PH3111 Problems - Hamiltonian

1. Prob. 10.28

2. Prob. 10.29

3. Consider two (continuous) functions of generalized coordinates \(q_k \) and corresponding momenta, \(p_k \), for example \(g(q_k, p_k) \) and \(h(q_k, p_k) \). The “Poisson Bracket” is defined by

\[
[g, h] = \sum_k \left(\frac{\partial g}{\partial q_k} \frac{\partial h}{\partial p_k} - \frac{\partial g}{\partial p_k} \frac{\partial h}{\partial q_k} \right)
\]

Show that:

(a) \(\frac{dg}{dt} = [g, H] + \frac{\partial g}{\partial t} \)

(b) \([p_i, p_j] = [q_i, q_j] = 0 \)

(c) \([q_i, p_j] = \delta_{ij} \)

where \(H \) is the Hamiltonian and \(\delta_{ij} = 1 \) if \(i = j \) and is zero otherwise. (Hint: if you are spending a lot of time on these, you are doing them wrong!)

Notes:

i. If \([g, h] = 0 \), then \([g, h] = [h, g] \) and we say that “\(g \) and \(h \) commute” (for this operation).

ii. If \([g, h] = 1 \), then \(g \) and \(h \) are said to be “canonically conjugate.”

iii. (a) implies that if the quantity represented by \(g \) is not an explicit function of time, then it will be a constant of the motion as long as \([g, H] = 0 \), that is, if \(g \) and \(H \) commute. (Notice that \(H \) may be a function of time!)

iv. (a) can be used with \(g = p_k \) and with \(g = q_k \), along with the fact that our coordinates are not explicit functions of time, to show that

\[
\dot{q}_j = [q_j, H], \quad \dot{p}_j = [p_j, H]
\]