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Abstract

In this study, a technique is presented for developing constitutive models for polymer composite systems reinforced with single-

walled carbon nanotubes (SWNT). Because the polymer molecules are on the same size scale as the nanotubes, the interaction at the
polymer/nanotube interface is highly dependent on the local molecular structure and bonding. At these small length scales, the
lattice structures of the nanotube and polymer chains cannot be considered continuous, and the bulk mechanical properties can no

longer be determined through traditional micromechanical approaches that are formulated by using continuum mechanics. It is
proposed herein that the nanotube, the local polymer near the nanotube, and the nanotube/polymer interface can be modeled as an
effective continuum fiber by using an equivalent-continuum modeling method. The effective fiber serves as a means for incorpor-
ating micromechanical analyses for the prediction of bulk mechanical properties of SWNT/polymer composites with various

nanotube lengths, concentrations, and orientations. As an example, the proposed approach is used for the constitutive modeling of
two SWNT/polyimide composite systems.
Published by Elsevier Ltd.
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1. Introduction

In recent years, nano-structured, non-metallic materials
have spurred considerable interest in the materials com-
munity partly because of their potential for large gains in
mechanical and physical properties as compared to stan-
dard structural materials. In particular, carbon nanotube/
polymer composites may provide order-of-magnitude
increases in strength and stiffness when compared to typi-
cal carbon fiber/polymer composites. In order to facil-
itate the development of nanotube-reinforced polymer
composites, constitutive relationships must be devel-
oped that predict the bulk mechanical properties of the
composite as a function of molecular structure of the
polymer, nanotube, and polymer/nanotube interface.
For computational simplicity, and to adequately
address scale-up issues, it is desirable to couple an
equivalent-continuum model of a nanotube/polymer
composite with established micromechanical models to
describe the mechanical behavior. As outlined by
McCullough [1,2], numerous micromechanical models
have been developed to predict the macroscopic beha-
vior of polymeric composite materials reinforced with
typical reinforcement such as carbon or glass fibers.
These micromechanical models assume that the fiber,
matrix, and sometimes, the interface, are continuous
materials and the constitutive equations for the bulk
composite material are formulated based on assump-
tions of continuum mechanics. However, for nanos-
tructured materials, such as nanotube-reinforced
polymers, a typical single-walled nanotube (SWNT)
may have a diameter of approximately 1–10�10�9 m,
compared to the typical carbon-fiber diameter of
50�10�6 m, which leads to a breakdown of the rules
and requirements for continuum modeling. Even
though a limited number of studies have attempted to
address the applicability of continuum micromechanics
to nanotube-reinforced polymer composites [3,4], it
appears that the direct use of micromechanics for
nanotube composites is inappropriate without taking
into account the effects associated with the significant
size difference between a nanotube and a typical carbon
fiber, as described below.
To help address this analysis deficiency, atomistic
simulation can be used to investigate behavior of
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materials at the nanometer length scale. Recently, Wise
and Hinkley [5] used molecular dynamics simulations to
address the polymer/SWNT material response for a
SWNT surrounded by polyethylene molecules. They
predicted that the local changes in the polymer mole-
cular structure and the non-functionalized polymer/
SWNT interface are on the same length scale as the
width of the nanotube. The magnitude of this localized
effect is generally unknown and needs to be accurately
modeled to ensure that the full load-transfer capabilities
of the polymer/SWNT composite are accounted for in
both bulk stiffness and strength calculations.
The first step towards calculation of bulk stiffness and
strength is to establish a constitutive model that can be
used in a continuum mechanics formulation. The con-
tinuum model must account for the fundamental
assumption in continuum mechanics that the mass,
momentum, and energy can be represented in a mathe-
matical sense by continuous functions, that is, indepen-
dent of length scale.
Nomenclature

Molecular model
a bond number
D IJ

a well depth of interaction a
involving atoms I and J

K �
a angle variance force constant

K�
a stretching force constant

�m total molecular potential energy
�a deformed bond-angle number a
�a undeformed bond-angle number a
�a deformed interatomic distance of

bond number a
�IJ
a Van der Waals distance for

interaction a involving atoms I and
J

Pa undeformed interatomic distance
of bond number a

Equivalent-truss model
Ab

a cross-sectional area of rod a of
truss member type b

rba deformed lengths of rod a of truss
member type b

Rb
a undeformed lengths of rod a of

truss member type b
Yb

a Young’s modulus of rod a of truss
member type b

� bond-stretching interaction truss
member type

� bond-angle variance interaction
truss member type

�t total strain energy of truss model
! Van der Waals interaction truss

member type

Equivalent-continuum model and composite
Af dilute mechanical strain

concentration tensor of effective
fiber

cij direction cosines for coordinate
transformation

C elastic stiffness tensor of the
composite

Cf
ijkl; Cf

ij; Cf elastic stiffness tensor of effective
fiber
Cm elastic stiffness tensor of matrix
D diameter of effective fiber
e applied strain magnitude
E Young’s modulus of isotropic

composite
EL longitudinal Young’s modulus of

composite
ET transverse Young’s modulus of

anisotropic composite
Ef

L longitudinal Young’s modulus of
effective fiber

G shear modulus of isotropic
composite

GL longitudinal shear modulus of
anisotropic composite

Gf
L longitudinal shear modulus of

effective fiber
Gf

T transverse shear modulus of
effective fiber

I identity tensor
k axisymmetric alignment factor
Kf

T transverse bulk modulus of
effective fiber

L length of effective fiber
nj outward normal to boundary B
s1, s2 orientation factors
S Eshelby’s tensor
Ti Bð Þ tractions applied onto boundary B
ui Bð Þ displacements applied onto

boundary B
vf effective fiber volume fraction
vm matrix volume fraction
V volume of effective fiber
xj coordinate system of effective fiber
x000j global coordinate system
ekl strain tensor
� y� y�ð Þ Dirac delta distribution centered at

y�
�,  , 
 angles of coordinate

transformation
l �; ð Þ orientation distribution function
�f total strain energy of effective fiber
�ij stress tensor
1672 G.M. Odegard et al. / Composites Science and Technology 63 (2003) 1671–1687



