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Abstract 
A large number of possible polymer chain conformations exist for a given volume of an 
amorphous polymer.  The prediction of elastic properties of a polymer must therefore consider 
more than a single combination of chain conformations. A multiscale modeling approach is 
proposed to predict the bulk elastic properties of polymer materials using a series of molecular 
models of individual polymer microstates and a statistics-based micromechanical modeling 
method.  The method is applied to polyimide and polycarbonate systems.  It is shown that 
individual microstates can yield a wide range of predicted elastic properties, whereas the 
consideration of multiple microstates yield predicted properties that more-closely agree with 
experimentally-determined values of Young’s modulus.  Additionally, the upper and lower limits 
of possible elastic constants are also established based on the consideration of multiple 
microstates.   

 

Keywords: Molecular Dynamics, Mechanical Properties, Conformation Space, Multiscale 
Modeling 
 
 
Introduction 

 
Polymer-based nanocomposite materials have the potential to provide significant increases in 

specific stiffness and specific strength relative to current materials used for many engineering 
structural applications. The gains in mechanical properties are due to increases in the 
reinforcement surface area relative to conventional composite materials for a given 
reinforcement volume fraction.  The increased reinforcement surface area results in significant 
increases in load transfer between the reinforcement and matrix phases. To facilitate the 
development of polymer nanocomposite materials, constitutive relationships must be established 
that predict the bulk mechanical properties of the materials as a function of the molecular 
structure and interactions.  

 
Multiscale modeling techniques must be used to relate the molecular structure at the 

nanometer length-scale to mechanical behavior at the macro-length scale. Molecular Dynamics 
(MD) simulations can be used to predict the equilibrated molecular structures of polymer-based 
materials for a given thermodynamic state [1-8]. Also, the mechanical behavior of a molecular 
system can be studied when a representative volume element (RVE) of the molecular structure is 
subjected to applied deformations. While most multiscale modeling studies have focused on 



 
 

Acta Materialia, Vol. 57, no. 2, pp. 525-532 (2009) 

 2

ordered crystalline materials, such as metals and ceramics [9-13], little attention has been given 
to multiscale modeling of amorphous materials, such as polymers and polymer nanocomposites.  

 
Unlike crystalline materials, amorphous polymer materials contain an elaborate network of 

molecular chains with highly-complex and irregular conformations that dictate the bulk 
mechanical properties.  Many combinations of the conformations of multiple polymer chains are 
possible for a particular RVE in an equilibrated or non-equilibrated state because of the finite 
entropy of the material for any temperature above 0 K owing to the dynamics of the constituent 
chains [2, 14-16]. As a result, the molecular structure, and thus density, of a polymer material 
varies substantially on the nanometer length-scale [16-23]. The large number of possible 
conformations for a specific volume of a polymer material constitutes a conformation space. 
Each combination of chain conformations in a RVE has an associated potential energy which can 
be interpreted as an energy landscape that depends on the conformational state of the polymer 
network. The conformational space does not necessarily have a one-to-one correspondence to the 
energy landscape. Therefore, the energy landscape generally consists of multiple local minima.  
As a result, for a RVE consisting of a finite number of polymer chains, there can exist multiple 
locally-equilibrated states. 

 
A majority of high performance polymer-based materials operate at temperatures much below 

their glass transition temperatures. An amorphous polymeric material in a glassy state can be 
envisioned as a super-cooled liquid that is “frozen” in a local potential energy equilibrium state, 
which is not necessarily a globally-minimized potential energy state. The different microstates 
that are not at the global-minimum energy state are essentially “metastable” states with 
exceptionally long relaxation times as the energy barriers to cross over to the global minimum 
energy state are generally very high. Therefore, the bulk material behavior can be imagined to be 
an average response from all the available conformational microstates. In order to accurately 
predict the bulk-level behavior of polymer-based systems based on molecular structure, a range 
of conformational microstates of a polymeric network must be included in multiscale 
constitutive modeling approaches. In this study, a multiscale modeling technique was used to 
predict the bulk elastic moduli of a polyimide and a polycarbonate material system using 
multiple conformational states and statistical bounds of the predicted moduli are subsequently 
established. Physically-motivated statistically weighting of properties obtained from individual 
microstates for each polymer was incorporated into the modeling approach. It was found that the 
established bounds included experimentally-measured values of moduli for these materials. The 
framework of modeling presented here is very adaptable and can be extended to include any bulk 
physical property for an amorphous polymer material.  

