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Abstract 
 
In this study, a hyperelastic multiscale modeling technique is used to predict elastic properties of 
polycarbonate and polyimide polymer systems using a set of widely accepted atomistic force 
fields.  The model incorporates molecular simulations and a nonlinear, continuum mechanics-
based, constitutive formulation that incorporates the behavior of the polymer materials as 
predicted from molecular simulations.  The predicted properties of the polymers using multiple 
force fields are compared to experimentally-measured values.  Both static and dynamic 
molecular simulations are performed using Molecular Mechanics energy minimizations and 
Molecular Dynamics simulation techniques, respectively.  The results of this study indicate that 
static molecular simulation is a useful tool to predict the bulk-level nonlinear mechanical 
behavior of polymers for finite deformations.  It is found that the AMBER force field yields the 
most accurate predicted mechanical and physical properties of the modeled polymer systems 
compared to the other force fields used in this study. 
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1.  Introduction 
 
Polymers and polymer nanocomposites are important materials in the design of aerospace 
structures because of their large stiffness-to-weight and strength-to-weight ratios relative to 
metal- and ceramic-based materials. To facilitate the development of these materials, multiscale 
modeling strategies must be developed that predict the bulk mechanical properties of the 
materials as a function of the molecular structure.  
 
Molecular Mechanics (MM) and Molecular Dynamics (MD) simulation techniques can be used 
to predict the molecular structure of a material and the behavior of the molecular systems when 
subjected to applied mechanical deformations. Many studies have focused on modeling and 
simulation of polymers and polymer-based nanocomposites via MM and MD techniques 
(Theodorou and Suter, 1986; Fan et al., 1994; Lordi and Yao, 2000; Sane et al., 2002; Frankland 
et al., 2003; Griebel and Hamaekers, 2004; Hu and Sinnott, 2004; Liang et al., 2004; Odegard et 
al., 2004; Odegard et al., 2005; Shenogin and Ozisik, 2005).  These studies have demonstrated 
that molecular modeling techniques can be effectively used to predict both structure and elastic 
mechanical properties of polymer-based material systems.  Three important factors required for 
the accurate prediction of properties of polymer material systems using a multiscale modeling 
approach are: (1) the assumed continuum mechanics-based constitutive relationship, (2) the 
selection of the molecular-level interatomic potential, and (3) the molecular modeling procedure.   
 
To accurately describe the mechanical stress-strain response of polymer-based materials 
subjected to large deformations, it is necessary to formulate the constitutive law within a finite-
deformation framework.  While hyperelastic formulations have been developed and 
characterized for  compressible and incompressible materials (Ogden, 1997; Holzapfel, 2000), 
they have been scarcely used in the multiscale modeling of polymer-based materials.  It is 
proposed that formulation of hyperelastic constitutive equations, in conjunction with molecular 
modeling, can be used for the development of reliable structure-property relationships in 
polymer material systems. 
 
Several simplified atomic potentials, or force fields, for organic-based material systems have 
been developed in recent years that describe the interactions between bonded and non-bonded 
atoms (Brooks et al., 1983; Allinger et al., 1989; Clark et al., 1989; Cornell et al., 1995; 
Jorgensen et al., 1996; Ott and Meyer, 1996; Sun, 1998). Each of these force fields has been 
characterized via experimental techniques and quantum computations and is described by their 
own set of unique parameters and functional forms.  Even though it is expected that these 
different parameters and forms will affect the relationship between force field type and predicted 
mechanical properties, little is known about the specific cause-and-effect relationships as applied 
to polymeric materials. 
 
The establishment of a molecular structure for a polymer material before and after deformation, 
for a given force field, can be achieved with either static or dynamic molecular simulation 
techniques using MM and MD, respectively.  With the static approach, the potential energy of 
the molecular system, as defined by the force field, is minimized to reach the equilibrated state.  
While the static procedure converges onto the equilibrated structure quickly, the mapping of real 
time molecular motion onto the molecular structure is lost.  With the dynamic approach, the 
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motion of the individual atoms in real time is determined using Newton’s laws of motion.  While 
the dynamic approach preserves time as the independent variable with the corresponding 
molecular structure, convergence onto a minimized molecular energy can be computationally 
more time-intensive than with the static approach.  It is unclear how these different approaches 
affect the accurate prediction of mechanical properties of polymer-based materials using a 
multiscale approach. 
 
Therefore, the objective of the present paper is to develop a multiscale modeling technique based 
on molecular simulations and hyperelasticity to predict elastic constitutive properties of two 
different polymer systems.   The predicted values of elastic properties, unique for each 
combination of force field and modeling technique, will be compared to experimentally-
measured values.  The polymers include a polycarbonate (Figure 1) and a polyimide from 
3,3’,4,4’-biphenyltetracarboxylic dianhydride (BPDA) and 1,3-bis(4-aminophenoxy)benzene 
(APB) monomers (Figure 2) (Srinivas et al., 1997; Hergenrother et al., 2002).  The three force 
fields used in this study are described in subsequent sections of the paper.   Based on the 
comparison of prediction to experiment, the most appropriate force field and modeling technique 
for the prediction of mechanical properties of polymer-based nanocomposite systems is 
determined.   
 
2.  Force Fields 
 
Three distinct force fields were used in this study to simulate the polymer deformations and 
provide inputs necessary to compute the  mechanical properties; AMBER (Cornell et al., 1995) 
(without electrostatic interactions), OPLS-AA (Jorgensen et al., 1996; Kaminsky et al., 2001), 
and MM3 (Allinger et al., 1989).  Each of the force fields has a unique functional form and set of 
force constants, which is summarized in the Appendix.  These three force fields were chosen 
because of their frequent use in computational chemistry research and because of their flexibility 
in modeling a wide range of atom and bonding types.  Other popular atomic potentials include 
the Brenner (Brenner, 1990) and Tersoff  (Tersoff, 1988, 1988) potentials.  The Tersoff potential 
was primarily developed for the modeling of silicon systems, and was later extended to 
accommodate graphite and amorphous carbon systems.  The Brenner potential is a highly 
parameterized version of Tersoff’s formalism.  Because the Brenner and Tersoff potentials are 
restricted to hydrocarbon and silicon systems and many polymers contain more than just carbon, 
hydrogen, or silicon atoms, the Brenner and Tersoff potentials were not used in the present study. 
 
