongational flow is started at ¢ = 0,

3N )il

No |

"

[ 1 10

®
Fio. 12.—Steady elongational viscosity 7(«) and the steady shear viscosity 3n(x). Both are normalized

by 7(0) = 3{0). 118
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. S8 ag¥ee,
. e AAA.A:..:N' @<
Doi-Edwards Model S, [
- e o
Large-Amplitude Step Shear T R
) o SR, b
M. Doi and S. Edwards J. Chem Soc. ot
Faraday Trans Il 74, 1802 (1979) X ot
time, s
1 B
h(¥o)
E‘ 1 | ] [ ]
0 3 .
= E L[]
z g .
< £ o =
° L]
L}
16} "
001
01 1 10 100
10 107 strain
A Yo Figure 6.58, p. 213 Einaga et al.; PS soln
Fio. 6.—Strain dependent part of the stress relaxation function for simple shear [eqn (6.7)].  Circles,
observed values [after ref. (11): sample, polystyrene solution in dicthyl phihalate ; molecular weight,
3w 10°; concentration, O 0.166 gem™, O- 0,221 gem~*, 3 0.275 gem~]. Solid curve, eqn (6.8).
Broken curve, eqn (7.4).  In the ideal ganssian rubber fiu/) is constant.
119
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Non-Affine motion
Doi-Edwards Model .
rﬁ\(b Affine &
Correctly predicts: motion —
*Ratio of - ==&
¥, L )
eshape of start-up curves
eshape of h(y,)(nonlinear step strain, damping function)
«Predicts o, = AM3 :
ML eshear thinning of n(y), ¥1 () Tentaltn(/jely
tension-thinning elongational viscosit & conciuce.
g €long Y () shear thinning
is an issue of
Fails to predict: non-affine
T AM34 motion
sshape of shear thinning of n(y), %1 (y)
ereversing flows
*Elongational strain hardening (branched polymers)
120
© Faith A. Morrison, Michigan Tech U.
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Advanced Models
Long-chain branched polymers

Pom-Pom Model (McLeish and Larson, JOR 42 81, 1998)

Extended Pom-Pom (Verbeeten, Peters, and Baaijens, JOR 45 823, 2001)

«Single backbone with multiple branches
*Backbone can readily be stretched in an extensional flow, producing strain
hardening

«In shear startup, backbone stretches only temporarily, and eventually collapses,

producing strain softening

*Based on reptation ideas; two decoupled equations, one for orientation, one for

stretch; separate relaxation times for orientation and stretch)

© Faith A. Morrison, Michigan Tech U.

121

Advanced Constitutive Modeling — Molecular modeling

Extended Pom-Pom (Verbeeten, Peters, and
Baaijens, JOR 45 823, 2001)

LDPE melt, BASF Lupolen 1810H at T=150°C

10 T
O e=00030 |57')
®  E=00002 |5
— +  e=00308 (<)
Predicts - * es0a0 |5
- & oo e=un2 o~ 7 =
elongational 2107 0 e-tot e - ;
strain z
hardening g
Zo't
=
£
=t f |
| !
10 - - \
10 10 10 10

Time t Is]

FIG. 5. Transient and quasisteady state (insef) uniaxial elongational viscosity 7, of the XPP model for L

1810H melt at T = 150°C. »; = 2/g;, & = 0.0030, 0,0102, 0.0305, 0.103, 0.312, 1.04 571

upolen

122
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Extended Pom-Pom (Verbeeten, Peters, and
Baaijens, JOR 45 823, 2001)

LDPE meh, BASF Lupolen 1810H at T=150°C LDPE melt, BASF Lupolen 1810H at T=150°C
10' — — 10’
O = ol ] e O ¥= 0015
L RN ] F X = 03
+ y= 003 [ =] + p= 00 )
o =00 | '}" * = lu )
- @ =03 5 = 10°} @ rewoh
. O =10 s -
é v ys 0 |7 §
ot 8 p
g e
.Dz_- @ s ==
= o I
g 1 ;
Z00 |
10’ - g R
107 10" 10* 10* 10 10’ 10’ 10’

Time t1sl Time t1sl

FIG. 8. Transient and steady state (inset) shear viscosity # (/eft) and first normal stress coefficient W (right)
of the XPP model for Lupolen 1810H melt at T = 150°C. v; = 2/g;. y = 0.001, 0.01, 0.03, 0.1, 0.3, 1,
10s™ 1.
123
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What about polymer solutions?