 
Force Field 

 
Force fields are generally used in MD- and Molecular Mechanics (MM)-based atomistic 

simulations to describe the interactions between individual atoms and to relate the specific 
molecular configuration to the potential energy of a RVE of a material system. Force fields are 
generally semi-empirical and assume specific degrees of freedom for the constituent atomic 
structures.  The total energy of the RVE of a molecular system is obtained as the summation of 
energies associated with individual degrees of freedom. One of the most widely-used force 
fields, AMBER, implemented as AMBER99 in the Tinker software package [24] was utilized for 
this study. The AMBER force field has a relatively simple functional form compared to other 
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well-known force fields [25]. The simulations used in the current study did not include 
electrostatic interactions based on the dipole moment of the atoms. The AMBER force field was 
chosen over other available force fields of rather complex functional form for efficiency and 
accuracy.  This topic has been previously studied in detail [8]. 

 
The total potential energy of a simulated molecular system computed with the AMBER force 

field is based on the summation of the bond-stretching, bond-bending, bond-torsion, and 
nonbonded energies given by 

 
 stretch bend torsion nbΛ = Λ +Λ +Λ +Λ  (1) 
 
where  
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In Equations (1) - (5), the summations are taken over all of the corresponding interactions in the 
molecular model (RVE); rK  and Kθ  are the bond-stretching and bond-angle bending force 
constants, respectively; r  and eqr  are the bond length and equilibrium bond lengths, 
respectively; θ  and eqθ  are the bond angle and equilibrium bond angles, respectively; 2nV , ζ , 
and φ  are the torsion magnitude ( 1, 2,3n = ), phase offset, and the torsion angle, respectively; 
and IJε , IJr , and IJσ  are van der Waals well depth, non-bonded distance between atoms I  and 
J ,  and the equilibrium distance between atoms  I  and J , respectively.  Because the functional 
form of the AMBER potential contains simplified harmonic terms for the bond stretching and 
bond-angle bending, it is expected to perform well only under relatively small deformations of 
the covalent bonds from their equilibrium state.  Therefore, as described below, only relatively 
small deformations are used in this study. 

 
Molecular Modeling 

 
The simulations were carried out on both a polyimide and a polycarbonate system. These two 

polymers have been previously synthesized, tested, and modeled [8, 26, 27]. Figure 1 shows the 
chemical repeat structures of both polymers. Multiple RVEs representing samples from the 
conformational space were obtained for the two polymer materials. Nine thermally-equilibrated 
structures were obtained for polycarbonate, each consisting of 5958 atoms with 9 polymer chains 
and each chain comprised of 20 repeat units. Each of the nine resulting equilibrated structures 
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represented a microstate for the polycarbonate system.  For the polyimide system, seven locally 
equilibrated molecular structures of 6,622 atoms each were established with 11 chains and 10 
repeat units per chain.  Each of these seven polyimide structures represented a single microstate. 

 

Polyimide

Polycarbonate

 
Figure 1. Schematic of the repeat unit for polymeric chains and the corresponding 

representative molecular model of the polymeric network 
 
 
All RVE structures were initially prepared in a gas-like phase with extremely low densities. 

For each RVE sample, the polymer chains were placed in a simulation box with random 
conformations and orientations.  Energy minimization simulations with periodic boundary 
conditions were conducted at gradually-increasing densities.  The MINIMIZE [28] and 
NEWTON [29] subroutines of the TINKER [24] modeling package were used for the energy 
minimization, which correspond to a quasi-Newton L-BFGS method and a truncated Newton 
energy minimization methods, respectively.  The minimizations were performed to RMS 
gradients of 1×10-2 and 1×10-5 kcal/mole/Å, respectively.   