Each of the force constants for these three force fields is unique for each force field and 
interacting atom types.  For all three force fields, it was assumed that torsional force constants 
that were not defined in the respective literature references or by the simulation software 
(Ponder, 2004) were zero-valued.  For the AMBER force field, the specific force constants used 
were those specified by the AMBER99 parameter set in the simulation software.   
 
3.  Equivalent-Continuum Modeling 
 
The nonlinear-elastic (hyperelastic) properties of the two material systems were determined 
using the Equivalent-Continuum Modeling method (Odegard et al., 2002; Odegard et al., 2003; 
Odegard et al., 2005; Odegard et al., 2005).  This modeling technique is ideally suited for large, 
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amorphous atomic structures with a mixture of covalent and secondary chemical bonds, as the 
Cauchy-Born rule is ignored because of immense computational complexity that would result if 
it was incorporated under these conditions.  It is important to note that the nonlinearity in the 
constitutive modeling referrers only to the hyperelastic approach incorporated, not the presence 
of constitutive nonlinearities, such as plasticity. This approach consisted of three steps.  First, 
representative volume elements (RVEs) of the molecular structures of both polymers for each 
force field were chosen that accurately described the bulk structures of the materials.  Next, a 
constitutive law that described the behavior of the equivalent-continuum model was established.  
Finally, the energies of deformation of the two models were equated under identical sets of 
boundary conditions to determine each of the material parameters in the constitutive equation.  
Each of these steps is described in detail below.   
 
3.1.  Representative Volume Element 
 
The RVEs of the molecular models were established from the equilibrium molecular structures 
of the polymers for each force field determined using MD simulations.  The molecular structures 
of the polymers represent the room temperature condition.  The RVE geometry of the molecular 
models selected was a cubic box and the specific configuration for the two polymer systems 
were established as described below. 
 
The polycarbonate model was initially prepared in the gas phase.  Six chains of 20 monomer 
units each (a total of 3972 atoms) were constructed and the system was condensed to a low 
density with an NPT (constant number of atoms, pressure, and temperature) MD simulation at 
300K and 1 atm for 50 ps. This process was followed by an NVT (constant number of atoms, 
volume, and temperature) simulation for 100 ps at 600K. The temperature was reduced in a 
stepwise fashion with a series of NPT MD simulations at 1 atm pressure to obtain the final 
equilibrated system.  These equilibration simulations were performed with the CVFF force field 
(Dauber-Osguthorpe et al., 1988).   
 
The molecular model of the polyimide was prepared with the aid of a reverse-mapping procedure 
that utilizes a coarse-grained model (Clancy, 2004).  In this process, each polyimide molecule, in 
the coarse-grained structure was a linked vector model used to represent the rigid rings that 
comprise the polyimide backbone (Figure 3).  The linked vectors followed the contour of the 
molecule.  The parameters used for this model consisted of angular distributions between 
consecutive vectors and long-range forces between beads placed along the midpoint of each 
vector.  These parameters were estimated from MD simulation of the polyimide monomers with 
the CVFF force field (Dauber-Osguthorpe et al., 1988).   The centroids of the beads placed at the 
midpoint of each vector were the centers for interaction forces between non-adjacent beads along 
the chain of the polymer and between beads on different chains.  The coarse-grained polymers 
were initially placed as random walk chains inside a simulation box such that the density was 
close to the bulk value.  The bulk polymer model consisted of seven chains of polymers each 
composed of ten of the repeat units shown in Figure 2.  The choice of seven chains was made to 
create a moderately large simulation box with 4214 atoms.  In this initial placement, only the 
angular distributions between adjacent vectors along the chain were considered in the 
equilibration.  Monte Carlo simulation was used to equilibrate the chains from their initial 
starting configuration.    The simulation ran at 650K until relaxation of an autocorrelation 
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function (Leach, 2001) of the end vectors was achieved and the average centers of mass were 
displaced a distance greater than the square of the average radii of gyration.  After sufficient 
equilibration with the coarse-grained Monte Carlo model, the chains were reverse-mapped to the 
fully atomistic configuration by replacing the deleted atoms back into position along the vectors 
of the coarse-grained model.   
 
The resulting equilibrated atomistic structures for both polymers were subsequently subjected to 
NPT MD simulations for 200 ps at 300 K and 1 atm using the AMBER, OPLS-AA, and MM3 
force fields respectively.  These constant-pressure MD simulations allowed the atomistic 
structures to relax to the equilibrium density and thus any residual stresses averaged over the 
RVE were minimized.  It was assumed that this step also eliminated any spurious effects of using 
different techniques to create the two polymer structures.  The employed algorithm preserved the 
cubic structure of the simulation box while allowing the size of the simulation box to change.  
The final periodic boundary box sizes varied from 37.7 Å to 47.2 Å on a side depending on the 
force field used.  After the NPT MD simulations, the densities of the polycarbonate were 1.2, 
0.4, and 1.1 g/cm3 for the AMBER, OPLS-AA, and MM3 force fields, respectively, and the 
densities of the polyimide were 1.0, 0.6, and 1.2 g/cm3 for the AMBER, OPLS-AA, and MM3 
force fields, respectively. The densities for the two polymers predicted with the AMBER and 
MM3 force fields are within the range of reasonable values of 1.2 - 1.4 g/cm3 (Ashby and Jones, 
1996).  However, the densities of the polymers predicted with the OPLS-AA force field are 
much lower than the expected values.  Examples of RVEs of the polycarbonate and polyimide 
are shown in Figures 4 and 5, respectively.   
 