In this paper, a technique for developing constitutive
models for SWNT-reinforced polymer composite mate-
rials is proposed which is based on the equivalent-
continuum modeling technique for nano-structured
materials which was developed by Odegard et al. [6].
The modeling technique takes into account the discrete
nature of the atomic interactions at the nanometer
length scale and the interfacial characteristics of the
nanotube and the surrounding polymer matrix. After
the constituent materials used in this paper are dis-
cussed in detail, the development of the constitutive
model using the presented technique is described. First,
a model of the molecular structure of the nanotube and
the adjacent polymer chains is established by using the
atomic structure that has been determined from mole-
cular dynamics (MD) simulations. Second, an equiva-
lent-continuum model is developed in which the
mechanical properties are determined based on the force
constants that describe the bonded and non-bonded
interactions of the atoms in the molecular model and
reflect the local polymer and nanotube structure.
Finally, the equivalent-continuum model is used in
micromechanical analyses to determine the bulk con-
stitutive properties of the SWNT/polymer composite with
aligned and random nanotube orientations and with var-
ious nanotube lengths and volume fractions. In addition,
predicted values of modulus are compared with experi-
mental data obtained from mechanical testing.
2. Constituent materials

The constitutive models developed in this study are
for SWNT/polyimide composites with a PmPV inter-
face. The properties of the constituent materials are
described first.

2.1. Carbon nanotube

In 1991 Iijima [7] obtained transmission electron micro-
graphs of elongated, nano-sized carbon particles that con-
sisted of cylindrical graphitic layers, known today as
carbon nanotubes. Because of their high inter-atomic bond
strength and perfect lattice structure, a Young’s modulus
as high as 1 TPa and a tensile strength approaching 100
GPa have been measured for single-walled carbon nano-
tubes (SWNT) [8]. These properties, in addition to their
relatively low density, make SWNT an ideal candidate
as a reinforcing constituent. For this study, a (6,6) (see
Ref. [9] for an explanation of this notation), straight,
finite-length, single-walled carbon nanotube is modeled.

2.2. Nanotube/polymer interface

Accurate representation of the nanotube-to-polymer
interface is essential for modeling nano-scale structure–
property relationships. In a recent molecular dynamics
study of SWNT/polymer materials, Frankland et al. [10]
addressed the effects of covalent bonds at the SWNT/
polymer interface. They have shown that for nanotube/
polyethylene composites there is a one to two order-of-
magnitude increase in the interfacial shear strength for
composites with covalent bonding between the nano-
tube and adjacent polymer molecules, relative to sys-
tems without the covalent bonds. However, other
studies [11,12] have shown that because the covalent
bonding may significantly affect the properties of the
nanotube itself, it is desirable to increase the load
transfer between the nanotube and polymer by using
improved non-covalent bonding methods. For example,
it has been shown that PmPV molecules [poly(m-phe-
nylenevinylene) substituted with octyloxy chains] natu-
rally wrap around carbon nanotubes in a helical pattern
[12]. This wrapping allows for an improved nanotube/
polymer molecule interaction through non-covalent
bonded interactions, and thus improved load transfer at
the nanotube/polymer interface, compared to those
found with most structural polymers. Because the
PmPV polymer molecules will likely entangle themselves
with neighboring structural polymer molecules (such as
polyimides), the PmPV can be used as a highly effective
interface between the nanotube and structural polymer,
and is used as the interface in the present study. The
molecular structure of a single unit of the PmPV mole-
cule is shown in Fig. 1. The subscripts on the atomic
labels in Fig. 1 correspond to the subscripts shown in
Tables 1–3, which are discussed below.

2.3. Polymer matrix

The nanotubes used in this study are assumed to be
well dispersed inside a bulk polymer matrix. Two poly-
mers were considered in the present study. The first
polymer considered is LaRC-SI, a thermoplastic poly-
imide that has been shown to have good mechanical
properties for various processing and testing conditions
[13–16]. The properties of LaRC-SI used in this study
have been taken from Whitley et al. [16] for the system
with a 3% stoichiometric imbalance at room tempera-
ture. The Young’s modulus and Poisson’s ratio of this
material are 3.8 GPa and 0.4, respectively.
The second polymer considered in this study is the
colorless polyimide LaRC-CP2 [17]. This optically
transparent polyimide is resistant to radiation and may
be used to make thin polymer films for building large
space structures. The mechanical properties of this
polymer are not known a priori, and have been experi-
mentally determined as described in Section 7.2.
In order to synthesize the nanotube/LaRC-CP2 com-
posite, a batch of purified laser-ablated SWNTs was
obtained from Rice University, and transmission elec-
tron microscope (TEM) and atomic force microscope
G.M. Odegard et al. / Composites Science and Technology 63 (2003) 1671–1687 1673



(AFM) observations revealed an average SWNT radius
and length of approximately 0.7 nm and 3000 nm,
respectively. The diamine and dianhydride used to syn-
thesize the LaRC-CP2 were 1,3-bis(3-aminophenoxy)
benzene (APB) and 2,2-bis(3,4-anhydrodicarbox-
yphenyl) hexafluoropropane (6FDA), respectively. As-
received anhydrous dimethyl formamide (DMF) was
used as a solvent. The details of the synthesis are
described elsewhere [18].
A dilute SWNT solution, typically around 0.05%
weight fraction in DMF, was prepared by homogeniz-
ing for 10 min (750 rpm with a 6 mm diameter rotor
homogenizer) and sonicating for an hour at 47 kHz. In
addition, a sample of purified SWNTs was additionally
treated with an acid mixture in order to study the effect
of additional SWNT treatment on the dispersion of
nanotubes. The acid mixture was prepared in a round-
bottom flask with concentrated H2SO4 and HNO3 in the
ratio of 3 to 1. The purified SWNT was added into the
acid mixture and refluxed at 70 �C for 30 min to make a
dark brown solution. The dark solution was diluted
with distilled water and allowed to settle overnight. A
Fig. 1. PmPV molecular structure.
Table 1

Bond stretching parameters
Bond stretching
 P (Å)
 Kr (kcal/mol/Å2)
Ct–Ct
 1.529
 268.0
Ct–Ht
 1.090
 340.0
Ct–O
 1.415
 201.4
Ca–O
 1.355
 431.6
Ca–Ca
 1.400
 469.0
Ca–Ha
 1.080
 367.0
Ca–Cv
 1.320
 520.0
Cv–Cv
 1.320
 520.0
Cv–Hv
 1.080
 367.0
Table 2