 
Once the RVEs were established with the expected solid bulk density, a series of MD 

simulations were used to establish thermally-equilibrated solid structures in the following order 
at 300 K: (1) a 50 ps simulation with the NVT (constant number of atoms, volume, and 
temperature) ensemble to prepare the structure for further equilibration, (2) a 100 ps simulation 
with the NPT (constant number of atoms, pressure, and temperature) ensemble  at 100 atm to 
evolve the system to higher densities as the structure was prepared from a low density structure, 
(3) a 100 ps NPT simulation at 1atm to reduce the effects of high-pressure simulations and to let 
the system evolve to a state of minimal residual stresses, and (4) a 100 ps NVT simulation to 
allow the system to equilibrate at the simulated temperature and density for a specific microstate. 
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The DYANAMIC subroutine of the TINKER modeling package was used for the MD 
simulations with periodic boundary conditions.  Examples of the molecular models that were 
established in a manner described above are shown in Figure 1. 

 
Equivalent-Continuum Properties 

 
To relate the molecular structure of the microstates of the polymer systems to their 

corresponding bulk mechanical properties, an equivalent-continuum modeling approach was 
used that effectively represented the mechanical behavior of the molecular RVEs.  Because the 
molecular structures of the polymers were completely amorphous, it was assumed that the 
equivalent-continuum constitutive equation for the microstates exhibited isotropic symmetry. 
Based on this material symmetry for the equivalent continuum, a hyperelastic continuum 
constitutive relation [8] was used to model the deformation characteristics of the discrete 
molecular models. For generality, it was desired that the constitutive relationship of the 
equivalent continuum satisfy the following requirements: (1) formulated in a time-independent 
finite-deformation framework, (2) established using a thermodynamic potential, (3) 
incorporating isotropic material symmetry, and (4) expressed in terms of volumetric (shape 
preserving) and isochoric (shape changing) contributions. The assumed form of the equivalent-
continuum strain energy is 

 
 vol isoc ψ ψΨ = +  (6) 

 
where 
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The parameters 1Ω  and 2Ω  in Equation (8) represent the volumetric and isochoric components 
of the strain-energy density; 1c  and 2c  are constants which represent material properties; and 1I , 

2I , and 3I  are the scalar invariants of  the right Cauchy-Green deformation tensor, C .  The 
second Piola-Kirchhoff stress tensor is therefore [8] 
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3 2 2
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1 3 3 2 2 21 3 2 1 3 2 2

3 3 3 3 3

2 16 1 6 2 3 6
3

I I I I Ic I I c c c
I I I I I

−⎡ ⎤⎛ ⎞ ⎛ ⎞
= − − + + + −⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦
S C I C  (9) 

 
where I  is the identity tensor.  It has been shown that any hyperelastic constitutive equation, 
such as Equation (9), can be reduced to the linearized Hooke’s law for small deformations (see, 
for example, reference [30] page 283 or reference [31] page 187).  Therefore, the constitutive 
law of Equation (9) can be expressed in terms of the classic elastic stiffness constants and the 
Young’s modulus for infinitesimal deformations. 
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Equation (9) contains material parameters 1c  and 2c  which were evaluated for each microstate 

by equating the equivalent-continuum strain energy and the molecular potential energy for a set 
of identical deformation fields applied to the equivalent continuum and the molecular models, as 
has been performed in previous studies of other nanostructured materials [4, 8, 32, 33]. The 
molecular potential energy was calculated for each deformation using molecular statics.  
Specifically, for each deformation, an energy minimization was performed with periodic 
boundary conditions.  The MINIMIZE [28] and NEWTON [29] subroutines of the TINKER [24] 
modeling package were used for the energy minimization, which correspond to a quasi-Newton 
L-BFGS method and a truncated Newton energy minimization methods, respectively.  The 
minimizations were performed to RMS gradients of 1×10-2 and 1×10-5 kcal/mole/Å, respectively.  
For the molecular models, the strain energy densities were computed from the force fields using 

 
 ( )0

0

1
m m mV

Ψ = Λ −Λ  (10) 

 
where 0

mΛ and mΛ are the molecular potential energies in the undeformed state and after 
application of the deformations, respectively, which were directly computed from the force field; 
and 0V  is the volume of the simulation box in the undeformed state. 

