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Abstract 
 
A method has been proposed for developing structure-property relationships of nano-structured 
materials.  This method serves as a link between computational chemistry and solid mechanics 
by substituting discrete molecular structures with equivalent-continuum models.  It has been 
shown that this substitution may be accomplished by equating the molecular potential energy of 
a nano-structured material with the strain energy of representative truss and continuum models.  
As important examples with direct application to the development and characterization of single-
walled carbon nanotubes and the design of nanotube-based structural devices, the modeling 
technique has been applied to two independent examples: the determination of the effective-
continuum geometry and bending rigidity of a graphene sheet.  A representative volume element 
of the chemical structure of graphene has been substituted with equivalent-truss and equivalent-
continuum models.  As a result, an effective thickness of the continuum model has been 
determined.  The determined effective thickness is significantly larger than the inter-planar 
spacing of graphite. The effective bending rigidity of the equivalent-continuum model of a 
graphene sheet was determined by equating the molecular potential energy of the molecular 
model of a graphene sheet subjected to cylindrical bending (to form a nanotube) with the strain 
energy of an equivalent-continuum plate subjected to cylindrical bending.   
 
KEY WORDS: nanotechnology, nanotubes, continuum mechanics, molecular mechanics, 
flexural rigidity, graphene sheet 
 

Nomenclature  

 

Molecular model and force field 

Eel - Non-bonded electrostatic potential energy 

Eg - Molecular potential energy of graphene sheet 

Ensm - Potential energy of nano-structured material 

EvdW - Non-bonded van der Waals potential energy 

Eθ - Bond-angle variation potential energy 
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Eρ - Bond stretching potential energy 

Eτ - Bond torsion potential energy 

Eω - Bond inversion potential energy 

mK ρ  - Force constant associated with the stretching of bond m 

mK θ  - Force constant associated with angle variation of bond angle m 

Kω - Force constant associated with bond inversion 

K ω  - Modified force constant associated with bond inversion 

L - Length of carbon nanotube 

N - Number of atoms per carbon nanotube 

p - Total number of carbon atoms in carbon structure 

α - Interatomic spacing of carbon atoms in graphite 

rnt - Radius of carbon nanotube 

pφ  - Average inversion angle (radians) 

σπφ  - Angle between σ and π bonds 

mθ  - Deformed bond-angle m 

mΘ  - Equilibrium bond-angle m 

mρ  - Deformed bond length of bond m 

mΡ  - Equilibrium bond length of bond m 

 

Truss and continuum models 

a - Elastic rod type of outer portion of truss representative volume element 
n
mA  - Cross-sectional area of rod m of truss member type n 

Ant - Cross-sectional area of carbon nanotube 

b - Elastic rod type of inner portion of truss representative volume element 

D - Bending rigidity of a continuum plate 

I - Moment of inertia of a continuum plate 
n

mr  - Deformed distance between joints of rod m of truss member type n 
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n
mR  - Undeformed distance between joints of rod m of truss member type n 

t - Thickness of a continuum plate (wall thickness of continuum tube) 

Yg - Young’s modulus of graphene sheet 

n
mY  - Young’s modulus of rod m of truss member type n 

Ynt - Young’s modulus of carbon nanotube 

rc  - Mid-plane radius of continuum nanotube wall 

rc
i  - Inner radius of continuum nanotube wall 

rc
o  - Outer radius of continuum nanotube wall 

Λc - Mechanical strain energy of the continuum model 

Λt - Mechanical strain energy of the truss model 

ν - Poisson’s ratio of graphene sheet 

 

Boundary conditions

iu  - Displacement components of equivalent-continuum representative volume element 

ix  - Cartesian coordinate system of the representative volume element 

ijε  - Strain components in the equivalent-continuum representative volume element 

ε - Applied strain 

γ - Applied shear strain 

 
1. Introduction 
 
Nano-structured materials have generated considerable interest in the materials research 
community in the last few years partly due to their potentially remarkable mechanical properties 
[1]. In particular, materials such as carbon nanotubes, nanotube and nanoparticle-reinforced 
polymers and metals, and nano-layered materials have shown considerable promise.  For 
example, carbon nanotubes could potentially have a Young’s modulus as high as 1 TPa and a 
tensile strength approaching 100 GPa.  The design and fabrication of these materials are 
performed on the nanometer scale with the ultimate goal to obtain highly desirable macroscopic 
properties.  
 