3.2.  Constitutive Equation 
 
For the computational simulation of a hyperelastic polymer material subjected to finite 
deformation, it is assumed that the strain-energy function is associated with stress and 
deformation tensors that are thermodynamic work conjugates in the balance of mechanical 
energy and satisfies the Clausius-Duhem inequality and the requirement of observer-frame 
indifference (known as the hyperelastic approach) (Truesdell and Noll, 2004).  Although many 
authors choose to model the deformation of polymers using a strain-energy function based on a 
free energy associated with changes in entropy (known as the statistical approach) (Flory, 1953), 
it has been shown that the hyperelastic approach yields more accurate results than the statistical 
approach (Ogden, 1997).  Furthermore, the statistical approach neglects all molecular 
interactions except the straightening of the polymer chains, while the hyperelastic approach can 
consider a wide range of polymer degrees of freedom, such as those specified in Equations (A.1) 
- (A.18). 
 
The second Piola-Kirchhoff stress tensor is 
 

 ( )2 c∂Ψ
=

∂
C

S
C

 (1) 

 
where C is the right Cauchy-Green deformation tensor and Ψc is the scalar strain-energy density 
function of the equivalent continuum.  The second Piola-Kirchhoff stress tensor and the right 
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Cauchy-Green deformation tensor are henceforth referred to as the stress tensor and deformation 
tensors, respectively.  The deformation tensor is defined as 
 
  (2) T=C F F
 
where F is the deformation gradient tensor whose components are given by 
 

 i
ij

j

xF
X

∂
=

∂
 (3) 

 
In Equation (3), the vector components Xi and xi are the material (undeformed) and the spatial 
(deformed) coordinates, respectively, which are related by the deformation equations (Ogden, 
1997) 
 
 ( ), t= χx X  (4) 
 
where t is time.  The ratio of the deformed to the undeformed volume is given by the Jacobian, J, 
which is defined as the determinate of the deformation gradient tensor.   
 
All polymers, in general, are viscoelastic and experience time-dependent behavior.  However, 
because of the time-scale limitations in the atomistic modeling of polymers, it is assumed in this 
study that the polymers exhibit a hyperelastic, time-independent response.  This assumption does 
not preclude the use of time-dependent models for the mechanical behavior of polymers 
(Drozdov, 1996; Holzapfel, 2000).  Therefore, Equation (4) reduces to 
 
 ( )= χx X  (5) 
 
The functional form of the strain-energy density is restricted by considering the invariance 
properties of the material such that the strain-energy density remains invariant with respect to the 
coordinate transformations expressed by the material symmetry.  For an isotropic material, the 
reducible invariants of the deformation tensor C are 
 

 

( )

( ) ( ){
( )

1

2 2
2

3

tr
1 tr tr
2
det

I

I

I

=

= −⎡ ⎤⎣ ⎦

=

C

C C

C

}  (6) 

 
where tr(C) and det(C) are the trace and determinate of tensor C, respectively.  In addition to the 
symmetry requirement, the functional form of the strain-energy density function must also 
satisfy the global existence requirement of polyconvexity (Ball, 1977).  While the physical 
meaning of polyconvexity is not well-understood, the extensive mathematical details of 
polyconvex strain-energy density function formulation can be found elsewhere (Ball, 1977; 
Ciarlet, 1988; Marsden and Hughes, 1994).  It is clear that the strain-energy density function can 
be expressed as a linear combination of scalar invariant functions of I1, I2, and I3; each of which 
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satisfies convexity.  Therefore, a strain-energy density function that satisfies this requirement has 
the form 
 

 ( 1 2 3
1

, ,
n

c k
k

)I I Iψ
=

Ψ = ∑  (7) 

 
where ψk are n convex scalar functions.  Using the chain rule of calculus, Equation (1) becomes 
 

 ( )1 2 3 31 2

1 1 1 2 3
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k k

I I I II I
I I I

ψ ψ ψ ψ
= =
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It can be shown that 
 

 

1

2
1

13
3

I

I I

I I −
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=
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= −
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=
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A set of convex functions for ψk are (Schroder and Neff, 2003) 
 
 ( 2

1 1 3 1c I )ψ = −  (10) 

 1
2 2 1 3

3

3Ic
I

ψ
⎛ ⎞

= −⎜
⎝ ⎠

⎟  (11) 

 
3

2
3 3 2

3

27Ic
I

ψ
⎛ ⎞

= −⎜
⎝ ⎠

⎟  (12) 

 
where c1, c2, and c3 are material constants and c1, c2, c3 ≥0.  It has been shown (Schroder and 
Neff, 2003) that Equation (10) corresponds to the purely volumetric portion of the total material 
deformation,  while Equations (11) and (12) correspond to the isochoric, or volume preserving, 
portion of the total deformation.  Because Equations (11) and (12) both correspond to isochoric 
deformation, these terms can be combined such that c2 = c3, and the total strain-energy density 
from Equations (7) and (10)-(12) is 
 

 ( )
3

2 1 2
1 2 3 vol iso 1 3 2 1 3 2

3 3

1c
I Ic I c

I I
ψ ψ ψ ψ ψ

⎛ ⎞
Ψ = + + = + = − + + −⎜

⎝ ⎠
30⎟  (13) 

 
where ψvol and ψiso are the strain energy densities associated with volumetric and isochoric 
deformations, respectively.  Equation (13) can be rewritten as 
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 1 1 2 2c c cΨ = Ω + Ω  (14) 
 
where 
 

 
( )2

1 3

3
1 2

2 1 3 2
3 3

1

30

I

I I
I I

Ω = −

⎛
Ω = + −⎜ ⎟

⎝ ⎠

⎞  (15) 