 
The molecular models of the polymer systems were subjected to two different deformation 

fields, a pure volumetric deformation and an isochoric deformation.  Finite deformations were 
applied to the molecular and equivalent-continuum models in incremental steps. For the 
volumetric deformation, volumetric strains ( 11 22 33E E E= =  where E  is the Green strain tensor) 
of 0.1%, 0.2%, 0.3%, 0.4% and 0.5% were applied.  For the isochoric deformations, three-
dimensional shear strain levels of 23 13 12γ γ γ= =  = 0.1%, 0.2%, 0.3%, 0.4% and 0.5% ( 2ij ijEγ =  
when i j≠ ) were applied. The volumetric and isochoric deformations were used to determine 
the bulk moduli K  and shear moduli μ , respectively, for each microstate of the two polymer 
systems.  The components of the stiffness tensor L  were determined for each microstate using  

 

 2
3ijkl ij kl ik jl il jk ij klL Kδ δ μ δ δ δ δ δ δ⎛ ⎞= + + −⎜ ⎟

⎝ ⎠
 (11) 

 
Further details on these deformations and modulus calculations can be found elsewhere [8]. 
Regarding the assumption of material isotropy, the total magnitudes of deformation are relatively 
small, therefore, any strain-induced anisotropy, which is usually observed at much larger values 
of strains (>10% strain), is neglected.  Elastic constants, such as Young’s modulus, can be 
directly determined from the stiffness tensor of a material using Equation (11) and the 
relationships between elastic constants of isotropic materials [30].   
 
At this point, a brief discussion about the Young’s modulus calculated statically is necessary.  
With the static approach used above (with static molecular equilibrations of the molecular 
structure), the Young’s modulus is estimated based on the material behavior over an ambiguous 
time interval associated with the molecular equilibration.  The time-based ambiguity is due to the 
energy equilibration of the molecular structure irrespective of a simulated time.  Time-dependent 
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(viscoelastic) responses in thermoplastic polymers are beyond the reach of time scales that are 
achievable with current time-stepping schemes using MD approaches (1×1015 simulated time 
steps for a fully atomistic model).  Therefore, static approaches efficiently simulate deformation 
at relatively large, yet quantitatively undefined time intervals that are realistic for engineering 
experience.  Because thermoplastic polymers exhibit time-dependent behavior, it is expected that 
static approach used herein should yield Young’s moduli that are directly analogous to the 
Young’s moduli that are typically measured for thermoplastics in a laboratory setting with tests 
that are run on the order of minutes.  The results of a previous study [8] reinforce this 
expectation.  When mechanical properties of viscoelastic polymers were estimated with dynamic 
deformation techniques, which were limited to picoseconds time scales using the available 
computation resources, large over-estimations of the Young’s moduli with respect to 
experimentally-obtained values were predicted [8].  These large over-predictions were avoided 
using static techniques [8].  The issue of using static minimizations instead of dynamic-based 
simulations to establish material properties has also been addressed by other researchers [34].  

 
 
Micromechanics  

 
Because a given RVE has a unique combination of chain conformations, it is expected that the 

above-discussed approach to predicting the elastic properties of a polymer system will generally 
yield different predicted properties for different nanometer-scale RVEs.  It is also expected that 
the bulk material response will be dependent on the mechanical response of all such microstates 
that are possible for a given polymer system. Because of the computational difficulty of 
establishing every possible microstate for a molecular RVE of a polymer system, the modeling 
procedure described herein is restricted to the finite number of microstate RVEs obtained as 
described above.  

 
Micromechanics-based techniques [35] were used to determine the equivalent bulk-level 

response of the two polymer systems based on the mechanical response of the microstates.  This 
section describes the use of these techniques to establish the bulk properties and the upper and 
lower bounds of possible bulk properties for the two polymer systems. 