One of the fundamental issues that needs to be addressed in modeling macroscopic mechanical 
behavior of nano-structured materials based on molecular structure is the large difference in 
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length scales.  On the opposite ends of the length scale spectrum are computational chemistry 
and solid mechanics, each of which consists of highly developed and reliable modeling methods.  
Computational chemistry models predict molecular properties based on known quantum 
interactions, and computational solid mechanics models predict the macroscopic mechanical 
behavior of materials idealized as continuous media based on known bulk material properties.  
However, a corresponding model does not exist in the intermediate length scale range.  If a 
hierarchical approach is used to model the macroscopic behavior of nano-structured materials, 
then a methodology must be developed to link the molecular structure and macroscopic 
properties.   
 
In this paper, a methodology for linking computational chemistry and solid mechanics models 
has been developed.  This tool allows molecular properties of nano-structured materials obtained 
through molecular mechanics models to be used directly in determining the corresponding bulk 
properties of the material at the macroscopic scale.  The advantages of the proposed method are 
its simplicity and direct connection with computational chemistry and solid mechanics.  
 
In addition, the proposed method has been demonstrated with two independent examples that 
have direct application to the development and characterization of single-walled carbon 
nanotubes (SWNT).  First, the effective geometry of a graphene sheet has been determined.  A 
representative volume element (RVE) of the graphene layer has been modeled as a continuous 
plate with an effective thickness that has been determined from the bulk in-plane properties of 
graphite [2].  Second, the effective bending rigidity of a graphene sheet has been determined. 
The bending rigidity of the elastic plate has been described in terms of the atomic interactions 
that dominate the overall bending behavior.   
 
2. Carbon nanotubes 
 
In 1991 Iijima [3] obtained transmission electron micrographs of elongated, nano-sized carbon 
particles that consisted of cylindrical graphitic layers, known today as carbon nanotubes (Figure 
1).  Since then, carbon nanotubes have become a primary focus in nanotechnology research due 
to their apparent exceptionally high stiffness and strength [1].  One of the fundamental issues that 
scientists and engineers are confronting is the characterization of the mechanical behavior of 
individual carbon nanotubes.  Two independent components of this issue, the wall thickness and 
bending rigidity of carbon nanotubes, are discussed below. 
 
2.1 Wall thickness 
 
Many experimental [4-8] and theoretical [9-14] studies have been performed on single- and 
multi-walled carbon nanotubes.  In particular, deformation modes and nanotube stiffnesses have 
been closely examined. 
 
Physical properties, such as effective cross-sectional area and moment of inertia, and mechanical 
properties, such as Young’s modulus and Poisson’s ratio, are traditionally associated with the 
macroscopic-length scale, where the characteristic dimensions of a continuum solid are well 
defined.  The determination of these properties has been attempted in many of the studies cited 
above without proper regard to an acceptable definition of the nanotube geometry. Accurate 
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values of macroscopic physical and mechanical properties are crucial in establishing a 
meaningful link between nanotube properties and the properties of larger structures, such as 
nanotube-reinforced polymer composites.  Therefore, caution should be used when applying 
continuum-type properties to nano-structured materials. 
 
In many studies, it has been assumed that the nanotube “wall thickness” is merely the inter-
planar spacing of two or more graphene sheets [5, 8-13], which is about 0.34 nm in single-crystal 
graphite.  While this simple idealization appears to have intuitive merit, it does not necessarily 
reflect the effective thickness that is representative of continuum properties.  In order to avoid 
this problem, Hernandez et al. [10] proposed the use of a specific Young’s modulus, i.e., 
Young’s modulus per unit thickness.  Even though this approach is convenient for studies 
concerned with the relative stiffnesses of nanotubes, it is of little use when modeling a nanotube 
as a continuum structure.  Another proposed solution to this dilemma is to assume that the 
nanotube is a solid cylinder [15, 16].  This method is certainly convenient, however, significant 
inconsistencies arise when comparing moduli data of single wall nanotubes (SWNT) and multi-
walled nanotubes (MWNT) when both are assumed to be solid cylinders. 
 
It follows that in order to properly model the mechanical behavior of a SWNT using continuum 
mechanics, the effective geometry must be known. If the nanotube is modeled as a continuous 
hollow cylinder with an effective wall thickness, then a simple first step is to model the flat 
graphene sheet in order to determine the effective wall thickness.  In the current study, the 
effective thickness will be calculated as an example of the proposed modeling approach. 
 