Bond-angle variation parameters
Bond-angle variation
 � (�)
 Ky (kcal/mol/rad2)
Ct–Ct–Ct
 112.7
 58.4
Ct–Ct–Ht
 110.7
 37.5
Ct–Ct–O
 107.5
 59.7
Ht–Ct–Ht
 107.8
 33.0
Ht–Ct–O
 108.9
 59.0
Cv–Cv–Hv
 120.0
 40.0
Cv–Cv–Ca
 120.0
 50.0
Hv–Cv–Hv
 120.0
 40.0
Hv–Cv–Ca
 120.0
 40.0
Cv–Ca–Ca
 120.0
 50.0
Ca–Ca–Ca
 120.0
 63.0
Ca–Ca–Ha
 120.0
 35.0
Ca–Ca–O
 121.9
 43.2
Ct–O–Ca
 108.9
 49.6
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clear amber supernatant was decanted and the remain-
ing dark solution containing the sediment was filtered
through a sintered glass filter and washed thoroughly
with distilled water and methanol under vacuum. A
dried SWNT paper was peeled off from the filter and
dried in a vacuum oven at 60 �C overnight. The acid-
treated SWNT solution was also prepared as a dilute
solution in DMF in the same manner described above.
The sonicated SWNT solution was used as a solvent for
the poly(amic acid) synthesis with the diamine and dia-
nhydride. The entire reaction was carried out while
stirring in a nitrogen-purged flask immersed in a 40 kHz
ultrasonic bath until the solution viscosity increased and
stabilized. Sonication was ceased and stirring was con-
tinued for several hours to form a SWNT-poly(amic
acid) solution. Acetic anhydride and pyridine were
added as catalysts with stirring to imidize the SWNT-
poly(amic acid) chemically.
A series of SWNT/LaRC-CP2 nanocomposite films
were prepared with a SWNT concentration of up to
1.0% nanotube weight fraction for both the as-received
(which is the baseline system) and acid-treated systems.
The SWNT-poly(amic acid) solution prepared was cast
onto a glass plate and dried in a dry air-flowing cham-
ber. Subsequently, the dried tack-free film was cured in
a nitrogen-circulating oven to obtain solvent-free, free-
standing SWNT–polyimide film. Examination of the
films with Transmission Electron Microscopy and an
optical microscope revealed that thin SWNT bundles
were dispersed uniformly throughout the whole polymer
matrix [18].
3. Molecular potential energy

The bonded and non-bonded interactions of the
atoms in a molecular structure can be quantitatively
described by using molecular mechanics. The forces that
exist for each bond, as a result of the relative atomic
positions, are described by the force field such that these
forces contribute to the total molecular potential energy
of a molecular system. The molecular potential energy
for a nano-structured material is subsequently described
by the sum of the individual energy contributions in the
molecular model (Fig. 2). The individual energy con-
tributions are summed over the total number of corre-
sponding interactions in the molecular model. Various
functional forms may be used for these energy terms
depending on the particular material and loading con-
ditions considered [19].
In the present study, the total molecular potential
energy of the molecular model is taken to be:

�m ¼
X
a

K�
a �a � Pað Þ

2
þ
X
a

K �
a �a � �að Þ

2

þ
X
a

D IJ
a

1

2

�IJ
a

�a

� �12
�

�IJ
a

�a

� �6" #
ð1Þ

where the terms Pa and �a refer to the undeformed
interatomic distance of bond number a and the unde-
formed bond-angle number a, respectively. The quan-
tities �a and �a are the distance and bond-angle after
stretching and angle variance, respectively. The symbols
K�

a and K
�
a represent the force constants associated with

the stretching and angle variance of bond and bond-
angle number a, respectively. The well depth and nat-
ural van der Waals distance for interaction a are given
by, respectively [19]:

D IJ
a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D I

a 	D
J
a

q
�IJ
a ¼

ffiffiffiffiffiffiffiffiffiffiffi
�I
a 	�

J
a

q
ð2Þ

where the superscripts I and J denote the two atoms
involved in an individual van der Waals interaction.
Only the bond stretching, bond-angle variation, and van
der Waals parameters were considered in Eq. (1)
because other energy terms were found to have a negli-
gible contribution to the total molecular potential
energy. The values of the force constants, well depths,
natural van der Waals distances, equilibrium bond
lengths, and equilibrium bond angles associated with
the Carbon, Hydrogen, and Oxygen atoms shown in
Fig. 1 are listed in Tables 1–3.
Table 3

Van der Waals interaction parameters
Van der Waals interaction
 DI (kcal/mol)
 �I (Å)
Ct
 0.066
 3.50
Ht
 0.030
 2.50
O
 0.140
 2.90
Ca
 0.070
 3.55
Ha
 0.030
 2.42
Cv
 0.076
 3.55
Hv
 0.030
 2.42
Fig. 2. Molecular mechanics modeling.
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4. Molecular dynamics simulation

Molecular dynamics (MD) simulation has become an
effective tool for studying the physics of condensed
matter systems in which the forces acting on particles in
a defined cell are calculated and the classical Newtonian
equations of motion are integrated numerically [20–22].
In general, each particle is allowed to interact with all
the other particles in the simulation.
In the present study, a MD simulation was used to
generate the equilibrium structure of the composite
system, which consisted of a (6,6) single-walled
nanotube and five PmPV oligomers, each ten repeat-
ing units in length. The initial structure was con-
structed by placing the nanotube at the center of the
MD cell, and by inserting the PmPV molecules at
random, non-overlapping positions within the MD
cell. This sample was equilibrated for approximately
500 ps at 800 K and 500 atm of hydrostatic pressure to
relax the initial configuration and compress the system
to an appropriate density. This initial procedure was
followed by an additional 500ps of simulation at 300 K
and 1 atm of pressure. By the end of the final equili-
bration run, the total energy and density had stabilized.
No constraints were placed on the periodic MD cell
shape or size.
The parameters used in the MD simulation are listed
in Tables 1–3, with the atom labels defined in Fig. 1. All
parameters, other than those involving the oxygen atom
were taken from the OPLS-AA force field developed by
Jorgensen and coworkers [23–25]. Parameters for the
ether linkage were adapted from the MM3 force field
[26–28]. All simulations were carried out with the TIN-
KER1 3.8 [29] molecular modeling package and were
performed in the constant NPT ensemble, using the
Berendsen weak-coupling method to maintain the tem-
perature and pressure near their specified values [30]. A
modified Beeman integration algorithm, as implemented
in the Tinker 3.8 package, was used to integrate the
equations of motion [29]. The resulting molecular model
is shown on the left side of Fig. 3.
5. Equivalent-continuum modeling