 
Equivalent Bulk Property Bounds 

 
Upper and lower bounds of elastic constants of composite materials are often established to set 

the boundaries of possible predicted properties predicted with micromechanical approaches.  If it 
is assumed that the strains of all of the phases of a composite material are the same for a given 
bulk-level deformation, the resulting Voigt model predicts the upper bound of possible bulk 
composites elastic properties [35].  If it is assumed that the phases of a composite material have 
the same stress components for a given bulk-level deformation, the resulting Reuss model serves 
as a lower bound of possible bulk composite properties.  The Voigt and Reuss models are given 
by, respectively, 
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where VL  and RL  are the effective stiffness tensor representing Voigt and Ruess bounds, 
respectively; rL  and rM  are the stiffness and compliance tensor components of phase r , 
respectively; N  is the total number of microstates considered; and rc  is the volume fraction of 
phase r where  

 

 
0

1
N

r
r

c
=

=∑  (14) 

 
Although tighter bounds have been established for composite materials [36], these bounds 

assume specific geometries of the phases, such as fibrous or spherical reinforcements.  Because 
the phases considered herein do not necessarily have a defined geometric shape, Equations (12) 
and (13) are assumed to be the bounds for the bulk mechanical properties of the two polymer 
systems.  
 
Equivalent bulk elastic properties 

 
While the above-discussed upper and lower bounds of stiffness tensor components provide the 

limits of the overall bulk properties, it is useful for material design purposes to use 
micromechanical techniques to predict an accurate estimate of bulk-level properties.  The vast 
majority of micromechanical techniques focus on predicting properties of composite materials 
with well-defined reinforcement geometry [35].  However, the geometry of simulated 
microstates within the polymer material is unknown.  Therefore, it was assumed that the bulk 
polymer stiffness tensor L is determined using the following simple rule-of-mixtures equation 

 

 
0

N

r r
r

c
=

= ∑L L  (15) 

 
It is important to note that the form of Equation (15) is the same as that of Voigt model, 
Equation(12).  The form of Equation (15) was chosen because of its simplicity.  Therefore, the 
simplest estimates of the bulk mechanical properties will coincide with the upper bound of 
possible predicted properties of the bulk polymer. 

 
Energy-based Statistics 

 
Both the Voigt-Reuss bounds and predicted bulk properties are dependent on the volume 

fractions of the constituent microstates, as indicated by Equations (12), (13), and (15). However, 
because the distribution of microstates in a polymer material is not always known, simple 
approaches for selecting the relative volume fractions of the phases must be established.  If it is 
assumed that the volume fraction of a particular microstate is equal to the probability of the 
existence of that same microstate, then rc  in Equation (15) can be replaced by the probability 
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rp .  Because there are no well-established distribution functions that describe rp  for a polymer 
material, three assumed forms of the function were considered for this study.   

 
The first approach is to assume that all the microstates of the polymer are statistically equally 

likely, which leads to same volume fractions for each microstate. Therefore, the resulting 
probability of a microstate r  existing in a sample of a polymer material is 

 

 ( )1 1
rp

N
=  (16) 

 
where N  is the total number of different microstates considered, and the superscript 1 indicates 
the probability associated with this first assumption.  The definition in Equation (16) satisfies the 
requirement that  

 

 ( )1

1
1

N

r
r

p
=

=∑  (17) 

 
Although this approach is very simple, a second approach to determining rp  is to use a 
physically-intuitive probability distribution that is dependent on the energy of a particular 
microstate. Boltzmann statistics are widely-used to determine the probability of a particular 
microstate [37]. The service temperature of most engineering polymers is much below the glass 
transition temperature, and thus many polymers are in a glassy state. Due to the statistical nature 
of the growth of polymer networks during the synthesis of addition polymers [38], the networks 
do not crystallize and the chain dynamics are significantly hindered due to the formation of 
elaborate entanglements. The entanglements resist the free movement of the polymer chains and 
therefore hinder the network evolution to a globally-minimized potential energy state. Therefore, 
it is expected that the lowest-energy microstates are more common, with a finite number of 
higher-energy microstates. Motivated by the second law of thermodynamics, a second 
probability distribution function is assumed that favors lower-energy microstates over the 
higher-energy microstates which results in an energy-biased distribution 
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where rΛ  is the potential energy of microstate r  calculated using Equations (1)-(5).  In a similar 
manner, a third probability distribution function is assumed to be 
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The probability distributions described by Equations (18) and (19) obey the normalization 
condition of Equation (17).  The functional forms of Equations (18) and (19) clearly assign 
higher probabilities to microstates with lower energies.   