2.2 Bending rigidity 
 
Due to the aspect ratio and tube-like geometry of SWNT, many studies have been conducted 
concerning the buckling and bending response of nanotubes using both theoretical [12, 15, 17-
20] and experimental [21, 22] approaches.  In particular, Overney et al. [17] conducted a 
computational study and calculated a bending parameter of a graphene sheet based on the 
vibrational modes of a nanotube.   Yakobson et al. [18] used computational methods to study the 
buckling of carbon nanotubes.  They modeled the nanotubes as shells with a bending rigidity 
proportional to the Young’s modulus and shell-wall thickness.  Using the computationally 
obtained bending parameters, they calculated the Young’s modulus and wall thickness of the 
shell.  Govindjee and Sackman [19] theoretically investigated the validity of continuum 
mechanics at the nano-scale by examining the bending of multi-walled carbon nanotubes.  They 
also assumed that the bending rigidity of each layer is proportional to the Young’s modulus and 
moment of inertia. In each of these studies it is clear that the bending and buckling behavior of 
carbon nanotubes is highly dependent on the bending properties of the graphene sheet.  
Therefore, it follows that the bending behavior of a graphene sheet must be well-understood, and 
should be described in terms of the atomic properties of graphene.   
 
According to the classical elasticity theory, it is assumed that the bending rigidity, D, of an 
isotropic solid is related to the cross-sectional geometry and the in-plane modulus [23]: 
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gY tD =
− ν

 (1) 

                                                   
and 
 
 gD Y I=  (2) 
 
which are for the bending of plates and beams, respectively.  In equations (1) and (2), Yg, ν, I, 
and t are the Young’s modulus, Poisson’s ratio, moment of inertia, and plate thickness of a 
graphene sheet, respectively.  It seems logical that these equations could describe the bending 
properties of graphene sheets and nanotubes due to geometric similarities to solid plates and/or 
beams.  However, Ru [20] has pointed out that a discrepancy exists in the use of equation (1) 
when describing bending properties of carbon nanotubes.  If the bending rigidity described by 
this equation is used in the bending analysis of carbon nanotubes, then an equivalent wall 
thickness must be used that is very small compared to the inter-planar spacing of graphene 
sheets.  For example, Yakobson et al. [18] showed that the bending rigidity of carbon nanotubes 
is much smaller than that described by equation (1) if the typically assumed effective thickness 
of 0.34 nm (the inter-plane spacing of layers of graphite) of graphene sheets is used. They 
derived an effective thickness and Young’s modulus of 0.066 nm and 5.5 Tpa, respectively, for a 
SWNT.  The argument of Ru [20] is further supported by examining the chemical structure of a 
graphene sheet.  At first glance, it appears that a graphene sheet would have very little bending 
rigidity since the atomic C-C bonds lie very close to the neutral axis during cylindrical bending, 
unlike continuous elastic plates in which there is material that is not on the neutral axis that 
contributes a resistance in bending that is proportional to the in-plane Young’s modulus 
(equations (1) and (2)).  Therefore, the primary atomic bonds, which are the main contribution to 
the in-plane elastic properties of graphene, should provide little, perhaps negligible, contribution 
to the bending rigidity of graphene sheets.  The resistance to bending must be due to a different 
atomic interaction, which is discussed in section 5. 
 
3. Modeling procedure 
 
The proposed method of modeling nano-structured materials with an equivalent-continuum is 
outlined below.  Since the approach uses the energy terms that are associated with molecular 
mechanics modeling, a brief description of molecular mechanics is given first followed by an 
outline of the equivalent-truss and equivalent-continuum model development. 
 
3.1 Molecular mechanics 
 
An important component in molecular mechanics calculations of the nano-structure of a material 
is the description of the forces between individual atoms.  This description is characterized by a 
force field.  In the most general form, the total molecular potential energy, Ensm, for a nano-
structured material is described by the sum of many individual energy contributions: 
 
 nsm vdW elE E E E E E Eρ θ τ ω= + + + + +∑ ∑ ∑ ∑ ∑ ∑  (3) 
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where Eρ, Eθ, Eτ, and Eω are the energies associated with bond stretching, angle variation, 
torsion, and inversion, respectively (the reader should refer to a molecular mechanics text, e.g. 
[24], for a detailed description of these energy terms).  The nonbonded interaction energies 
consist of van der Waals, EvdW, and electrostatic, Eel, terms.  The summation occurs over all of 
the corresponding interactions in the considered volume of the nano-structured material.  Various 
functional forms may be used for these energy terms depending on the particular material and 
loading conditions considered [24].  Obtaining accurate parameters for a force field amounts to 
fitting a set of experimental or calculated data to the assumed functional form, specifically, the 
force constants and equilibrium structure.  In situations where experimental data are either 
unavailable or very difficult to measure, quantum mechanical calculations can be a source of 
information for defining the force field. 
 
