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Abstract 
 
While much work has previously been done in the modeling of skeletal muscle, no model has, to 
date, been developed that describes the mechanical behavior with an explicit strain-energy 
function associated with the active response of skeletal muscle tissue. A model is presented 
herein that has been developed to accommodate this design consideration using a robust 
dynamical approach. The model shows excellent agreement with a previously published model 
of both the active and passive length-tension properties of skeletal muscle.  
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Notation 
 
a1,a2,a12 Material constants 
b1, b2  Material constants 
C  Right Cauchy-Green deformation tensor 
E  Green strain tensor 
F  Deformation gradient tensor 
e  orthogonal basis set 
e1,e2,e3  Basis vectors 
I  Identity tensor 
J  Jacobian 
J4  Scalar invariant 

0
4J   Value of J4 for the optimized cross-bridging condition 

k  Material constant 
L1, L2  Scalar invariants 
M  Activation stress factor 
M   Weighted structural tensor 
m1  Fiber axis vector 
M1,M2,M3 Structural tensors 
p  Langrange multiplier 
q  Activation parameter 
S  Second Piola-Kirchhoff stress tensor 
Sa  Second Piola-Kirchhoff stress for active response 

a
JS   Active second Piola-Kirchhoff stress tensor for the Jenkyn model 

Sp  Second Piola-Kirchhoff stress for passive response 
11
JS   Longitudinal component of total stress for the Jenkyn model 

SF  Specific muscle tension constant 
U   Instantaneous potential energy 
w1,w2,w3 Weighting factors 
X  Material point in R 
x  Spatial position vector 
X  Material position vector 
α  Material constant 
β  Material constant 
χ  Motion of R 
φ   Actin/myosin overlap parameter 
γ  Material constant 
η  Entropy density 
λ1  Longitudinal deformation magnitude 
λ2  Transverse deformation magnitude 
λ3  Shear deformation magnitude 
μ  Material constant 
θ  Absolute temperature 
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Ψ̂   Response function for the strain-energy density 
Ψa  Strain-energy density for active response 
Ψp  Strain-energy density for passive response 
ˆ JΨ   Passive strain-energy density from Jenkyn model 
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Introduction 

The main functions of the human musculoskeletal system are to sustain loads and provide 
mobility.  Bones and joints themselves cannot produce movement; skeletal muscles provide the 
ability to move.  Knowledge of muscle forces during given activities can provide insight into 
muscle mechanics, muscle physiology, musculoskeletal mechanics, neurophysiology, and motor 
control.  However, currently available methods for clinical examination or instrumented strength 
testing only provide information regarding muscle groups.  Musculoskeletal models are typically 
needed to calculate individual muscle forces.  Mathematical models of muscle have evolved over 
the past century.  Blix [1] observed that muscle force varies with sarcomere length.  Hill created 
a mathematical model that described the velocity-force characteristics of muscle force generation 
[2].  Numerous investigators have used Hill-type muscle models to predict individual muscle 
forces [3-6].  However, these models do not account for mechanical equilibrium in the muscle 
[7] or curvature of muscle during contraction.    

More recently, continuum-mechanics muscle models have started to emerge to address these 
deficiencies.  Continuum modeling allows for the prediction of stresses in the three-dimensional 
space occupied by the muscle.  As a result, the continuum-mechanics approach can be used in 
conjunction with the finite element method to accurately predict muscle forces.  A limited 
number of two-dimensional [8, 9] and three-dimensional models [10-14] have been proposed.  
These models predict the stress associated with skeletal muscle for given levels of deformation 
and activation.  However, a constitutive model has not yet been developed that explicitly states 
the strain energy associated with the active response for skeletal muscle tissue.  Current models 
have strain-energy density formulations that are defined as derivatives with respect to imposed 
strains. Such a formulation requires that the strain energy be recalculated for any variations in the 
deformations to be studied. Having an explicit strain-energy density formulation is required for 
establishing a dynamical framework that can be used to directly calculate the strain energy and 
internal stresses of muscle tissue, and ultimately describe muscle behavior under a wide range of 
conditions. 
 