 
The quantities Ω1 and Ω2 are introduced to denote the volumetric and isochoric deformation 
terms, respectively, independent of the material parameters c1 and c2.  Substitution of Equation 
(13) into (8) yields 
 

 ( )
3 2

11 2 1 2 2
1 3 3 2 2 21 3 2 1 3 2 2

3 3 3 3 3

2 16 1 6 2 3 6
3

I I I I Ic I I c c c
I I I I I

−⎡ ⎤⎛ ⎞ ⎛ ⎞
= − − + + + −⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦
S C

2

I C  (16) 

 
Equation (13) satisfies the normalization condition, that is, it vanishes in the undeformed 
configuration 
 
 ( )1 2 33, 3, 1 0c I I IΨ = = = =  (17) 
 
Equation (13) also satisfies the required growth conditions.  Specifically, as the Jacobian 
approaches zero (vanishing volume), and as the Jacobian approaches infinity (infinite 
deformation), the strain-energy density approaches infinity, 
 
 

det 0
lim c→

Ψ = ∞
F

 (18) 

 
det
lim c→∞

Ψ = ∞
F

 (19) 

 
Equation (16) describes the mechanical behavior of the equivalent-continuum model.  At this 
point, however, the materials constants c1 and c2 are unknown, and must be determined using the 
molecular structure of the polymer.  This is accomplished in the subsequent modeling step. 
 
3.3.  Energy Equivalence 
 
The energies of deformation of the equivalent-continuum, Ψc, and molecular models, Ψm, were 
equated for identical sets of boundary conditions to determine the bulk mechanical properties of 
the polyimide for each of the force fields.  The molecular strain-energy density (potential energy) 
is 
 

 ( )0

0 0

1
m total totalV V

ΔΛ
Ψ = Λ − Λ =  (20) 
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where  and  are the potential energies of the molecular model from either Equations 0
totalΛ totalΛ

(A.1), (A.6), or (A.11) before and after deformation, respectively, and V0 is the initial volume of 
the RVE.  For finite deformations, the deformation of the boundary of the RVE is generalized by 
Equation (5).   
 
Because the strain-energy density of the equivalent continuum, Ψc, is the sum of the volumetric 
and isochoric deformation components, as shown in Equations (13) - (15), volumetric and 
isochoric modes of deformation were applied to the molecular models to determine the material 
parameters c1 and c2.  For each deformation, the strain-energy densities in Equations (14) and 
(20) were equated by adjusting these two material parameters.  To relate these deformations to 
those typically applied to a specimen during laboratory testing, the deformation levels are 
expressed in terms of the Lagrangian strain tensor (henceforth referred to as the strain tensor) 
 

 (1
2

)= −E C I  (21) 

 
For the volumetric deformations, the deformation equations are 
 
 ( ) ( )1k

kα k −=x x  (22) 
 
where the deformation step k = 1, 2, 3, 4; x(0) = X; and αk is the scalar constant corresponding to 
the kth deformation step.  The spatial coordinates x(1), x(2), x(3), and x(4) correspond to volumetric 
strains (E11 = E22 = E33) of 0.25%, 0.50%, 0.75%, and 1.0%, respectively.  The relative 
deformation gradient tensor components, which relate the deformation at a given strain level to 
those of the previous strain level are 
 

 ( )
( )

( )
( )

1

k
k i

ij k
j

xF
x −

∂′ =
∂

x  (23) 

 
where ( )( ) ( )(1 )1x x′ =F F .  Therefore, the deformation gradient tensor components that relate the 

coordinate for each strain level to those of the material coordinate system are 
 

 ( )
( )

( ) (( ) ( ) ( 1)
k

k ki
ij im mj

j

xF F F
X

−∂ ′= =
∂

x x )kx  (24) 

 
where F(x(0)) = I.  Using Equations (21) - (24), the constants α1, α2, α3, and α4 where adjusted to 
achieve the exact desired volumetric strain levels in Equation (21).  These values are listed in 
Table I. 
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The deformation equations for the isochoric deformations are 
 

 

( ) ( )
( ) ( )
( ) ( )
( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )

1
1 1 2 3 1

1
2 1 1 3 2

1
3 1 1 2 3

1 1
1 2 3 1

1 1
2 1 3 2

1 1
3 1 2 3

k k k
k

k k k
k

k k k
k

x X X X

x X X X

x X X X

x x x x

x x x x

x x x x

β

β

β

β

β

β

1

1

1

k

k

k

− − −

− − −

− − −

= + +

= + +

= + +

= + +

= + +

= + +

 (25) 

  
where β1, β2, β3, and β4 are scalar constants and the superscripts 1, 2, 3, and 4 (k = 2, 3, and 4) 
correspond to 3-dimensional shear strain levels of γ23 = γ13 = γ12 = 0.25%, 0.50%, 0.75%, and 
1.0%, respectively (γij = 2Eij when i ≠ j).  Similar to the case of the volumetric deformation, the 
constants β1, β2, β3, and β4 were adjusted such that these shear strains were achieved by using 
Equations (21) and (23) - (25). The values of the β constants are listed in Table I.   
 