3.2 Truss model 
 
In order to simplify the calculation of the total molecular potential energy of molecular models 
with complex molecular structures and loading conditions, an intermediate model may be used to 
substitute for the molecular model.  Due to the nature of molecular force fields, a pin-jointed 
truss model may be used to represent the energies given by equation (3), where each truss 
member represents the forces between two atoms.  Therefore, a truss model allows the 
mechanical behavior of the nano-structured system to be accurately modeled in terms of 
displacements of the atoms.   This mechanical representation of the lattice behavior serves as an 
intermediate step in linking the molecular potential with an equivalent-continuum model.  In the 
truss model, each truss element corresponds to a chemical bond or a significant non-bonded 
interaction.  The stretching potential of each bond corresponds with the stretching of the 
corresponding truss element.  Traditionally, atoms in a lattice have been viewed as masses that 
are held in place with atomic forces that resemble elastic springs [25]. Therefore, bending of 
truss elements is not needed to simulate the chemical bonds, and it is assumed that each truss 
joint is pinned, not fixed.  
 
The mechanical strain energy, Λt, of the truss model is expressed in the form: 
 

 ( 2t

2

n n
n nm m

m mn
n m m

A Y r R
R

Λ = −∑∑ )  (4) 

 

where n
mA and  are the cross-sectional area and Young’s modulus, respectively, of rod m of 

truss member type n.  The term  is the stretching of rod m of truss member type n, 

where 

n
mY

( n n
m mr R− )

n
mR  and  are the undeformed and deformed lengths of the truss elements, respectively.   n

mr

 
In order to represent the chemical behavior with the truss model, equation (4) must be equated 
with equation (3) in a physically meaningful manner.  Each of the two equations are sums of 
energies for particular degrees of freedom.  The main difficulty in the substitution is specifying 
equation (4), which has stretching terms only, for equation (3), which also has bond-angle 
variance and torsion terms.  No generalization can be made for overcoming this difficulty for 
every nano-structured system.  A feasible solution must be determined for a specific nano-
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structured material depending on the geometry, loading conditions, and degree of accuracy 
sought in the model.   
 
3.3 Equivalent-continuum model 
 
For many years, researchers have developed methods of modeling large-area truss structures 
with equivalent-continuum models [26-31].  These studies indicate that various methods and 
assumptions have been employed in which equivalent-continuum models have been developed 
that adequately represent truss structures.  In general, the equivalent-continuum model is defined 
as a continuum that has the following characteristics: 
 

1. Truss lattices with pinned joints are modeled as classical continua where micropolar [32] 
continuum assumptions are not necessary. 

2. Local deformations are accounted for. 
3. The temperature distribution, loading and boundary conditions of the continuum model 

simulate those of the truss model. 
4. The same amount of thermoelastic strain energy is stored in the two models when 

deformed by identical static loading conditions. 
 
The parameters of the equivalent-continuum model, such as the elastic properties and geometry, 
are determined based on the above characteristics.  In some cases the strain energy of the 
continuum, Λc, can be easily formulated analytically and compared directly with equation (4) to 
obtain the equivalent-continuum properties.  In other cases, especially with complex geometries 
and deformations, numerical tools need to be used to determine the continuum parameters.  Once 
the properties of the equivalent-continuum model have been determined, the mechanical 
behavior of larger structures consisting of the nano-structured material may be predicted using 
the standard tools of continuum mechanics. 
 
4. Example 1: Effective geometry of a graphene sheet 
 
In this section, a graphene sheet is modeled as a continuous plate with a finite thickness that 
represents the effective thickness for the determination of continuum-type mechanical and 
physical properties.  By using the methodology described above, the molecular mechanics model 
is substituted with a truss model and subsequently an equivalent-plate model.  The continuum 
model may then be used in further solid mechanics-based analyses of SWNT. 
 
4.1 Representative volume element 
 
To reduce the computational time associated with modeling the graphene sheet, a representative 
volume element (RVE) for graphene was used in this study (Figure 2).  The selected RVE allows 
each degree of freedom of the carbon atom associated with bond stretching and bond-angle 
variation in the hexagonal ring to be completely modeled by truss and continuum finite element 
model nodal-displacement degrees of freedom.  Also, this RVE allows the displacements on the 
boundary of the proposed chemical, truss, and continuum models to correspond exactly.  
Furthermore, macroscopic loading conditions applied to a continuous graphene plate can be 
easily reduced to periodic boundary conditions that are applied to the RVE. 
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4.2 Molecular mechanics model 
 