The equivalent-continuum model of the composite
material can be developed based on the equilibrium
molecular structure obtained with the MD simulation
by using the methods of Odegard et al. [6]. This
approach relies on an equivalent-continuum modeling
technique that is used to predict the bulk mechanical
behavior of nano-structured materials. The method
consists of two major steps. First, a suitable representa-
tive volume element (RVE) of the nano-structured
material is chosen. The RVE of a typical nano-struc-
tured material is on the nanometer length scale, there-
fore, the material of the RVE is not continuous, but is
an assemblage of many atoms. Interaction of these
atoms is described in terms of molecular mechanics
force constants, which are known for most atomic
structures [19]. In the second step, an equivalent-con-
tinuum model of the RVE is developed in which the
Fig. 3. Equivalent-continuum modeling of effective fiber.
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total strain energies in the molecular and equivalent-
continuum models, under identical loading conditions,
are set equal. The effective mechanical properties, or the
effective geometry, of the equivalent-continuum is then
determined from equating strain energies.
For the most general approach, an equivalent-truss
model of the RVE may be developed as an intermediate
step to link the molecular and equivalent-continuum
models. Each atom in the molecular model is repre-
sented by a pin-joint, and each truss element represents
an atomic bonded or non-bonded interaction. The
moduli of the truss elements are based on the molecular-
mechanics force constants. Therefore, the total mole-
cular potential energy of the molecular model and the
strain energy of the equivalent-truss are equal for the
same loading conditions.

5.1. Truss model

In traditional molecular models, the atomic lattice has
been viewed as an assemblage of discrete masses that
are held in place with atomic forces that resemble elastic
springs [31]. The mechanical analogy of this model is a
pin-jointed truss model in which each truss member
represents either a bonded or non-bonded interaction
between atoms. Therefore, the truss model allows the
mechanical behavior of the nano-structured system to
be accurately modeled in terms of displacements of the
atoms. The deformation of each bonded or non-bonded
interaction corresponds to the axial deformation of the
corresponding truss element.
The total mechanical strain energy, �t, of the truss
model is:

�t ¼
X
b

X
a

Ab
aE

b
a

2Rb
a

rba � Rb
a

� 	2
ð3Þ

where Ab
a and Eb

a are the cross-sectional area and
Young’s modulus of rod a of truss member type b,
respectively. The term rba � Rb

a is the stretching of rod a
of truss member type b, where Rb

a and rba are the unde-
formed and deformed lengths of the truss elements,
respectively.
In order to represent the mechanical behavior of the
molecular lattice model with the truss model, Eq. (3)
must be equated with Eq. (1) in a physically meaningful
manner. Both equations are the sum of energies for
particular degrees of freedom. The main difficulty in the
substitution is specifying Eq. (3), which has stretching
terms only, for Eq. (1), which also has bond-angle var-
iance and van der Waals terms.
It was shown by Odegard et al. [6] that for small
deformations, the Young’s moduli of the rods repre-
senting primary bonds and the bond-angle variance
interactions may be determined as a function of the
force constants:
E�
a ¼
2K�

a R
�
a

A�
a

ð4Þ

E�
a ¼

32K �
a

A�
a R

�
a

sin
�a

2

� �2
ð5Þ

where K�
a , K

�
a , and �a are the same parameters asso-

ciated with Eq. (1), and the superscripts � and � indicate
primary bonding and bond-angle variance interactions,
respectively.
Upon examination of Eq. (1), it is clear that the
energy associated with van der Waals interactions is
highly non-linear with respect to interatomic distance.
The determination of the Young’s moduli of truss ele-
ments that represent van der Waals interactions is com-
plicated by accounting for this non-linearity and the
large range of values for the interatomic distance of the
interacting atoms in an equilibrium configuration.
Therefore, linear relationships for the Young’s mod-
ulus, such as those given by Eqs. (4) and (5), are not
realistic for the van der Waals interactions.
To address this problem, the energy associated with
the van der Waals interaction given in Eq. (1) and the
strain energy of a truss element given by Eq. (3) were
equated. The Young’s modulus that represents the
mechanical stiffness of a van der Waals interaction is
given by:

E!
a ¼

2�IJ
a D

IJ
a

A �
a �a � �

IJ
a

� 	2 12 �IJ
a

�a

� �12
�

�IJ
a

�a

� �6" #
ð6Þ

where the superscript ! indicates van der Waals bond-
ing. Clearly, the Young’s modulus is highly dependent
on the interatomic spacing. However, because of the
difficulty of assigning an individual Young’s modulus
value for every van der Waals interaction in a nano-
structured material, discrete values of Young’s modulus
may be approximated for ranges of interatomic spacing
for each combination of atoms based on Eq. (6). The
process for establishing these ranges is discussed below.
To implement the resultant equivalent-truss structure,
a finite element model was developed by using ANSYS1

6 [32] (Fig. 3). Each element (LINK8) was a three-
dimensional pin-jointed truss element with six degrees
of freedom (three displacement components on each
end) that represented a single atomic interaction. Each
node corresponded to an atom in the equilibrium struc-
ture of the molecular model. A total of 14,501 elements
and 1818 nodes were used in the model.