The change in the potential energies of the molecular models, ΔΛ in Equation (20), were 
determined using static (MM) and dynamic (MD) molecular simulations.  Both volumetric and 
isochoric deformations were applied to the equilibrium molecular structures for each force field 
by deforming the RVE and all of the atoms in the models according to the applied deformation 
field.  In the static simulations, an energy minimization technique was subsequently performed 
using a quasi-Newton L-BFGS method (Nocedal and Wright, 1999) as implemented with the 
MINIMIZE program in the TINKER modeling package (Ponder, 2004). The minimizations were 
executed for RMS gradient values of of 0.1 kcal/mole/Å.  During the energy minimization, the 
RVE volume was kept constant as the atoms were shifted to minimize the potential energy.  In 
the dynamical simulations, an NVT simulation with periodic boundary conditions was 
subsequently used for each deformation to allow the RVE dimensions to remain fixed while the 
atoms were allowed to move into new equilibrium positions.  The dynamic molecular 
simulations were run up to 40 ps with 1.0 fs time steps at 298 K, and were performed using the 
TINKER modeling package (Ponder, 2004).  The potential energies of deformation of the 
molecular models were averaged over the final 10 ps of each simulation, as for the first 30 ps 
showed significant changes in the potential energy as the molecular structure relaxed into the 
deformed configuration.  The temperatures of the simulations were monitored with the 
Groningen method of coupling to an external bath (Berendsen et al., 1984). The temperature of 
the system was achieved through modification of the equation of motion by the use of stochastic 
and friction terms yielding a Langevin equation. As a result of this modification in the equation 
of motion, the velocities were scaled to achieve the desired temperature of the system. The 
simulations were repeated for all necessary deformation modes of each polymer.  Therefore, a 
total of nine (including the undeformed configuration) strain-energy densities of the molecular 
model, Ψm, were determined for the complete range of deformations.  For the static simulations, 
the repeated values of Ψm were identical to the original set.   
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For the static and dynamic simulations, periodic boundary conditions were applied such that 
atoms were free to cross the boundary of the deformed and undeformed simulation cells.  Atoms 
that crossed the boundary entered the simulation cells on the opposite side, as described in detail 
elsewhere (Leach, 2001).  Therefore, none of the atoms in the molecular simulations were 
kinematically over-constrained, as can occur in simulations of RVEs of heterogeneous material 
systems with kinematic boundary conditions (Sun and Vaidya, 1996; Jiang et al., 2002). 
 
4.  Results and Discussion 
 
Because Equation (14) is linear in Ω1 and Ω2, the strain-energy density of the molecular models 
is plotted with respect to Ω1 and Ω2 in Figures 6 and 7, respectively, for the static molecular 
simulations.  From Figures 6 and 7 it is evident there is a slight nonlinearity in the data. Ideally, 
for materials under large elastic deformations, the slope of the curves in Figures 6 and 7 would 
be expected to be linear, as indicated by Equation (14).  Therefore, for larger deformations in the 
static simulations, a small amount strain-energy density is lost, most likely because of 
viscoelastic relaxation of the polymer chains or because of an evolution of damage on the 
molecular level (e.g. void nucleation).  Because of the difficulty in quantifying the simulated 
time in static molecular simulations, viscoelastic relaxation can be neither verified nor 
characterized for this data.   
 
Similarly, the molecular strain-energy densities for the volumetric and isochoric deformations 
are shown in Figures 8 and 9, respectively, from the dynamic simulations.  Specific trends in the 
plotted data are difficult to discern due to the scatter for each loading level, force field, and 
polymer.  This scatter is mostly a result of the motions (velocities) of the atoms and the resulting 
fluctuations in atomic coordinates and pressure for each simulation time step (Leach, 2001).  It is 
expected that as the number of atoms in the simulation RVEs increase, this scatter will decrease.  
That is, as the number of vibrating atoms in the simulation cell increases, each with its own 
velocity components at a give time step, the overall fluctuation of the energy will decrease.  Of 
course, at the bulk level, such arbitrary fluctuations in energy are not witnessed because of the 
large number of total atoms that are being observed in an element of material.  Because of the 
existence of the data scatter in Figures 8 and 9, the nonlinear behavior observed in the static 
simulations is not observed in the dynamic simulations. 
 
From Figures 6 - 9, it is evident that the slopes of each set of data do not necessarily approach a 
molecular potential energy value of zero as Ω1 and Ω2 approach zero.  In the establishment of 
material RVEs using finite-sized molecular systems, as described section 3.1, it is very difficult 
to obtain a completely stress-free system in the reference configuration using an NPT simulation.  
This is because of the unavoidable, small fluctuations of the pressure in NPT simulations (even 
though the pressure changes are minimized) (Leach, 2001).  Therefore, the RVEs for each 
material and force field are not completely free of residual stresses.   
 
For both static and dynamic simulations, linear least-squares regressions were performed for the 
Ψm vs. Ω1 and Ω2 data sets shown in Figures 6 - 9 for each loading condition, polymer, and force 
field.  Because Equation (14) is linear in Ω1 and Ω2, the slopes of the regression curves in 
Figures 6 and 8 are the material parameter c1, and the slopes of the regression curves in Figures 7 
and 9 are the material parameter c2.  Because of the aforementioned residual stress in the 
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molecular modeling data, the linear regressions were performed over the deformation increments 
without forcing the regression to approach a zero-valued molecular potential energy as Ω1 and 
Ω2 approached zero.  Therefore, the slopes of the regressions accurately reflect the values of c1 
and c2 in a bulk-level material without the existence of any residual stresses. The values of the 
material parameters c1 and c2 are listed in Tables II and III for the static and dynamic 
simulations, respectively.   
 