The specific forms of the energy terms in equation (3) used in this example were taken from the 
AMBER force field of Kollman and coworkers [33, 34].  Due to the nature of the material and 
loading conditions in the present study, only the bond stretching and bond-angle variation 
energies were included.  Torsion, inversion, and non-bonded interactions were assumed to be 
negligible for the case of a graphene lattice subjected to small deformations.  For this example, 
the molecular potential energy of a graphene sheet with carbon-to-carbon bonds is expressed as a 
sum of simple harmonic functions: 
 
  (5) ( ) (2 2g

m m m m m m
m m

E K Kρ θ= ρ − Ρ + θ − Θ∑ ∑ )
 
where the terms and  refer to the undeformed interatomic distance of bond m and the 
undeformed bond-angle m, respectively.  The quantities ρ

mΡ mΘ

m and θm are the bond length and angle 
after stretching, respectively (see Figure 3). mK ρ  and mK θ  are the force constants associated with 
the stretching and angle variance of bond and bond-angle m, respectively.  Using the parameters 
for the AMBER force field [33], the force constants used in this example are: 
 

 

7
2 2

10
2 2

46900 3.26 10

63 4.38 10

kcal nJK
mole nm bond nm
kcal nJK

mole rad angle rad

ρ −

θ −

= = ⋅
⋅

= = ⋅
⋅ ⋅

⋅  (6) 

 
The equilibrium bond length, , is 0.140 nm, and the undeformed bond-angle, , is 120.0 
degrees. 

mΡ mΘ

 
4.3 Truss model 
 
In order to express the mechanical strain energy, Λt, of the truss model in terms of the variable 
truss joint angles that are specified in molecular mechanics (θm-Θm), the RVE has been modeled 
with additional rods between nearly adjacent joints to represent the interaction between the 
corresponding carbon atoms (Figure 3).  In order to represent the chemical model, which has 
bond stretching and variable angles as degrees of freedom, with a truss model that has stretching 
degrees of freedom only, two types of elastic rods, a and b, are incorporated into the truss RVE.  
Alternatively, a torsional spring element may be used to model the bond-angle variation, 
however, the number of degrees of freedom of every truss joint (and the complexity of the 
model) is significantly increased. 
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The mechanical strain energy, Λt, of the discrete truss system shown in Figure 3 is expressed in 
the form of equation (4) as: 
 

 ( ) (2t

2 2

a a b b
a a b bm m m m

m m m ma b
m mm m

A Y A Yr R r R
R R

Λ = − + −∑ ∑ )2
 (7) 

 
where the superscripts correspond to rod types a and b, respectively.  Comparing equations (5) 
and (7), it is clear that the bond stretching term in the equation (5) can be related to the first term 
of equation (7) for the rods of type a: 
 

 
2

a a
m m

m a
m

A YK
R

ρ =  (8) 

 
where it is assumed that  and a

m mrρ = a
m mRΡ = .  However, the second terms in equations (5) and 

(7) cannot be related directly.  In order to equate the constants, the chemical bond-angle variation 
must be expressed in terms of the elastic stretching of the truss elements of type b.  For 
simplicity, it may be assumed that the prescribed loading conditions consist of small, elastic 
deformations only, even though, in general, the proposed modeling approach could be applied to 
larger deformations. This assumption is not an over-simplification for the graphene sheet since 
the deformations for highly stiff linear-elastic materials subjected to many practical loading 
conditions are quite small. 
 
In order to express the Young’s modulus of the rods of type b in terms of the bond-angle force 
constant, a relationship between the change in the bond angle and the corresponding change in 
length of the type b truss element is required.  If it is assumed that the changes in bond angle are 
small, then it can be easily shown that (see Figure 4): 
 

 
( )2 b b

m m
m m a

m

r R
R
−

θ − Θ ≈  (9) 

 
The right-hand side of equation (9) is four times larger than the right hand side of equation (8) 
given by Odegard et al. [35].  This discrepancy is due to an improvement in the assumptions 
used to derive equation (9) in the current study.  Substitution of equation (9) into equations (5) 
and (7) results in the following approximation: 
 

 
24

b b b
m m m

m
R A YK θ =  (10) 

 
Therefore, the Young’s moduli of the two rod types are: 
 

 10



 

2

24

a
a m m

m a
m

b m
m b b

m m

K RY
A

KY
R A

ρ
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=
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The strain energy of the truss model may then be expressed in terms of the force constants: 
 

 ( ) (2

2

12
( )

t a a b
m m m mb

m m m

KK r R r R
R

θ
ρΛ = − + −∑ ∑ )2b  (12) 

 
 
 
 
4.4 Equivalent-plate model  
 
Working with the assumptions discussed herein, the next step in linking the molecular and 
continuum models is to replace the equivalent-truss model with an equivalent-continuous plate 
with a finite thickness (Figure 3).  For this example, it is assumed that the truss and continuum 
models are equivalent when the elastic strain energy stored in the two models are equal under 
identical displacement boundary conditions.  The value of the plate thickness that results in equal 
strain energies is the assumed effective thickness of the graphene sheet. 
 