5.2. Continuum model

With the equivalent-truss structure in place, the con-
tinuum model could be constructed. The geometry of
the linear-elastic, homogeneous, equivalent-continuum
G.M. Odegard et al. / Composites Science and Technology 63 (2003) 1671–1687 1677



RVE was assumed to be cylindrical, similar to that of
the molecular and truss models (Fig. 3). With this
approach, the mechanical properties of the solid cylin-
der were determined by equating the total strain ener-
gies of the equivalent-truss and equivalent-continuum
models under identical loading conditions. Examination
of the molecular model revealed that it was accurately
described as having transversely isotropic symmetry,
with the plane of isotropy perpendicular to the long axis
of the nanotube. There are five independent material
parameters required to determine the entire set of elastic
constants for a transversely isotropic material. Each of
the five independent parameters may be determined
from a single boundary condition applied to both
equivalent-truss and equivalent-continuum models.
Once the mechanical properties of the equivalent-con-
tinuum RVE are determined, then the model may be
used in subsequent micromechanical analyses as an
effective fiber. The method employed in this study was
adapted from the approach used by Hashin and Rosen
[33] to determine elastic properties for fiber reinforced
composite materials.

5.2.1. Effective-fiber constitutive model
The constitutive relationship of the transversely iso-
tropic equivalent-continuum RVE (which is referred to
as the effective fiber throughout the remainder of the
paper) is:

�ij ¼ Cf
ijkl"kl ð7Þ

where �ij and "kl are the stress and strain components,
respectively (i,j=1,2,3), and Cf

ijkl are the elastic stiffness
components of the effective fiber (denoted by super-
script f). Alternatively, Eq. (7) can be simplified by using
the usual contracted notation for the elastic stiffness
components and transversely-isotropic symmetry:

�11 ¼ Cf
11"11 þ Cf

12"22 þ Cf
12"33

�22 ¼ Cf
12"11 þ Cf

22"22 þ Cf
23"33

�33 ¼ Cf
12"11 þ Cf

23"22 þ Cf
22"33

�12 ¼ 2C
f
44"12

�13 ¼ 2C
f
44"13

�23 ¼ Cf
22 � Cf

23


 �
"23 ð8Þ

Five independent elastic properties may be chosen to
describe the complete set of elastic stiffness components,
namely, the elastic stiffness component, Cf

11, and four
elastic parameters: transverse shear modulus, Gf

T, trans-
verse bulk modulus (also known as the plane-strain bulk
modulus), Kf

T, longitudinal shear modulus, G
f
L, and long-

itudinal Young’s modulus, Ef
L. The four elastic para-

meters are related to the elastic stiffness components by:
Gf
T ¼
1

2
Cf
22 � Cf

23


 �
Kf

T ¼
1

2
Cf
22 þ Cf

23


 �
Gf

L ¼ Cf
44

Ef
L ¼ Cf

11 �
2Cf2
12

Cf
22 þ Cf

23

ð9Þ

Conversely, the elastic stiffness components can be
described in terms of the four elastic parameters:

Cf
44 ¼ Gf

L

Cf
22 ¼ Gf

T þ Kf
T

Cf
23 ¼ Kf

T � Gf
T

Cf
12 ¼ Kf

T Cf
11 � Ef

L


 �h i1
2

ð10Þ

At this point, both the elastic parameters and the
elastic stiffness components are unknown. These values
are determined by applying five identical sets of bound-
ary conditions to the equivalent-truss model and the
effective fiber, and by subsequently equating the strain
energies by adjusting the five independent elastic prop-
erties. Boundary conditions must be chosen to yield
unique values for the independent elastic properties.

5.2.2. Boundary conditions
Five sets of boundary conditions were chosen to
determine each of the five independent elastic properties
such that a single property could be independently
determined for each boundary condition. The displace-
ments and tractions applied at the boundaries of the
RVE are generalized, respectively, by:

ui Bð Þ ¼ "ijxj ð11Þ

Ti Bð Þ ¼ �ijnj ð12Þ

whereB is the bounding surface, xj is defined in Fig. 3, and
nj are the components of the outward normal vector to B.
The generalized total strain energy of the effective fiber is:

�f ¼
V

2
�ij"ij ¼


D2L

8
�ij"ij ð13Þ

where V, D, and L are the volume, diameter, and length
of the effective fiber, respectively (Fig. 3). The boundary
conditions and strain energies for each of the five inde-
pendent elastic properties are described below.

5.2.2.1. Transverse shear modulus. For a pure transverse
shear strain, e, applied to the boundary of the equiva-
lent-truss RVE and the effective fiber, "23 ¼ e=2, with
the remaining strain components equal to zero. From
Eq. (11), the boundary displacements are:
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u1 Bð Þ ¼ 0

u2 Bð Þ ¼
e

2
x3

u3 Bð Þ ¼
e

2
x2

ð14Þ
From Eq. (13), the total strain energy of the effective
fiber is:

�f ¼
1

8

D2LGf

Te
2 ð15Þ

where D and L are the diameter and length of the
effective fiber, respectively (Fig. 3). The effective fiber
strain energy, �f , is equated to the strain energy of the
truss subjected to the boundary conditions in Eq. (14).
Since D and L are known, and e is arbitrarily chosen in
determining �f (in the range of small deformations, i.e.
e 
 1), then the transverse shear modulus of the effec-
tive fiber is directly evaluated from Eq. (15).

5.2.2.2. Transverse bulk modulus. The transverse bulk
modulus was obtained in a similar manner by prescrib-
ing transverse strains "22 ¼ "33 ¼ e to the RVE bound-
ary with all remaining strain components set to zero.
From Eq. (11), the displacements are:

u1 Bð Þ ¼ 0

u2 Bð Þ ¼ ex2

u3 Bð Þ ¼ ex3 ð16Þ

The strain energy of the effective fiber for this case is:

�f ¼
1

2

D2LKf

Te
2 ð17Þ

The transverse bulk modulus was determined from
Eq. (17).

5.2.2.3. Longitudinal shear modulus. The longitudinal
shear modulus was determined by prescribing a pure
shear strain in the x1 � x2 plane, "12 ¼ e=2, with the
remaining strain components set equal to zero. There-
fore, the applied boundary displacements are:

u1 Bð Þ ¼
e

2
x2

u2 Bð Þ ¼
e

2
x1

u3 Bð Þ ¼ 0
ð18Þ
The resulting strain energy of the effective fiber is:

�f ¼
1

8

D2LGf

Le
2 ð19Þ

The longitudinal shear modulus was evaluated by
using Eq. (19).
5.2.2.4. Longitudinal Young’s modulus. The longitudinal
Young’s modulus was determined by prescribing a
strain along the x1 axis, "11 ¼ e, with all of the shear
strain components set to zero. Since a transverse Pois-
son contraction is allowed in this case, the transverse
normal stresses are set to zero, �22 ¼ �33 ¼ 0. From Eqs.
(11) and (12), the boundary conditions are:

u1 Bð Þ ¼ ex1

T2 Bð Þ ¼ 0

T3 Bð Þ ¼ 0
ð20Þ
The strain energy is:

�f ¼
1

8

D2LEf

Le
2 ð21Þ

The longitudinal Young’s modulus was evaluated
using Eq. (21).