Skeletal muscle is composed of fiber-shaped fascicles that are aligned as shown in Figure 1.  The 
fascicles are, in turn, composed of muscle fibers which are built from myofibrils composed of 
sarcomeres arranged in series.  Like the fascicles, the muscle fibers and myofibrils are aligned 
along the fiber axis of the muscle tissue.  Each sarcomere contains overlapping myosin and actin 
filaments.  Passive force production occurs when a muscle has been stretched from its resting 
length (Fig. 2) and is largely attributable to the extracellular matrix. This force increases 
exponentially with relative elongation and will tend to restore the muscle to its resting length 
once released. Active force production occurs when skeletal muscle activation causes 
overlapping actin and myosin filaments to interact via cross-bridging, resulting in muscle 
contraction.  As shown in Figure 2, an optimal length exists where there is a sufficient amount of 
overlap to provide for maximal force generation.  Any change in the length of the sarcomere 
from this optimal length will reduce the overlap available for cross-bridging and therefore reduce 
the achievable load. At increased sarcomere lengths, however, the passive forces combine to 
offset the decreasing active force production, resulting in increased total force production.  
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Figure 1.  Multiple scale levels of skeletal muscle tissue (Netter medical illustration used with 
permission of Elsevier. All rights reserved.) 
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Figure  2.  Tension-length relationship of a sarcomere (Netter medical illustration used with 
permission of Elsevier. All rights reserved.) 
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It has been reported that skeletal muscle tissue exhibits the same mechanical behavior on both 
the muscle fiber- and sarcomere-associated length scales [3].  Therefore, for the modeling of 
mechanical behavior, skeletal muscle tissue can be modeled as a continuous and homogenous 
effective continuum with mathematically-defined properties and symmetry on multiple length-
scale levels.  It has been further suggested that muscle tissue is incompressible [15, 16] and 
exhibits transversely-isotropic symmetry [3].  Therefore, it is assumed that, at all functional 
length-scale levels, muscle tissue has an identical, incompressible, transversely-isotropic 
response. 
 
The dynamical process of a continuum model describes the unique kinematical and kinetic state 
of a material.  For materials that exhibit behavior that is dependent on internal processes, such as 
activation level and actin/myosin cross-bridging in skeletal muscle tissue, the dynamical process 
can be described using an approach with internal variables [17]. While this approach, commonly 
used to formulate complex thermodynamics, allows for consideration of changes in heat or mass, 
the object of the current study is to develop a continuum-based constitutive model to describe the 
three-dimensional mechanical behavior of muscle under passive and active loading conditions.  
Following a detailed derivation of the corresponding strain-energy function and constitutive 
equation, the resulting model is subsequently characterized using modeling data from the 
literature [9] as a first evaluation of model performance.   
 
Methods 
 
Dyanamical Processes 
 
Consider the reference configuration of a continuous region of skeletal muscle R with material 
points X.  The passive properties of the effective continuum are modeled as those that result in 
the same strain-energy density as the actual heterogeneous muscle tissue under identical 
boundary conditions [18-21].  Likewise, the active properties of the effective continuum are 
modeled as those that result in the same stress tensor components as the actual muscle tissue 
under identical applied boundary conditions. It is assumed that isothermal conditions exist and, 
for the purposes of this model, it is further assumed that the mechanical performance of skeletal 
muscle is not affected by the transfer of mass or heat across the boundary of R.  With these 
assumptions, the dynamical processes of skeletal muscle can be described by the following 
functions: 
 

1. The spatial position vector x = χ(X,t) in the motion χ 
2. The symmetric second Piola-Kirchhoff stress tensor S = S(X,t) which is smooth in x 
3. The free energy density Ψ = Ψ(X,t) 
4. The entropy density η = η(X,t) 
5. The absolute temperature θ 
6. The instantaneous potential energy U = U(X,t)  
7. The muscle activation q = q(X,t) 
 

Functions 1 - 5 have their usual definition [22].  The instantaneous potential energy U  
{ : 0U U∈ ≥R } is the energy that is available to increase the amount of actin/myosin overlap.  
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At the optimal length,  U  is zero since the overlap is maximized.  As the muscle is deformed 
away from the optimal length (tension or compression), U  increases.  As the muscle is unloaded 
from a previously loaded state, this energy is applied to increase the cross-bridging to the level 
corresponding to the magnitude of deformation (Figure 2).  As the muscle length approaches the 
optimal length, U  approaches zero.  Therefore, this quantity is the potential energy available to 
increase the amount of actin-myosin overlap.  The activation parameter q {q∈R: 0≤q≤1} is the 

amount of activation in the muscle (q = 1 for fully activated muscle and q = 0 for completely 
relaxed muscle).  The seven functions listed above are a dynamical process in R if they are 
compatible with the balance of linear momentum and the balance of energy field equations [22].   
In the absence of body forces, the balance of linear momentum is 
 