«Dilute solutions: chains do not interact Elastic Dumbbell Model
«collisions with sol_vent molecules are W. Kuhn, 1934

modeled stochastically

ecalculate y(R) by a statistical-mechanics

solution to the Langevin equation Random force

(ensemble averaging) \ models random
collisions

Drag on beads
models friction

124
© Faith A. Morrison, Michigan Tech U.
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Elastic Dumbbell Model /\

=]

Continuum modeling
Momentum balance on a control volume (Navier-Stokes Equation) \//

p(%w'v\_/}—vmwzwpg

Inertia = surface + body

Mixed Continuum/Stochastic modeling (Langevin Equation)
Momentum balance on a discrete body (mass m, velocity u)
In a fluid continuum (velocity field v)

Construct an

ensemble of
du 2 dumbbells and
m(aj=—§(U—R'VV)—4kTﬂ R+A e
probability of a
Inertia = drag + spring + random (Brownian) given ETE at t
125
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Construct an
ensemble of
dumbbells and
seek the
probability of a
given ETE at t

Elastic Dumbbell Model

Langevin Equation

m(%ﬂ =—¢(U-R-Vv)-4KTB*R+ A

To solve, (see Larson pp41-45). Consider an ensemble of dumbbells and seek the
probability y that a dumbbell has an ETE R at a given time t. The equation for v is the
Smoluchowski equation:

2
oy KB L AT o]
¢ ¢ OR

X IR Ry (RIGRGR.CR,

We can calculate stress from: L ==

If we multiply the Smoluchowski equation by R-R and integrate over R space, we
obtain an expression for  (i.e. the constitutive equation for this model)
126
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Integration yields:

see Larson, Constitutive Equations for Polymer Melts,
Butterworths,

1988

Elastic dumbbell

model T+ /’[i = —no)_}

Upper-Convected Maxwell Model!

(same as temporary
netrowk model)

Two different models G =kT
gl\_/e t_he same_ é/ bead friction factor
constitutive equation - 2
(because stress only 8kT 182
depends on the
3

second moment of v, >
not on details of ) p

(\number of dumbbells/volume

2Na2 from random walk

127

© Faith A. Morrison, Michigan Tech U.

Polymer Solutions
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Advanced Constitutive Modeling — Molecular modeling

Elastic Dumbbell Model for Dilute

Polymer contribution

Is = —NsY Solvent contribution
T=7 +T, Dumbbell Model
- =0 . (Oldroyd B) See problem 9.49

see Larson, Constitutive
Equations for Polymer Melts,
Butterworths, 1988

128
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Rouse Model

*Multimodal bead-spring model
*Springs represent different sub-molecules
*Drag localized on beads (Stokes) N+1beads

N springs

|0

129
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see Larson, Constitutive Equations for

RO use MO d e| Polymer Melts, Butterworths, 1988

*Rouse wrote the Langevin equation for each spring. Each spring’s equation is
coupled to its neighbor springs which produces a matrix of equations to solve.

Langevin Equation

m((:ilth =—¢(U-R-Vv)-4KTB*R+ A

*Rouse found a way to diagonalize the matrix of the averaged Langevin equations; this
allowed him to find a Smoluchowski equation for each transformed “mode” R; of the
Rouse chain -

Each Smoluchowski equation gives a UCM for each of the modes R;

Y Rouse Model for
= Zgi G=vkT polymer solutions
i=1 (multi-mode UCM)
v g

ﬂ/ =
t+Ar. =-Gl " 16kTA%sin?(iz/2(N +1))

130
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see Larson, Constitutive Equations for
Polymer Melts, Butterworths, 1988

Zimm Model

*Multimodal bead-spring model
*Springs represent different sub-molecules
*Drag localized on beads (Stokes)

galonllstzlli hydrodynamic interaction N+1beads

Rouse: solvent velocity near one bead is
unaffected by motion of other beads (no
hydrodynamic interaction)

Zimm: dominant
hydrodynamic
interaction)

N springs

131
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What about suspensions?