The constitutive relationship in Equation (16) and the material parameters in Tables II and III 
were used to predict the stress-strain responses of the two polymer systems.  Figures 10 and 11 
depict the hydrostatic stress-volumetric strain curves using the parameters from the static and 
dynamic simulations, respectively.  For this loading condition, it was assumed that C11 = C22 = 
C33 with all other Cij equal to zero.  The volumetric strain was 
 

 11 22 333 3 3V E E E
V

Δ
= = =  (26) 

 
The corresponding hydrostatic stress was given by Equation (16) where S11 = S22 = S33 with all 
other Sij equal to zero.  In Figures 10 and 11, the mechanical responses of both polymers are 
linear, as expected, and their slopes are the bulk moduli as predicted by the constitutive law and 
the material parameters.  Figures 12 and 13 illustrate the shear stress-shear strain (S12 versus γ12) 
response of the two polymers from Equation (16) using the static and dynamic simulations 
parameters, respectively, in Tables II and III.  For this loading condition, it was assumed that C11 
= C22 = C33 = 1, C23 = C13 = 0, and C12 ≠ 0.  The resulting stress state was S12 ≠ 0 with all other 
Sij = 0.  Because the responses of the two polymer systems in both figures are linear over the 
given range of shear strains, the slope of the curves is the predicted shear modulus.  The Young’s 
and shear moduli of the two polymer systems for the three force fields and two simulation types, 
listed in Tables IV and V, were determined from the data shown in Figures 10-13 and from the 
standard relations for elastic properties of isotropic materials (Malvern, 1969).    Experimentally-
determined values of the Young’s and shear moduli for the polycarbonate (Christopher and Fox, 
1962) and the polyimide, with an assumed Poisson’s ratio of 0.4 (Hergenrother et al., 2002), are 
also listed in Tables IV and V, respectively.  The data in Figures 10 – 13 were plotted for 
relatively small deformations because the data for larger deformations shows the same trends and 
the modeling procedure does not model larger deformation effects such as plastic yielding or 
craze formation. 
 
From the data in Tables IV and V, the static simulations predicted mechanical properties that are 
lower than those predicted by the dynamic simulations for both polymer materials.  Comparison 
of the properties from static and dynamic simulations also reveals that the properties predicted 
with the static simulations are closer to the experimentally-obtained values.  For the properties 
predicted from static simulations, the OPLS-AA and MM3 force fields predicted mechanical 
properties that are lower than those predicted with the AMBER force field.  Also, the static 
simulations predict Young’s and shear moduli that are higher than those from experiment with 
the AMBER force field, while the same predicted properties are lower than the experiment with 
the OPLS-AA and MM3 force fields.  There are no distinct trends between predicted moduli and 
polymer type or force field for the dynamic simulations.   
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5. Summary and Conclusions 
 
In this study, a combined atomistic-hyperelastic multiscale modeling technique, based on the 
Equivalent-Continuum Model, was developed and used to predict elastic properties of 
polycarbonate and polyimide polymer systems using the AMBER, OPLS-AA, and MM3 
molecular force fields.  The hyperelastic model was formulated with a strain-energy potential 
function that had a functional form based on molecular simulation predictions. Both static and 
dynamic molecular simulations were performed using Molecular Mechanics and Molecular 
Dynamics simulation techniques, respectively. The predicted bulk properties of the polymers 
using the three force fields were compared to experimentally-measured values.  
 
5.1.  Static versus Dynamic Simulation 
 
Examination of the predicted values of Young’s and shear moduli for the two polymers indicates  
that the static simulations predicted mechanical properties that are lower than those predicted by 
the dynamic simulations, with the properties from static simulations closer to the experimental 
properties than the properties from the dynamic simulations.  These results can be attributed to 
two possible factors, data scatter and mechanical relaxation.   
 
The results indicate that the scatter in the data from the dynamic simulations is much greater than 
that from the static simulations and therefore there is a greater chance of the dynamic simulations 
yielding predicted mechanical properties that are less accurate than those from the static 
simulations (when comparing to the experiment).   It is expected that with dynamic simulations 
of larger molecular systems, the scatter would generally decrease. 
 
The mechanical relaxation of the polymer chains that occurs in the experiments and in the static 
simulations is not expected to be accurately accounted for in the dynamic simulations.  Polymers 
generally behave in a viscoelastic manner when subjected to applied deformations because of the 
time-dependent response of polymer-chain sliding and chain-torsional motions.  Therefore, in the 
experiments, it is speculated that the strain rates were small enough that mechanical relaxation 
occurred as the specimens were deformed, thus reducing the resultant stress on the specimen.  In 
the static simulations, energy minimizations are performed that mimic the relaxation mechanisms 
of a deformed polymer; conversely, in the dynamic simulations, the time scale is on the order of 
picoseconds, which is not long enough to allow for significant mechanical relaxation.  Therefore, 
the strain-energy density is much higher for a given deformation in the dynamic simulations 
relative to the static simulations, and the corresponding constitutive equations will predict higher 
stresses for a given applied deformation.  As a result, the predicted elastic material properties 
from the dynamic simulations are greater than those from the static simulations and the 
experiments.    
 
5.2.  Force Field Comparisons 
 
The predicted moduli from the static simulations are larger than those from experiment for the 
AMBER force field, and are smaller than the experimental values for the OPLS-AA and MM3 
force fields.  The relatively low predicted elastic properties from the OPLS-AA force field are 
likely a direct result of the lower simulated polymer densities because it is expected that higher 
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elastic constants would result from simulations of denser materials.  The functional forms of the 
AMBER and OPLS-AA force fields, from Equations (A.1) to (A.10), are nearly identical.  The 
differences in the two force fields (as used in this study) are the presence of electrostatic 
interactions in the OPLS-AA force field and the differences in the force constant parameters, 
particularly for the torsions.  These differences result in the significantly different predicted 
densities for both polymer systems.  The lower predicted properties of the MM3 static 
simulations cannot be attributed to the same effect because the simulated material densities were 
close to the expected values.  The functional form of the MM3 force field from Equations (A.11) 
- (A.18) attempts to account for a wider range of behavior than those of the AMBER and OPLS-
AA force fields.  However, because the predicted properties using the MM3 force field in static 
simulations are farther from the experimental properties than those predicted with the AMBER 
and OPLS-AA force fields, the more complex functional form does not predict properties as 
accurately as the more simple functional forms of AMBER and OPLS-AA for the polymer 
systems used in this study. 
 