 Divρ =x FS  (1) 
 
where ρ is the material density with respect to the reference configuration, x  is the acceleration 
vector, Div is the divergence operator with respect to the reference configuration, and F is the 
deformation gradient tensor.  For the above-discussed assumptions, the free energy balance is 
defined as 
 

 1 :
2

U θηΨ = − −S C  (2) 

 
where C  is the right Cauchy-Green Deformation tensor and a double dot symbol denotes a 
scalar product of two tensors.  The Clasius-Duhem inequality states that the rate of entropy 
production is non-negative.  Using this principle and Equation (2), a functional form of the 
Clasius-Duhem inequality for an isothermal process is 
 

 ( )1 : 0
2

Uθη = − − Ψ ≥S C  (3) 

 
where a superimposed dot denotes a material derivative.  For the current study, it is assumed that 
the processes described herein are completely reversible, so that no entropy is created.  With this 
assumption, Equation (3) becomes 
 

 ( )1 :
2

UΨ = −S C  (4) 

 
which is the material derivative of Equation (2) for constant temperature and no entropy 
production. 
 
Constitutive Modeling 
 
Functions 1-7 represent fourteen scalar fields, which are interrelated by the five field equations, 
Equations (1), (2), and (4).  For a determinate system, nine constitutive equations are required.  
Consider the following response functions for a given χ  and q 
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( )
( )
( )
( )

ˆ ,
ˆ ,

,
ˆ ,

q

q
q f q

U U q

Ψ = Ψ

=
=

=

C

S S C
C

C

 (5) 

 
where f is a response function and the superimposed caret serves to distinguish response 
functions from their values.  The functional dependencies in Equation (5) are based on the 
Principle of Equipresence [23, 24], in which a variable present as an independent variable in one 
constitutive equation is present in all other constitutive equations, unless the contrary is deduced.  
In this case, there is no physiological reason for the dependence of U  on the activation level q .  
Even when the muscle is not activated, the potential to establish cross-links exists when it is 
deformed from the optimal length. Therefore, Equation (5)4 is restated as ( )ˆU U= C . 
 
The specific form of Ψ̂  is postulated to be 
 
 ( ) ( ) ( ) ( )ˆ , , ,p aq qφ φΨ = Ψ + ΨC C C C  (6) 
 
where Ψp and Ψa are the strain-energy densities associated with the passive and active responses, 
respectively, of skeletal muscle tissue, and the actin/myosin overlap parameter φ {φ∈R: 0<φ≤1} 

represents the amount of overlap of the actin and myosin fibers such that φ = 1 at the optimized 
length, and φ = 0 in the situation where no active force generation is possible due to the relative 
amounts of actin/myosin overlap.  The actin/myosin overlap parameter is dependent on the 
deformation of the muscle. The material derivative of Equation (5)1, with the help of Equations 
(4) and (6), is 
 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ), ,1, : :
2

p a a
a

q q
q U q

q
φ

φ φ
∂Ψ⎡ ⎤∂ ∂Ψ ∂Ψ

Ψ + = − − −⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

CC C C
C C S C C C

C C C
 (7) 

 
The first term on the left-hand side of Equation (7) is the change in magnitude of free energy due 
to the changes in the cross–bridging links during deformation.  This is apparent from the fact that 
this is the only term in Equation (7) that has a negative sign during loading from the optimized 
state, and a positive sign during loading to the optimized state.  It is assumed that the magnitude 
of this term is equal in magnitude, but opposite in sign, to U .  This assumption is motivated by 
the ability of the curve shown in Figure 2 to be applicable even under repeated loading and 
unloading of a muscle.  No loss of energy occurs in the closed system of the muscle, as indicated 
by Equation (4), which is based on the assumption of complete reversibility.  During a 
deformation of a muscle, the first two terms in Equation (7) will have opposite signs and equal 
magnitudes, no matter how the muscle is being deformed from the optimized state.  In effect, this 
assumption establishes the nature and behavior of the term U . Therefore, under this assumption, 
the left-hand side of Equation (7) is always zero 
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( ) ( ) ( ) ( ) ( ), ,10 :

2
p a aq q

q
q

φ φ
∂Ψ⎡ ⎤∂Ψ ∂Ψ

= − − −⎢ ⎥∂ ∂ ∂⎣ ⎦

C C C
S C C C

C C
 (8) 