While the mechanical properties of the truss elements have been determined as described above, 
those of the graphene sheet were taken from the literature.  Values for the in-plane mechanical 
properties of graphite have been measured macroscopically, i.e., without any assumptions 
regarding the graphene sheet thickness.  For this example, the values of the Young’s modulus 
and Poisson’s ratio of bulk graphite are Yg = 1008 GPa and ν = 0.145, respectively [2].  For 
simplicity, it is assumed that graphite is isotropic since no out-of-plane deformations are 
considered here.  Given that there are no consistent data available on the properties of a single 
graphene sheet, these properties of the graphene sheet are based on the in-plane properties of 
bulk graphite. 
 
4.5 Boundary conditions 
 
In order to determine an effective plate thickness, both the truss and continuum models were 
subjected to three sets of loading conditions.  For each set of loading conditions, a corresponding 
effective thickness was determined.  The loading conditions correspond to the three fundamental 
in-plane deformations of a plate, that is, uniform axial tension along x1 and x2 and pure shear 
loading in the x1 and x2 plane. 
 
For a uniaxial deformation along the x2 direction (load case I), the RVE may be subjected to the 
following boundary conditions (Figure 5) [35]: 
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1
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3 3

u x
u x

u x

1 = −νε
= ε

= −νε
 (13) 

 
where the displacement components are parallel to the corresponding RVE coordinates.  The 
total strain energy can be calculated using [23]: 
 

 
( )

2

2 1 1 2

g
c

kk ij ij
VY ν⎡ ⎤Λ = ε + ε ε⎢ ⎥+ ν − ν⎣ ⎦

 (14) 

 
where V is the volume of the RVE, i,j,k = 1,2,3 (using summation notation), and the components 
of the strain tensor, εij, are given by: 
 

 1
2

j i
ij

i j

u u
x x

⎛ ⎞∂ ∂
ε = +⎜⎜ ∂ ∂⎝ ⎠

⎟⎟  (15) 

 
 For the RVE under the conditions given in equation (13): 
 

 ( )2 g 23 3 R tY
4

c aΛ = ε

2x

 (16) 

 
where t is the thickness of the continuum plate.  For a uniaxial deformation along the x1 direction 
(load case II), the boundary conditions are (Figure 6) [35]: 
 

 
1

2

3 3

u x
u
u x

1 = ε
= −νε
= −νε

 (17) 

 
The total strain energy of an equivalent-continuum RVE under this condition is given by 
equation (16).  For a pure shear strain in the x1-x2 plane (Load case III), the RVE may be 
subjected to the following boundary conditions (Figure 7) [35]: 
 

 2

3

0

0

u
u x
u

1

1

=
= γ
=

 (18) 

 
The total strain energy of an equivalent-continuum RVE under this condition is: 
 

 ( ) ( )
g2 23 3 YR t

8 1+
c aΛ = γ

ν
 (19) 
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4.6 Results and discussion 
 
The strain energy of the truss model was calculated using a finite element analysis (ANSYS 
5.7®) for all three boundary conditions.  The strain energies of each truss element were summed 
to obtain the total strain energy for the RVE.  The resulting strain energy was equated with 
equations (16) or (19) for Load cases I and II or III, respectively, and the corresponding effective 
thickness of the equivalent-continuum plate, t, was determined.  Each extensible rod was 
modeled using a finite truss element (LINK1) with two degrees of freedom at each node 
(displacements parallel to x1 and x2).  The cross-sectional areas of the type a rods were divided 
by a factor of 2, since these rods are sharing their total area with adjacent RVEs.  For Load cases 
I and II, the resulting effective thickness was calculated to be 0.69 nm.  For Load case III, the 
effective thickness was 0.57 nm.  These values are significantly larger than the widely accepted 
value for the graphitic inter-planar spacing, 0.34 nm, and much larger than the value suggested 
by Yakobson et al. [18] of 0.066 nm.   
 