5.2.2.5. Elastic stiffness component Cf
11. The elastic

stiffness tensor component, Cf
11, may be determined by

applying a strain parallel to the x1 axis, while con-
straining the strains along the x2 and x3 axes, therefore
preventing a Poisson contraction. For a prescribed
strain, "11 ¼ e, with the remaining strains held at zero,
the displacements from Eq. (11) are:

u1 Bð Þ ¼ ex1

u2 Bð Þ ¼ 0

u3 Bð Þ ¼ 0
ð22Þ
From Eq. (13), the strain energy for these displace-
ments is:

�f ¼
1

8

D2LCf

11e
2 ð23Þ

Therefore, the elastic stiffness component Cf
11 can be

used as one of the five independent parameters that
describe the overall properties of the transversely iso-
tropic effective fiber.

5.2.3. Boundary region
The displacements and tractions specified above were
applied to each node in the boundary region of the
equivalent-truss model (indicated in Fig. 3), and the corre-
sponding strain energies were calculated by summing the
strain energies of each individual truss member in the RVE.
To determine the size of the boundary region, it was
assumed that the range of the boundary region is related
to the interatomic distance between the minimum non-
bonded spacing found in the equilibrium structure and
the maximum distance for which a positive-definite
relationship exists between the force and displacement.
It was also assumed that the contribution of the energies
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associated with van der Waals forces between atoms
with a separation distance larger than this maximum
were relatively small and could be neglected.
The recent MD simulation of a SWNT surrounded by
polyethylene molecules performed by Wise and Hinkley
[5] predicted that the local changes in the polymer
molecular structure and the non-functionalized SWNT/
polymer interface are on the same length scale as the
width of the nanotube. This recent study and the afore-
mentioned assumptions led to the selection of a cylind-
rical boundary region that extends from a radius of 0.9
nm measured from the center of the nanotube to the
outer edge of the molecular model (Fig. 3). Within the
0.9 nm radius, the RVE includes the nanotube, nano-
tube/polymer interface, and polymer molecules imme-
diately adjacent to the interface.

5.2.4. Material property summary
The five independent parameters and the resulting
stiffness tensor components, from Eq. (10), were deter-
mined for an effective fiber diameter, D, of 1.8 nm,
length, L, of 3.2 nm, and applied strain, e, of 0.1%.
These values are listed in Table 4.
6. Micromechanical analysis

The effective fiber accurately accounts for the struc-
ture–property relationships at the nanoscale and pro-
vides a bridge to the continuum model. With this
process firmly established, constitutive models of the
effective fiber/polymer composite may be developed
with a micromechanical analysis by using the mechan-
ical properties of the effective fiber and the bulk poly-
mer matrix material. For the composite considered in
this study, the PmPV molecules that were near the
polymer/nanotube interface were included in the effec-
tive fiber, and it was assumed that the matrix polymer
surrounding the effective fiber had mechanical proper-
ties equal to those of the bulk LaRC-SI and LaRC-CP2
resin. Because the bulk polymer molecules and the poly-
mer molecules included in the effective fiber are physi-
cally entangled, perfect bonding between the effective
fiber and the surrounding polymer matrix was assumed.
To address scale-up, the micromechanics-basedMori–
Tanaka method [34] was used to predict the elastic stiff-
ness properties of the effective fiber/polymer composite
material. This method has been successfully applied to
transversely-isotropic inclusions by Qui and Weng [35]
and for this current method, the complete elastic stiff-
ness tensor for the composite is given by Benveniste [36]

C ¼ Cm þ vf Cf � Cm
� 	

Af
� �

vmI þ vf Af
� �� 	�1

ð24Þ

where vf and vm are the fiber and matrix volume frac-
tions, respectively, I is the identity tensor, Cm is the
stiffness tensor of the matrix material, Cf is the stiffness
tensor of the fiber, and Af is the dilute mechanical strain
concentration tensor for the fiber

Af ¼ Iþ S Cmð Þ
�1

Cf � Cm
� 	h i�1

ð25Þ

The tensor S is Eshelby’s tensor, as given by Eshelby
[37] and Mura [38]. The terms enclosed with angle-
brackets in Eq. (24) represent the average value of the
term over all orientations defined by transformation
from the local fiber coordinates x1; x2; x3ð Þ to the
global coordinates x0001 ; x0002 ; x0003

� 	
(Fig. 4). For example,

the transformed dilute mechanical strain concentration
tensor for the fiber with respect to the global coordi-
nates is

A� f
ijkl ¼ cipcjqckrclsA

f
pqrs ð26Þ

where cij are the direction cosines for the transformation
indicated in Fig. 4; that is,

c11 ¼ cos � cos  � sin � cos 
 sin  

c12 ¼ sin � cos  þ cos � cos 
 sin  

c13 ¼ sin  sin 


c21 ¼ �cos � sin  � sin � cos 
 cos  

c22 ¼ �sin � sin  þ cos � cos 
 cos  

c23 ¼ sin 
 cos  

c31 ¼ sin � sin 


c32 ¼ �cos � sin 


c33 ¼ cos 
 ð27Þ

In general, the orientation average of the dilute
mechanical strain concentration tensor is [39]

Af
� �

¼

Ð 

�


Ð 

0

Ð 
=2
0 A� f �; 
;  ð Þ l �; ð Þ sin 
ð Þd�d
d Ð 

�


Ð 

0

Ð 
=2
0 l �; ð Þ sin 
ð Þd�d
d 

ð28Þ

where l �; ð Þ is the orientation distribution function

l �; ð Þ ¼ exp �s1�
2

� �
exp �s2 

2
� �

ð29Þ

and where s1 and s2 are factors that control the orien-
tation. Three cases considered in this paper are
Table 4