 
Requiring Equation (8) to hold for an arbitraryC  and a constant q , 
 

 
( ) ( ) ( ),

2 p a q
+ φ

∂Ψ⎡ ⎤∂Ψ
= ⎢ ⎥∂ ∂⎣ ⎦

C C
S C

C C
 (9) 

 
Taking the following definitions, 
 

 
( ) ( ),

2 2p ap a q
φ

∂Ψ ∂Ψ
≡ ≡

∂ ∂

C C
S S

C C
 (10) 

 
Equation (9) becomes 
 
 p a= +S S S  (11) 
 
where Sp and Sa are the stress tensors associated with the passive and active responses, 
respectively.  The additive decomposition of stress into active and passive components has been 
previously discussed in the literature [3].   
 
Transversely Isotropic Material Symmetry 
 
Transverse isotropy is characterized by invariance of material properties with respect to arbitrary 
rotations about a preferred direction m1 (henceforth referred to as the fiber axis), and reflections 
from the planes orthogonal to or parallel to the fiber axis.  For the current study, the fiber axis is 
parallel to the orientation of the muscle fibers and myofibrils.  The corresponding symmetry 
group is defined by 
 
 { }Orth : T

i i= ∈ =Q QM Q MG  (12) 
 
where Orth represents the set of all orthogonal tensors and Mi (i = 1, 2, 3) are the structural 
tensors that describes the material symmetry.  For transverse isotropic symmetry, the structural 
tensors are [25] 
 

 ( )1 1 1 2 3 1 1
1
2

= ⊗ = = − ⊗M m m M M I m m  (13) 

 
where I is the identity tensor.  The condition of transverse isotropic material symmetry is 
enforced by expressing the strain energy function of Equation (6) in terms of linear combinations 
of scalar quantities q and φ and scalar invariants of C and Mi.  Such scalar invariants of C and 
Mi include [25, 26]  
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 2 1

3 4 1 1 2det : : :I J J L L −≡ = ≡ ≡ ≡C C M C M C M  (14) 
 
and 
 

 
3

1
i i

i
w

=

= ∑M M  (15) 

 
where J is the Jacobian (determinant of F) and wi are weighting factors that dictate the relative 
difference between properties parallel and orthogonal to the fiber axis and are restricted by 
w1+w2+w3 = 1, where w2 = w3 for transverse isotropy.  Therefore, for an orthogonal basis set e = 
{e1, e2, e3} in which e1 is aligned with m1, it can be easily shown from Equations (14) and (15) 
that 
 

 ( )

( ) ( )

3 1 2 3

4 11

1 1 11 2 22 33

2 2 2
2 1 22 33 23 2 11 33 11 22 13 122

1

ijk i j kI C C C

J C
L w C w C C

L w C C C w C C C C C C
J

=

=

= + +

⎡ ⎤= − + + − −⎣ ⎦

ε

 (16) 

 
where εijk is the usual permutation symbol.  Furthermore, Equation (6) is assumed to have the 
form 
 
 ( ) ( ) ( ) ( )3 1 2 4 4

ˆ , , , , ,p aq I L L J J qφ φΨ = Ψ + ΨC  (17) 
 
The specific forms of each term of Equation (17) are discussed below.  
 
Passive Response 
 
While the data available for completely characterizing the 3-dimensional material properties of 
skeletal muscle tissue are sparse, there are data that suggest that skeletal muscle may have a 
stiffer response of the muscle in the direction orthogonal to the fiber axis with respect to the 
direction along the fiber axis [8, 9]. This is contrary to the typical view of transversely isotropic 
materials, and conventional models of transversely isotropic, hyperelastic materials do not tend 
to accommodate this peculiarity. In light of this, the modeling of the passive response of skeletal 
muscle tissue requires a formulation that is capable of handling the case where the higher 
material stiffness can be in either the fiber axis or orthogonal to that direction.  From Equation 
(16) it can be seen that this difference in stiffnesses can be accommodated through the weighting 
factors wi.  Thus, it is assumed that the passive component of Equation (17) is  
 