(Mewis and Wagner, Colloidal Suspension
Rheology, Cambridge 2012)

L B ]
——
— — ()
uniform flow (]
e — 9
— — Dilute solution
—_ Einstein relation
——
— U:nm(1+ 25¢)
— ‘ Stokes flow
—_—> L B ]
——
——
: ‘ Increasing Concentrated
o ‘ complexity; suspensions
— solve NS Stokesian dynamics
e 0 o o
— 09009 o 0° ‘{.
o —,0 60 ..o oo, 0'0.
" ® '
- @ mndy A¥ § 2T 0
. 132
——
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Mech, 20 111 1988

0 . Wagner and Brady, Phys. Today
Stokesian Dynamics 2009, p27

Langevin Equation for Dumbbells

dt
Inertia = drag + spring + random (Brownian)

m(d—gj =—¢(U-R-Vv)-4kTB’R+ A

Another Langevin Equation
Stokesian Dynamics for Concentrated Suspensions

du

ﬂ : d_t_ = Ehydrodynamlc

+E +F

1 particle " 2—Brownian

Hydrodynamic = everything the suspending fluid is doing (including drag)
Particle = interparticle forces, gravity (including spring forces)
Brownian = random thermal events

133

Brady and Bossis, Ann. Rev. Fluid e r ..

s
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Advanced Constitutive Modeling —
Suspensions

Stokesian Dynamics

Brady and Bossis, Ann. Rev.
Fluid Mech, 20 111 1988

Spanning clusters
increase viscosity

O

Figure 14 Snapshots of i particle gurations for the sheared suspension of
Figure [3. The sequence (from top to bottom) corresponds in time to that indicated by the
arrows in Figure 13. These arrows correspond to the maxima and minima of the viscosity
fluctuations. Both the top and botiom frames show the presence ofa spanning clusfer—a
connected path from one wall to the other—and give rise to large viscosities. In the middle
frame, no spanning cluster is present and the viscosity is relatively low.

134
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Summary

Molecular models may lead to familiar constitutive equations

*Rubber-elasticity theory = Finite-strain Hooke’s law model
*Green-Tobolsky temporary network theory = Lodge equation (UCM)
*Reptation theory = K-BKZ type equation

*Elastic dumbbell model for polymer solutions = Oldroyd B equation /\
R
Model parameters have greater meaning when connected to a \y
molecular model = 0%%.!
oG = vkT :.:ao.:‘
B — oferd
*G;, A; specified by model
Molecular models are essential to narrowing down As always, the
the choices available in the continuum-based proof is inthe  see
models (e.g. K-BKZ, Rivlin-Sawyers, etc.) prediction. t:’r)s%“r{ ;

Modeling may lead directly to information sought
(without ever calculating the stress tensor)
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Advanced Constitutive Modeling — Molecular modeling

Summary

Molecular models may lead to familiar constitutive equations

*Rubber-elasticity theory = Finite-strain Hooke’s law model
[ *Green-Tobolsky temporary network theory = Lodge equation (UCM) ]

*Reptation theory = K-BKZ type equation ’\
[ *Elastic dumbbell model for polymer solutions = Oldroyd B equation (UCM] & \y
— _8 L
Caution: correct stress predictions do not ::.:8..:‘
) P — oferd

imply that the molecular model is correct

Stress is proportional to the second moment of ¥(R), but
different functions may have the same second moments.
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Advanced Constitutive Modeling — Molecular modeling

Summary

Materials Discussed

*Elastic solids

sLinear polymer melts with affine motion (temporary network)
eLinear polymer melts with anisotropic drag
eLinear polymer melts with various types of non-affine motion

*Chain slip

*Reptation
*Branched melts (pom-pom)
*Polymer solutions
sSuspensions

Resources

R. G. Larson, Constitutive Equations for Polymer Melts
R. G. Larson, The Structure and Rheology of Complex Fljuids
J. Mewis and N. Wagner, Colloidal Suspension Rheology
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Done with Advanced Constitutive Models

Chapter 9: Advanced Constitutive Models
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Chapter 10: Rheometry

Capillary Rheometer
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