The relatively high predicted mechanical properties from the static simulations with the AMBER 
force field follow a trend that has been observed in the literature.  Previous studies (Fan and Hsu, 
1992; Fan et al., 1994) have pointed out that the predicted mechanical properties from molecular 
simulations are expected to be 50 - 100% larger than those obtained from experiments.  In the 
current study, the predicted properties from the AMBER force field were 70 - 115% higher than 
experiment.  Most likely, this difference can be attributed to the fact that the RVEs in molecular 
modeling simulations represent a nearly perfect molecular structure, whereas, in the actual 
experimental test specimens, the material contains low volume fractions of air pockets, 
inclusions, and unreacted monomers.  Therefore, it is expected that simulated mechanical 
properties should be larger than experimentally-obtained properties if the polymer system 
imperfections are not included in the molecular modeling.   It is also expected that the 
computational modeling of these imperfections in these polymer systems would yield predicted 
properties that are closer to the experiment than those predicted in the current study.  From this 
perspective, for the polymer systems investigated in this study, the AMBER force field appears 
to be more accurate than the OPLS-AA and MM3 force fields for predicting elastic properties. 
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Appendix 
 
The total potential energy of a simulated molecular system computed with the AMBER force 
field is based on the summation of the bond stretching, bending, torsion and nonbonded energies 
given by 
 
 total stretch bend torsion nb

A A A AΛ = Λ + Λ + Λ + Λ A  (A.1) 
 
where superscript A indicates the AMBER force field and 
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 ( )2

stretch
stretch

A A
r eqK r rΛ = −∑ A  (A.2) 

 ( )2

bend
bend

A A
eqKθ θ θΛ = −∑ A  (A.3) 

 ( ) ( ) ( )31 2
torsion

torsion

1 cos 1 cos 2 1 cos 3
2 2 2

AA A
A A A VV Vφ ζ φ ζ φ ζ

⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡Λ = + + + − + + + +⎨ ⎬⎣ ⎦ ⎣ ⎦ ⎣⎩ ⎭
∑ A ⎤⎦  (A.4) 

 
( ) ( )12 6

nb 12 64
A A
IJ IJA A

IJ
I J IJ IJr r

σ σ
ε

<

⎡ ⎤
⎢ ⎥Λ = −
⎢ ⎥
⎣ ⎦

∑  (A.5) 

 
where the summations are taken over all of the corresponding interactions in the molecular 
model; A

rK  and AKθ  are the bond-stretching and bond-angle bending force constants, 
respectively; r and A

eqr  are the bond length and equilibrium bond length, respectively; θ and 
A

eqθ  are the bond angle and equilibrium bond angle, respectively; 2A
nV , Aζ , and φ are the 

torsion magnitude (n=1,2,3), phase offset, and the torsion angle, respectively; and A
IJε , rIJ, and 

A
IJσ  are van der Waals well depth, non-bonded distance between atoms I and J,  and the 

equilibrium distance between atoms I and J, respectively.   
 
Similarly, the total potential energy of the molecular model computed with the OPLS-AA force 
field is generally represented by 
 
  (A.6) total stretch bend torsion nb

O O O OΛ = Λ + Λ + Λ + ΛO

 
where the superscript O indicates the OPLS-AA force field and 
 
 ( )2

stretch
stretch

O O
r eqK r rΛ = −∑ O  (A.7) 

 ( )2

bend
bend

O O
eqKθ θ θΛ = −∑ O  (A.8) 

 ( ) ( ) ( )31 2
torsion

torsion

1 cos 1 cos 2 1 cos 3
2 2 2

OO O
O O O VV Vφ ζ φ ζ φ ζ

⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡Λ = + + + − + + + +⎨ ⎬⎣ ⎦ ⎣ ⎦ ⎣⎩ ⎭
∑ O ⎤⎦ (A.9) 

 
( ) ( )12 6

2

nb 12 6

e 4
O OO O
IJ IJO OI J

IJ
I J IJ IJ IJ

q q
r r r

σ σ
ε

<

⎧ ⎫⎡ ⎤⎪ ⎪⎢ ⎥Λ = + −⎨ ⎬⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭
∑  (A.10) 

 
where qI is the partial charge of atom I, e is the elementary charge, and the remaining quantities 
are analogous to those already defined for the AMBER force field.   
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For the MM3 force field, the total potential energy includes the previously mentioned terms 
along with additional terms representing bond deformations given by stretch-bend, torsion-
stretch, bend-bend, and the van-der-Walls and electrostatic interactions 
 
 total stretch bend torsion stretch-bend torsion-stretch bend-bend vdw electrostatic nb

M M M M M M M M MΛ = Λ + Λ + Λ + Λ + Λ + Λ + Λ + Λ + ΛM (A.11) 
 
where the superscript M indicates the MM3 force field and 
 
 ( ) ( ) ( )2 2

stretch
stretch

71.94 1 2.55 1.49M M M M
r eq eq eqK r r r r r r M⎡ ⎤Λ = − − − + −⎢ ⎥⎣ ⎦∑  (A.12) 
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M VV Vφ φ
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stretch-bend

2.51118M M M M
r eq eq eK r r r rθ

M
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 ( )( )bend-bend '
bend-bend

0.021914M M M
eq eqKθθ θ θ θ θ M⎡ ⎤′ ′Λ = − − −⎣ ⎦∑  (A.17) 
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M M
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where M

rK θ , M
rKφ , and '