 
Table 1.  Polyimide microstate properties 

Microstate  Λr 
(kcal/mole) 

Simulation 
box size 
(Å) 

Density
(g/cc) 

Young’s 
modulus 
(GPa) 

Shear 
modulus 
(GPa) 

( )1
rp   ( )2

rp   ( )3
rp  

1  42,788.42 44.31 1.16 0.02 0.01 0.143 0.233 0.345 
2  52,780.01 44.29 1.16 0.24 0.08 0.143 0.189 0.227 
3  79,859.22 44.46 1.14 4.71 1.64 0.143 0.125 0.099 
4  84,264.01 44.76 1.12 11.10 4.14 0.143 0.118 0.089 
5  84,682.77 44.94 1.11 3.82 1.31 0.143 0.118 0.088 
6  85,469.25 44.87 1.11 10.20 3.66 0.143 0.116 0.086 
7  97,465.05 44.55 1.14 16.70 6.44 0.143 0.102 0.066 

 
 

Table 2. Polycarbonate microstate properties 

Microstate  Λr 
(kcal/mole) 

Simulation 
box size 
(Å) 

Density
(g/cc) 

Young’s 
modulus 
(GPa) 

Shear 
modulus 
(GPa) 

( )1
rp   ( )2

rp   ( )3
rp  

1  13,706.69 41.21 1.09 2.29 0.78 0.111 0.175 0.232 
2  13,722.27 40.77 1.12 5.14 1.77 0.111 0.175 0.231 
3  15,905.73 41.38 1.07 2.01 0.68 0.111 0.151 0.172 
4  18,093.05 40.90 1.11 12.00 4.21 0.111 0.133 0.133 
5  21,674.48 40.49 1.15 20.90 7.65 0.111 0.111 0.093 
6  23,372.80 40.91 1.11 0.09 0.03 0.111 0.103 0.080 
7  38,850.61 40.86 1.12 5.69 1.95 0.111 0.062 0.029 
8  50,629.76 41.18 1.09 7.08 2.44 0.111 0.047 0.017 
9  55,728.69 41.94 1.03 1.65 0.56 0.111 0.043 0.014 

 
 
Results  

 
Tables 1 and 2 show the results obtained from the MD simulations of each microstate of the 

polyimide and polycarbonate materials, respectively. The results are arranged in the increasing 
order of the equilibrium energies. From these tables, it is clear that the equilibrium energies of 
the microstates varied greatly for both polymers.  The variation in microstate energies confirms 
the assumption that the conformational space accessible to the polymeric chain network is 
extensive and the current modeling techniques sample a very small subset of the metastable 
potential energy states that exist in local equilibrium. The densities of the polyimide ranged from 
1.11 g/cc to 1.16 g/cc with a mean of 1.13 g/cc. The densities of the polycarbonate ranged from 
1.03 g/cc to 1.15 g/cc with an average of 1.10 g/cc. Therefore, the densities obtained from these 
simulations were very consistent among the different microstate of both polymers. Similarly, the 
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equilibrium RVE cubic side dimensions varied little between the microstates of the polymer 
systems. 

 
Tables 1 and 2 also list the Young’s and shear moduli determined for each microstate using the 

above-described method. The calculated Young’s moduli for polyimide varied from 0.02 – 16.70 
GPa, with an average of 6.68 GPa and a standard deviation of 6.19 GPa. In case of polycarbonate 
the Young’s modulus varied from 0.09 to 20.90 GPa with an average of 6.32 GPa and a standard 
deviation of 6.54 GPa. For both the polymer materials the standard deviations are on the order of 
the averages of the Young’s moduli.  A similar trend exists for the predicted shear moduli of the 
two polymer systems, as shown in Tables 1 and 2. The large standard deviations in the predicted 
elastic properties are a consequence of the limited number of samples used in the study and the 
limited size of the RVE. Because of computational costs, the number and size of RVEs was 
limited in this study and significant standard deviations in the predicted properties were 
expected.  Tables 1 and 2 also list the resulting values of ( )1

rp , ( )2
rp , and ( )3

rp  for each microstate 
of both polymers.  Clearly the probability distribution is more skewed toward lower energy 
values for ( )2

rp  and ( )3
rp  for both polymers.  Furthermore, ( )3

rp  has the highest probabilities at the 

lowest energies, and the lowest probabilities at the highest energies relative to ( )1
rp  and ( )2

rp  for 
both polymers. 