Effective-fiber independent parameters and elastic stiffness compo-

nents (GPa)
Gf
T ¼ 4:4
 Cf

11 ¼ 457:6
Kf
T ¼ 9:9
 Cf

12 ¼ 8:4
Gf
L ¼ 27:0
 Cf

22 ¼ 14:3
Ef
L ¼ 450:4
 Cf

23 ¼ 5:5
Cf
44 ¼ 27:0
1680 G.M. Odegard et al. / Composites Science and Technology 63 (2003) 1671–1687



random : s1 ¼ 0; s2 ¼ 0 l �; ð Þ ¼ 1
aligned : s1 ¼ 1; s2 ¼ 1 l �; ð Þ ¼

� �� 0ð Þ�  � 0ð Þ

axisymmetric : s1 ¼ k; s2 ¼ 1 l �; ð Þ ¼

exp �k�2
� �

�  � 0ð Þ

ð30Þ

where � y� y�ð Þ is Dirac’s delta distribution, centered at
y�. The random case is a completely randomly oriented
composite (i.e. randomly oriented in three dimensions).
The aligned case corresponds to fibers perfectly aligned
along the x0001 axis. The axisymmetric case is an axisym-
metric distribution of fibers about the x0001 axis. The
constant k describes the relative amount of alignment of
the fibers with respect to the x0001 axis. For large values of
k k ! 1ð Þ, the axisymmetric distribution approaches
the aligned case, and for small values of k k ! 0ð Þ, the
fibers are axisymmetrically distributed over all values of
the angle f with respect to the x0001 axis. A plot of the
orientation distribution functions for various inter-
mediate values of k is shown in Fig. 5.
For the effective fiber/polymer composites considered
in this study, the elastic stiffness components, volume
fraction, length, and orientation of the effective fiber
were used for the fiber properties in Eqs. (24) and (25).
The effective fibers were assumed to have a spheroidal
geometry for the Eshelby tensor in Eq. (25). The triple
Fig. 4. Effective-fiber orientation.
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integral in Eq. (28) was evaluated numerically by using
the extended trapezoidal rule [40].
7. Results

7.1. SWNT/LaRC-SI composite

In this section, the moduli of the effective-fiber/poly-
mer composite are presented in terms of nanotube
length, volume fraction, and orientation distribution.
While the nanotube and effective-fiber lengths are equal,
the nanotube volume fraction was determined to be
34% of the effective-fiber volume fraction if it is
assumed that the nanotube volume is a hollow cylinder
with a wall thickness equal to interatomic spacing of
graphene sheets (0.34 nm). The properties of the com-
posite with randomly and axisymmetrically oriented
nanotubes were calculated for nanotube lengths up to
200 nm. This maximum length was chosen based on the
decreased likelihood of a typical nanotube remaining
straight as the nanotube length exceeds 200 nm.
Fig. 6 is a plot of the calculated longitudinal Young’s
modulus, EL, and longitudinal shear modulus, GL, for
the random, aligned, and axisymmetric composites as a
function of nanotube length, for a 1% nanotube volume
fraction. These quantities were calculated from the
elastic-stiffness tensor of the composite, C, by using Eq.
(9) for the composite. The results indicate that there is
an approximately 55% increase in the shear modulus of
the randomly oriented nanotube composite in the range
of nanotube lengths between 0 and 200 nm, with a sig-
nificant change in the slope occurring between nanotube
lengths of 50 and 100 nm. Conversely, the calculated
longitudinal shear modulus for the aligned nanotube
composite was constant for the given range of nanotube
length. Therefore, under these conditions, increasing the
degree of alignment resulted in a decrease in shear
modulus.
From Fig. 6 it can be seen that there is about a 400%
increase in the longitudinal Young’s modulus for the
aligned composite with nanotubes that are 200 nm long,
with respect to the polymer system without reinforce-
ment. The data also indicate that alignment of the
nanotubes results in nearly a 300% increase in the
longitudinal Young’s modulus for the composite with
nanotubes that are 200 nm long. Unlike the case for
shear modulus, an increase in the degree of alignment
resulted in an increase in the longitudinal Young’s
modulus. A significant decrease in the slope of the
Young’s-modulus curves occurs between nanotube
lengths of 60–80 nm.
The longitudinal Young’s modulus of the aligned
composite is plotted in Fig. 7 as a function of nanotube
volume fraction for nanotubes that are 10, 50, and 500
nm long. Young’s modulus increases with an increase in
volume fraction, with the most pronounced rate of
increase associated with nanotubes of length 50 nm or
greater. The dependence of the longitudinal Young’s
modulus on the nanotube volume fraction becomes
more linear as the nanotube length increases. This
dependence is expected because of the well-known effect
of the increase in load transfer with subsequent increa-
ses in reinforcement length and volume fraction [41].
Fig. 5. Orientation distribution function for various values of the alignment factor k.
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For 500 nm long aligned nanotubes, the longitudinal
Young’s modulus of a composite with a 25% nanotube
volume fraction is about 85 times larger than the
Young’s modulus of the un-reinforced resin.
Fig. 8 is a plot of the Young’s modulus and the shear
modulus for the random composite as a function of
nanotube volume fraction, for three nanotube lengths.
In general, an increase in nanotube volume fraction
results in increased moduli values. For both the
Young’s and the shear moduli, increasing the volume
fraction for the short nanotubes of length near 10 nm
provides little to no improvement in stiffness. However,
for nanotubes between 50 and 200 nm, equivalent stiff-
ness can easily be obtained by trading off a decrease in
Fig. 6. Modulus of SWNT/LaRC-SI composite material vs. nanotube length for a 1% nanotube volume fraction.
Fig. 7. Longitudinal Young’s modulus of aligned SWNT/LaRC-SI composite vs. nanotube volume fraction.
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nanotube length for a small (2� or less) change in
volume fraction. Increasing the nanotube length above
200 nm results in negligible increases in modulus.
The longitudinal Young’s modulus for the axisym-
metric composite is plotted in Fig. 9 as a function of
nanotube volume fraction, for nanotubes that are 200
nm long. Three different values of k are shown. For
comparison, the plots for a random and aligned com-
posite are also shown for nanotubes that are 200 nm
long. It is clear that the variation of the alignment factor
k has a significant effect on the Young’s modulus. As k
increases and decreases, the longitudinal Young’s mod-
ulus of the axisymmetric composite approaches that of
the aligned composite and the random composite,
respectively.

