Calibration Error Worksheet Faith A. Morrison Uncertainty Analysis for Engineers and Scientists: A Practical Guide (Cambridge University Press, 2020) The error e_s is defined as the "best-case" standard error for a quantity as determined for a brand-new unit by a manufacturer or for a particular device by someone with authority to certify the value. For example, the technical specifications of a device may indicate that it is accurate to a value $\pm 2e_s$. Alternatively, a value of a constant (the viscometer constant α , for example) may be provided by the manufacturer with no specific uncertainty. In this case, the rule of thumb method of "least significant digit" is acceptable for evaluating the uncertainty. Finally, a user may take steps to calibrate a meter on site; this determination of error (likely to be greater than the "best case" error) has the advantage of reflecting issues associated with the particular unit in question. | Device name: | | | | |--|---|--|--| | Measured quantity: | Symbol: | Representative value: (include units) | | | | | Estimate of e_s :
(or N ot A pplicable) | | | Rule of Thumb
Method:
Least significant digit
on provided value | Least significant digit varies by at least $\pm 1 = \pm 2e_s$ | | | | Rigorous Method:
Manufacturer
maximum error
allowable | 2 <i>e</i> _s ≈ | | | | Method 3:
User calibration | $2e_s \approx$ | | | | | | | | | | Maximum of
Methods 1 - 3 | e_s = | 95% level of confidence, Calibration error only: quantity $\pm 2e_s$ | | | | $2e_s =$ | (units) | ## **Calibration Error Worksheet (page 2)** Uncertainty Analysis for Engineers and Scientists Faith A. Morrison Table 1: Tolerances for Volumetric Glassware (from Fritz and Schenk, *Quantitative Analytical Chemistry*, Allyn and Bacon, Inc, Boston, 1987 or www.thomassci.com) | | Maximum error allowable, $2e_s$ | | | | |-----------------|---------------------------------------|----------------------|----------------------|--------| | Capacity,
ml | Pycnometers
(Thomas
Scientific) | Volumetric
flasks | Volumetric
Pipets | Burets | | 5 | 0.03 | - | 0.01 | 0.01 | | 10 | 0.04 | - | 0.02 | 0.02 | | 25 | 0.05 | 0.03 | 0.03 | 0.03 | | 50 | 0.08 | 0.05 | 0.05 | 0.05 | | 100 | - | 0.08 | 0.08 | 0.10 | | 500 | - | 0.15 | - | - | | 1000 | | 0.30 | - | - | Table 2: Tolerances for Laboratory Meters | meter | Maximum error allowable, $2e_s$ | reference | |--|--|--| | Thermocouple,
type J or K,
standard limits | 2.2° <i>C</i> | www.omega.com
/techref/colorcodes.html | | Thermocouple,
type J or K,
special limits | 1.1°C | www.omega.com
/techref/colorcodes.html | | RTD
(Resistance
Temperature
Detectors) | Up to 0.001° C with proper calibration | IEC751 Standard | | Honeywell
STD924
DP meter,
0-1000mbar | 0.075% of
calibrated
span | ST 3000 Smart Pressure
Transmitter Models
Specifications 34-ST-03-
65 |