MKθθ are force constants; r′  and M
eqr′  are the bond length and equilibrium 

bond length, respectively, of the adjacent covalent bond; and θ ′  and M
eqθ ′  are the bond angle and 

equilibrium bond angle, respectively, of the adjacent bond angle.  The energy contribution from 
electrostatic forces, , is determined by either partial charges or dipole moments.  The 
energies associated with all remaining non-bonded interactions, such as hydrogen bonding, are 
incorporated in 

electrostatic
MΛ

nb
MΛ .  The remaining quantities in Equations (A.12)-(A.18) are analogous to 

those of the AMBER and OPLS-AA force fields. 
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Table I. Values of deformation parameters 

Deformation 
parameters 

Value (unitless) Finite-valued strain 
components 

α1 1.002497 E11 = E22 = E33 = 0.25% 
α2 1.002485 E11 = E22 = E33 = 0.50% 
α3 1.002472 E11 = E22 = E33 = 0.75% 
α4 1.002460 E11 = E22 = E33 = 1.00% 
β1 0.001249 γ23 = γ13 = γ12 = 0.25% 
β2 0.001246 γ23 = γ13 = γ12 = 0.50% 
β3 0.001243 γ23 = γ13 = γ12 = 0.75% 
β4 0.001240 γ23 = γ13 = γ12 = 1.00% 

 
 
 
 
 
 
 
 

Table II.  Predicted material parameters of the polymers from static  
molecular simulations (all parameters have units of Pa) 

 

Material c1 c2 

Polycarbonate 
(AMBER force field) 2.23×109 2.58×107 

Polycarbonate 
(OPLS-AA force field) 1.81×107 4.29×106 

Polycarbonate 
(MM3 force field) 1.41×109 1.17×106 

Polyimide 
(AMBER force field) 9.64×108 4.92×1077 

Polyimide 
(OPLS-AA force field) 1.58×109 1.82×107 

Polyimide 
(MM3 force field) 1.52×109 3.43×106 
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Table III.  Predicted material parameters of the polymers from dynamic  
molecular simulations (all parameters have units of Pa) 

 

Material c1 c2 

Polycarbonate 
(AMBER force field) 2.44×109 6.69×107 

Polycarbonate 
(OPLS-AA force field) 2.00×108 1.62×108 

Polycarbonate 
(MM3 force field) 2.28×108 2.09×108 

Polyimide 
(AMBER force field) 6.08×108 2.32×108 

Polyimide 
(OPLS-AA force field) 1.58×109 2.13×108 

Polyimide 
(MM3 force field) 1.16×109 1.32×108 

 
 

Table IV.  Predicted and Experimental Elastic Properties of Polycarbonate 
 

Method Young’s Modulus 
(GPa) 

Shear Modulus 
(GPa) 

Experiment 2.2 0.8 

AMBER force field 
(static simulation) 4.0 1.4 

OPLS-AA force field 
(static simulation) 0.3 0.2 

MM3 force field 
(static simulation) 0.2 0.1 

AMBER force field 
(dynamic simulation) 9.4 3.7 

OPLS-AA force field 
(dynamic simulation) 4.1 9.1 

MM3 force field 
(dynamic simulation) 4.7 11.7 
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Table V.  Predicted and Experimental Elastic Properties of Polyimide 

 

Method Young’s Modulus 
(GPa) 

Shear Modulus 
(GPa) 

Experiment 3.6 1.3 

AMBER force field 
(static simulation) 6.1 2.8 

OPLS-AA force field 
(static simulation) 2.8 1.0 

MM3 force field 
(static simulation) 0.6 0.2 

AMBER force field 
(dynamic simulation) 10.6 13.0 

OPLS-AA force field 
(dynamic simulation) 18.4 11.9 

MM3 force field 
(dynamic simulation) 12.3 7.4 
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Figure 1.  Schematic illustration of the polycarbonate monomer unit 

 
 
 
 
 
 

 
Figure 2.  Schematic illustration of the BPDA (1,3,4) APB polyimide monomer unit 

 
 
 
 
 
 

 
 
Figure 3. Depiction of the mapping of the atomistic polymer model to the coarse-grained linked 

vector model 
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Figure 4.  RVE of the polycarbonate material 
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Figure 5.  RVE of the polyimide material 
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Figure 6.  Simulated molecular strain-energy density for volumetric deformation with static 

molecular simulations 
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Figure 7.  Simulated molecular strain-energy density for isochoric deformation with static 

molecular simulations 
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Figure 8.  Simulated molecular strain-energy density for volumetric deformation with dynamic 

molecular simulations  
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Figure 9.  Simulated molecular strain-energy density for isochoric deformation with dynamic 

molecular simulations 
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Figure 10.  Predicted hydrostatic stress versus volumetric strain behavior for the material 

parameters determined with the static molecular simulations 
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Figure 11.  Predicted hydrostatic stress versus volumetric strain behavior for the material 

parameters determined with the dynamic molecular simulations 
 
 

 27



International Journal of Solids and Structures, in press 

S12 (MPa)

γ12

0

1

2

3

4

5

6

0 0.0004 0.0008 0.0012 0.0016 0.002

Polycarbonate - AMBER force field

Polycarbonate - OPLS-AA force field

Polycarbonate - MM3 force field

Polyimide - AMBER force field

Polyimide - OPLS-AA force field

Polyimide - MM3 force fieldS12 (MPa)

γ12

0

1

2

3

4

5

6

0 0.0004 0.0008 0.0012 0.0016 0.002

Polycarbonate - AMBER force field

Polycarbonate - OPLS-AA force field

Polycarbonate - MM3 force field

Polyimide - AMBER force field

Polyimide - OPLS-AA force field

Polyimide - MM3 force field

 
Figure 12.  Predicted shear stress versus shear strain behavior for the material parameters 

determined with the static molecular simulations 
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Figure 13.  Predicted shear stress versus shear strain behavior for the material parameters 

determined with the dynamic molecular simulations 
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