7.2. SWNT/LaRC-CP2 composite

In this section, the Young’s modulus of the SWNT/
LaRC-CP2 composite is determined as a function of
nanotube volume fraction, and compared to experi-
mentally determined values of Young’s modulus.
Mechanical properties of the films were evaluated by a
Rheometrics dynamic mechanical analyzer (DMA). The
film specimens had dimensions of 12 mm � 5 mm � 35
mm, and were dynamically loaded in tension at a con-
stant frequency of 1 Hz. A plot of the experimental data
is shown in Fig. 10 for the composite material prepared
with both the as-received and acid-treated nanotubes. It
is assumed that the Young’s modulus is equal to the
storage modulus obtained from the DMA at room
temperature. Even though a total of three tests were
performed for each data point, only one set of the data
points is shown in Fig. 10 since the replicate values were
nearly identical with the set shown. The conversion of
nanotube weight fraction to nanotube volume fraction
was performed by using the methodology of Pipes et
al. [42]. It was assumed that the volume of the
nanotube is defined as a solid cylinder with a radius
equal to the sum of radius of the nanotube carbon
atoms and half of the distance between the nanotube
carbon atoms and the radius of the closest polymer
atoms. It can be seen from Fig. 10 that the Young’s
modulus of the composite with acid-treated nano-
tubes is slightly larger than the composite with the
as-received nanotubes.
The effective fiber properties determined in Section
7.1 were used to model the SWNT/LaRC-CP2 compo-
site. The Young’s modulus of the LaRC-CP2 neat resin
was taken from the experimental data for a 0% nano-
tube volume fraction (0.85 GPa), and a typical value of
Poisson’s ratio for a polyimide was assumed (0.4). It
was determined that the nanotube volume fraction was
37% of the effective fiber volume fraction if it is
assumed that the nanotube volume is defined as stated
above for the conversion of nanotube weight fraction to
volume fraction. The properties of the composite mate-
rial with randomly oriented nanotubes were calculated
for nanotube lengths of 3000 nm. The predicted
Young’s modulus, as a function of nanotube volume
fraction, is shown in Fig. 10. Even though there is good
agreement between the model and the acid-treated
Fig. 8. Modulus of random SWNT/LaRC-SI composite material vs. nanotube volume fraction.
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nanotube composite, the predicted values of modulus
are larger than the measured values for the as-received
material, especially for values of nanotube volume frac-
tion greater than about 0.5%. For example, at 0.21%
nanotube volume fraction, the predicted Young’s mod-
ulus is 12 and 35% higher than the measured values
from the acid-treated and as-received materials, respec-
tively. The difference between the experiments and the
model is most likely caused by the fact that while the
model assumes that the effective fibers are perfectly dis-
persed in the polymer matrix, a significant amount of
nanotubes remain in bundles in the composite material,
as shown by Park et al. [18]. The closer agreement
between the model and the acid-treated values indicates
Fig. 9. Longitudinal Young’s modulus of axisymmetric SWNT/LaRC-SI composite vs. nanotube volume fraction for nanotube lengths of 200 nm.
Fig. 10. Young’s modulus of random SWNT/LaRC-CP2 composite vs. nanotube volume fraction.
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that the nanotubes are more dispersed in the acid-trea-
ted material than in the as-received material.
8. Summary and conclusions

In this study, a method has been presented for linking
atomistic simulations of nano-structured materials to
continuum models of the corresponding bulk material.
For a polymer composite system reinforced with single-
walled carbon nanotubes (SWNT), the method provides
the steps whereby the nanotube, the local polymer near
the nanotube, and the nanotube/polymer interface can
be modeled as an effective continuum fiber by using an
equivalent-continuum model. The effective fiber retains
the local molecular structure and bonding information,
as defined by molecular dynamics, and serves as a
means for linking the equivalent-continuum and micro-
mechanics models. The micromechanics method is then
available for the prediction of bulk mechanical proper-
ties of SWNT/polymer composites as a function of
nanotube size, orientation, and volume fraction. The
utility of this method was examined by modeling
SWNT/LaRC-SI and SWNT/LaRC-CP2 composites,
both having a PmPV interface. The elastic stiffness
constants of the SWNT/LaRC-SI composite were
determined for both aligned and three-dimensional ran-
domly oriented nanotubes, as a function of nanotube
length and volume fraction. The Young’s modulus of
the SWNT/LaRC-CP2 composite was determined for
the three-dimensionally randomly oriented nanotubes as
a function of nanotube volume fraction.
For the SWNT/LaRC-SI composite at 1% nanotube
volume fraction, stiffness will approach a maximum for
nanotube lengths of 60–80 nm or greater for aligned,
axisymmetric, and random nanotube orientations.
Lengths above this range will also provide the most
efficient increase in modulus for small changes in nano-
tube volume fraction. As length increases above this
range, there is a limiting value such that small gains are
realized for lengths above approximately 200 nm. This
limiting value indicates that for nanotube lengths of
approximately 200 nm, the efficiency of load transfer is
nearly maximized. For long nanotubes (at least 200
nm), the relationship between stiffness and volume
fraction is linear, which resembles the usual rule-of-
mixtures approximation for long-fiber composites. For
short, aligned nanotubes (10 nm), the volume fraction
must exceed 10% before stiffness gains can be obtained.
For randomly oriented nanotubes, measurable stiffness
gains can be realized for small volume fractions.
For the SWNT/LaRC-CP2 composite with three-
dimensionally randomly-oriented fibers, the Young’s
modulus is predicted to increase significantly for small
volume fractions. Comparison with experiments sug-
gests that these stiffness gains can only be achieved
when the nanotubes no longer remain in their bundled
form. The composite with the acid-treated nanotubes
demonstrates a closer agreement with the model than
the composite with the as-received nanotubes.
For many nano-structured materials, the trade-offs
between structure and property must be established
before the material can be optimized for any given
application. The method presented in this paper pro-
vides a means for parametrically exploring these struc-
ture-property relationships. The method is applicable to
a wide range of problems that require the accuracy of
atomistic-level descriptions coupled with the general
applicability of continuum-level models.
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