Replicate Error Worksheet

Faith A. Morrison

Uncertainty Analysis for Engineers and Scientists: A Practical Guide

(Cambridge University Press, 2020)

This worksheet guides the user through the calculation of the standard error and 95% confidence interval on a quantity that has been measured n times (replicated). The replicate-error-related standard error e_s may subsequently be used in propagation-of-error calculations of derived quantities.

Replicated Variable, Y:					Units:		
Measured values Y_1, Y_2, \dots, Y_n	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			95% Confidence Interval based on n replicates (Student's t distribution)			
<i>Y</i> ₁					n = 1	n/a	(include units)
Y ₂					n=2	±12.7 <i>e</i> _s	±
<i>Y</i> ₃					n = 3	±4.30 <i>e</i> _s	
<i>Y</i> ₄					n=4	±3.18 <i>e</i> _s	
<i>Y</i> ₅					n = 5	±2.78 <i>e</i> _s	
<i>Y</i> ₆					<i>n</i> = 6	±2.57e ₃	
Y ₇					$n \ge 7$	±2 <i>e</i> _s	
					∞	±1.96e _s	

$$\bar{Y} \equiv \frac{1}{n} \sum_{i=1}^{n} Y_i$$

$$s^{2} \equiv \frac{1}{(n-1)^{2}} \sum_{i=1}^{n} (Y_{i} - \bar{Y})^{2}$$