It may be assumed that during uniaxial loading of a carbon nanotube, with the force and strain 
known, the Young’s modulus can be calculated using: 
 
 1( )nt ntY A −∝  (20) 

 

where Ant is the cross-sectional area of the hollow continuum cylinder with a constant mid-plane 
radius, .  The inner radius, r , and outer radius, r , of the tube are (Figure 8): rc c

i
c
o

 

 
r r

2

r r
2

c c
i

c c
o

t

t

= −

= +
 (21) 

 
where .  The cross-sectional area of the hollow continuum cylinder is: r /c t≥ 2
 
 2 rnt cA t= π  (22) 

 
The calculated cross-sectional areas using the effective thickness values obtained above are 
shown in Table 1.  The ratios of the calculated Young’s modulus based on the effective thickness 
obtained for the three load cases, their average, and from Yakobson et al. [18], to the Young’s 
modulus based on inter-planar spacing, are also provided in Table 1.  It was assumed that the 
mechanical properties of the SWNT wall are equal to those of the equivalent-plate model.  The 
results shown in Table 1 suggest that measured and calculated values of mechanical properties of 
carbon nanotubes that are dependent on the dimensions of the continuum tube may differ 
significantly based on the assumed geometry.  
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5. Example 2: Effective bending rigidity of a graphene sheet 
 
In this section, a graphene sheet is again modeled as a continuous plate.  The bending rigidity of 
the plate is assumed to be independent of the in-plane mechanical properties and thickness of the 
plate.  By using the proposed modeling method, the molecular mechanics model is used to 
determine the effective bending rigidity of the continuum plate. 
 
5.1 Molecular mechanics model 
 
It has been shown that the only significant change in the electronic structure of a flat graphene 
sheet when subjected to pure bending is the change in the π-orbital electron density on either side 
of the graphene sheet (i.e. inversion, see Figure 9) [36-41].  This indicates that the inversion 
alone contributes to the bending resistance of graphene sheets.  Bakowies and Theil [36] have 
suggested that the increase in the total molecular potential energy per carbon atom of a carbon 
cluster (i.e. a structure formed by a single plane of carbon atoms, such as carbon Fullerenes and 
SWNT) with respect to a flat graphene sheet may be closely approximated as: 
 
 2

pE Kω ω= φ  (23) 
 
where Kω is a force constant and pφ  is the average inversion angle defined as (in radians): 
 

 
2p

p p

σπ
π⎛ ⎞φ −⎜ ⎟

⎝φ =
∑

⎠  (24) 

 
where p is the total number of carbon atoms in the carbon structure considered and φσπ is the 
angle defined in Figure 9.  For simplicity in the specific case of carbon nanotubes, the π-orbital 
axis vector technique [42] can be used to show that the change in the molecular potential energy 
due to inversion can be expressed in terms of the nanotube radius, : rnt

 

 
( )2
rnt

KE
ω

ω =  (25) 

 

where K ω  is a modified inversion force constant given by: 

 
 ( )2 20.0012K rad nm Kω ω=  (26) 
 
Values of the force constant, K ω , have been determined using computational chemistry data 
from several studies [36, 43-46] and equation (25).  Even though the computational chemistry 
data was obtained for the specific case of bending of graphene sheets to form complete 
nanotubes or nanotube-like structures, the concepts of structural mechanics can be implemented 
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such that these values could apply to any bending mode of graphene sheets. The values are 
shown in Table 2 along with the overall average, which is:   
 

 
2

0.018 eV nmK
atom

ω ⋅
=  (27) 

 
The total number of carbon atoms per nanotube is [43]: 
 

 2

4 r
3

nt ntLN π
=

α
 (28) 

 
where α is the interatomic spacing of carbon atoms and Lnt is the nanotube length.  Therefore, the 
total change in the molecular potential energy of a nanotube due to inversion is: 
 

 2

4
3 r

nt

nt

L KE N
ω

ω π
=

α
 (29) 

 
5.2 Equivalent-continuum plate 
 
In the case of a graphene sheet subjected to pure bending, the total molecular potential energy is 
easily described with a single force constant by using equation (29), unlike the example 
discussed in the previous section where an intermediate truss model was needed in order to 
calculate the strain energy under various loading conditions.  Therefore, the truss model is not 
needed in this particular example and an equivalent-continuum model has been developed by 
equating the total molecular potential energy of the molecular model and the strain energy of the 
continuum plate directly. 
 