 
Table 3. Young’s modulus values of polymer systems 

Material 

Young’s 
modulus from 
experiment 

(GPa) 

Young’s 
modulus from 
( )1
rp  distribution

(GPa) 

Young’s 
modulus from 
( )2
rp  distribution 

(GPa) 

Young’s 
modulus from 
( )3
rp  distribution

(GPa) 
Polyimide  3.90 6.86 5.42 3.93 

Polycarbonate  2.20 6.41 6.38 6.02 
 

 
Table 3 shows the predicted bulk Young’s modulus values for both polymer systems for each 

of the three microstate probability distribution functions.  In addition, experimentally-obtained 
Young’s modulus values from the literature [26, 39] have also been listed in Table 3.  For the 
polyimide, the predicted value of Young’s modulus for the  ( )3

rp  probability distribution is the 

lowest of the three distribution functions.  The predicted Young’s modulus from the  ( )1
rp  

distribution were the highest relative to the other distribution functions and showed the least 
agreement with the experimentally-obtained Young’s modulus.  The same trend is observed for 
the predicted moduli of the polycarbonate.  However, the predicted polyimide Young’s modulus 
from the ( )3

rp  distribution matched the experimental value very closely while the polycarbonate 
Young’s modulus from the same distribution function is significantly higher than the 
experimental value. 

 
Because the micromechanical model that was used to predict the elastic response of the 

polymers [Equation (15)] is a simple approximation, the Voigt-Reuss bounds provide a set of 
limits that the bulk Young’s modulus is physically constrained to based entirely on mechanical 
interactions between the microstates.  Figures 2 and 3 are linear-elastic uniaxial stress-strain 
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curves for the polyimide and polycarbonate systems, respectively.  On both graphs appear the 
Voigt-Reuss bounds determined with Equation (12)-(13) for each of the three probability 
distribution functions ( )1

rp , ( )2
rp , and ( )3

rp .  Also shown in Figures 2 and 3 are the polymer 
responses as determined from experiments [26, 39].  For the polyimide, the experimental data 
falls between the upper and lower bounds, and matches the upper bound of the response 
determined with ( )3

rp .  For the polycarbonate system, the experimental curve appears to be nearly 
half-way between the Voigt and Reuss bounds. 
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Figure 2. Bounds for Young’s modulus of polyimide 

 
Conclusions  

 
The bulk elastic properties of a polyimide system and a polycarbonate polymer have been 

predicted based on the molecular structure of several microstate representative volume elements 
whose cubic side dimensions are on the order of a few nanometers.  A micromechanical 
approach has been used to predict the bulk properties based on the predicted mechanical 
response of each microstate for both polymer systems.  The theoretical bounds of possible 
predicted properties have also been established.  The results indicate that individual microstates 
can have a wide range of Young’s moduli, differing by as much as 16.7 GPa for the polyimide 
and 21.8 GPa for the polycarbonate.  These differences are a factor of 4 and 10, respectively, 
higher than the magnitude of the experimentally-obtained values of Young’s modulus from the 
literature.  On the other hand, the proposed statistics-based modeling approach has yield 
predicted bulk Young’s modulus values that are higher than the experimental values by a factor 
of 1 to 3, depending on the assumed probability distribution function.  Therefore, the 
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consideration of multiple microstates for a polymer is necessary for the multiscale prediction of 
elastic properties based on molecular structure. 
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Figure 3. Bounds of Young’s modulus of polycarbonate 

 
 
Although the predicted Young’s moduli of both polymers systems are higher than the 

experimental values for all three distribution functions proposed, an over-prediction of elastic 
properties is expected for two reasons.  First, the molecular systems modeled in the current study 
represent polymer structures without any chain length distribution and unreacted monomer, both 
of which are expected to reduce the overall elastic properties of a polymer.  Therefore, the 
predicted properties from these models are expected to be higher than those experimentally-
observed in the laboratory.  Second, the proposed micromechanics model functional form is a 
simple rule-of-mixtures formulation.  The form of the model is identical with the upper-bound of 
possible elastic properties.  Therefore, a more realistic, and possibly more complex, 
micromechanics model will likely predict bulk Young’s modulus values that are closer to 
experiment than those presented herein.   
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