 
The strain energy of a plate of length Lc subjected to cylindrical curvature (Figure 8) is [47]: 
 

 
r

c
c

c

DLπ
Λ =  (30) 

 
where rc is the radius of curvature, D is the bending rigidity, and the superscript c denotes the 
strain energy associated with the continuum plate.  In this case, D is not defined by equations (1) 
or (2) for the reasons discussed above.  In order to determine the bending rigidity of the 
equivalent-continuum plate that represents the actual effective bending rigidity of the graphene 
sheet, the strain energy of the continuum plate and the increase in the total molecular potential 
energy of the graphene sheet must be equivalent when subjected to pure bending.  Equating 
equations (29) and (30) results in: 
 

 2

4
3
KD

ω

=
α

 (31) 
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Therefore, the effective bending rigidity is directly proportional to the inversion force constant 
and the inverse square of the interatomic spacing of graphite. 
 
The equivalent bending rigidity for the equivalent-continuum plate is calculated using equation 
(31) and the average value of the force constant K ω , given in Table 2, and with α = 0.140 nm 
[2] to give D = 1.22 eV.  This value is 44% higher than that used by Yakobson et al. [18] and 
Robertson et al. [43] (D = 0.85 eV). 
 
The strain energy of a graphene sheet is presented in Figure 10 for different nanotube radii for all 
of the computational chemistry data and the equivalent continuum plate model.  It is assumed 
that the graphene sheet behaves elastically in bending for all nanotube radii.  Clearly, the trends 
of the computational chemistry data and the equivalent-continuum model are in agreement. 
 
6. Summary 
 
A method has been presented for modeling structure-property relationships of nano-structured 
materials.  This method serves to link computational chemistry, which is used to predict 
molecular properties, and solid mechanics, which describes macroscopic mechanical behavior 
based on bulk material properties.  This link is established by replacing discrete molecular 
structures with equivalent-continuum models.  It has been shown that this replacement may be 
accomplished by equating the molecular potential energy of nano-structured materials with the 
mechanical strain energy of a representative continuum model.  The development of an 
equivalent-truss model may be used as an intermediate step in establishing the equivalent-
continuum model. 
 
The proposed modeling method has been applied to determine the effective geometry and 
effective bending rigidity of a graphene sheet.   A representative volume element (RVE) of the 
chemical structure of a graphene sheet has been substituted with RVEs of equivalent-truss and 
equivalent-continuum models.  As a result, an effective thickness of the continuum model has 
been determined.  This effective thickness has been shown to be significantly larger than the 
inter-planar spacing of graphite. The effective bending rigidity of an equivalent-continuum plate 
model of a graphene sheet was also determined using the proposed method.  The molecular 
potential energy of the molecular model of a graphene sheet subjected to cylindrical bending (to 
form a nanotube) was equated with the strain energy of an equivalent-continuum plate subjected 
to cylindrical bending.   
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     Table 1 - Ratio of calculated Young's modulus for different wall thicknesses  of SWNT with respect
      to the Young's modulus calculated with the inter-planar spacing

Continuum Continuum Ratio of Young's
wall thickness cross-sectional area moduli

[nm] [nm2] [%]

Load cases I and II 0.69 4.34rc 0.49
Load case III 0.57 3.58rc 0.60
Average of I, II, and III 0.65 4.08rc 0.52
Yakobson et al. 1996 0.07 0.44rc 4.86
Inter-planar spacing 0.34 2.14rc 1.00  

 
 
 
 
 

Table 2 - Values of the force constant associated with bond inversion of a graphene sheet

Study       [eV×nm2/atom]
Bakowies and Thiel [36] 0.016
Robertson et al.  - EP1 [43] 0.016
Robertson et al.  - EP2 [43] 0.011
Robertson et al.  - LDF [43] 0.021
Sawada and Hamada [44] 0.017
Miyamoto et al. [45] 0.020
Hernandez et al . (n,n) [46] 0.021
Hernandez et al. (n,0) [46] 0.022

Average 0.018

Kω
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Figure 1 – End section of a single-walled carbon nanotube. 

 
 
 
 

 
 

Figure 2 – Representative volume element of a graphene sheet. 
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Figure 3 – Representative volume elements for the chemical, truss, and continuum models. 
 
 
 
 
 
 

 
 

Figure 4 – Schematic of the deformed geometry of the representative volume element.  
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Figure 5 – Load case I: Extension along x2.  
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Figure 6 – Load case II: Extension along x1.  
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Figure 7 - Load case III: Pure shear. 
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Figure 8 – Geometry of a carbon nanotube and an equivalent-continuum tube. 
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Figure 9 – Bond inversion of carbon atom in a graphene sheet. 
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Figure 10 - Strain energy of a graphene sheet subjected to cylindrical bending. 
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