 ( ) ( ) ( ) ( )1 3
3 1 2 1 2 3

1 1, , 1 1 1
4 2p

pI L L L L Iα βμ
α β

⎡ ⎤
Ψ = − + − + −⎢ ⎥

⎣ ⎦
 (18) 
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where μ, α, and β are material constants {μ,α,β∈R: μ ≥ 0, α  > 0, β  > 0} and p is an 

indeterminate Lagrange multiplier for enforcement of the incompressibility constraint J = 1.  
While the first two terms on the right-hand side of Equation (18) were established previously 
[25], the last term was derived using the typical procedure used for incompressible materials.  It 
is important to note that Equation (18) is polyconvex [27], as demonstrated elsewhere [25, 26].  
The polyconvexity condition guarantees the existence of at least one deformation that can be 
minimized in a standard energy-minimizing technique [26].  From Equation (10)1 the passive 
component of stress is 
 

 ( ) ( )1 1 11 2
1 22 3

p L L pL Lα βμ − − −∂ ∂⎡ ⎤= + +⎢ ⎥∂ ∂⎣ ⎦
S C

C C
 (19) 

 
Further, observing that 
 

 
( )

( )1 1 1

:

:− − −

∂
=

∂
∂

= −
∂

A B B
A

A B A BA
A

 (20) 

 
for arbitrary tensors A and B (A is invertible), Equation (19) becomes 
 

 ( ) ( )1 1 1 1 1
1 22 3

p pL Lα βμ − − − − −⎡ ⎤= − +⎣ ⎦S M C MC C  (21) 

 
Therefore, Equation (21) is the three-dimensional passive stress tensor for the skeletal muscle 
tissue as a function of material parameters, deformation, and fiber axis orientation.  
 
Active Response 
 
Upon activation, the cross-bridging mechanism in skeletal muscle creates a tensile stress along 
the fiber axis of the tissue.  The amount of tension that the cross-bridging can supply is 
dependent on the amount of overlap of the actin/myosin filaments.  The activated muscle tension 
is a stress that is superimposed upon the passive stress [3], as shown in Equation (11).  It is 
assumed that the active component of the strain-energy density Ψa(C,q) is 
 

 ( ) 4
1,
2a q qJγΨ =C  (22) 

 
where γ is a material parameter {γ∈R: γ ≥ 0}.  The form of Equation (22) is inspired from the 

expected active response of skeletal muscle tissue [28].  From Equation (10)2 the active 
component of the stress is 
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 4a Jqγ φ ∂
=

∂
S

C
 (23) 

 
and because 
 

 4
1

J∂
=

∂
M

C
 (24) 

 
Equation (23) is 
 
 1

a qγ φ=S M  (25) 
 
Given that the active response of muscle tissue varies with length as shown in Figure 2, the time-
independent evolution of loss in cross-bridging may be captured with  
 

 
( )

( )

20
4 4

20
4

exp
J J

J
φ

⎡ ⎤−
⎢ ⎥= −
⎢ ⎥
⎣ ⎦

 (26) 

 
where 0

4J  is the value of J4 for the optimized cross-bridging condition.  Therefore, when J4 = 0
4J , 

the active component of the stress has a maximum value for a given value of q.   
 
Combined Response 
 
From Equations (17), (18), and (22), the total strain-energy density of skeletal muscle tissue is 
 

 ( ) ( ) ( ) ( )1 3
1 2 3 4

1 1ˆ , , 1 1 1
4 2 2

pq L L I q Jα βμ γφ φ
α β

⎡ ⎤
Ψ = − + − + − +⎢ ⎥

⎣ ⎦
C  (27) 

 
From Equations (21) and (25), the constitutive equation for the stress tensor is 
 

 ( ) ( )1 1 1 1 1
1 2 12 3

pL L qα βμ γ φ− − − − −⎡ ⎤= − + +⎣ ⎦S M C MC C M  (28) 

 
In the reference configuration, it is assumed that the muscle tissue is undeformed (C = I), 
unactivated (q = 0), and optimum cross-bridging exists (φ = 1).  Under these conditions, the 
stress from Equation (28) is 
 
 

, 0, 1q φ= = =
=

C I
S 0  (29) 

 
Therefore, Equation (28) appropriately predicts no residual stresses in the muscle tissue in the 
reference configuration. 
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Model Evaluation 
 
A first evaluation of the current model was characterized through comparisons with the model 
presented in Jenkyn et al. [9] For evaluation of the passive response formulation, the total strain 
energy density has been determined for both models for three sets of isochoric deformations: a 
longitudinal extension, a transverse extension, and a longitudinal shear deformation. An 
additional comparison is made considering the active response functions. Lastly, the responses of 
a combined active and passive perturbation will be examined. For convenience, the following 
sections describe the passive and active functions from Jenkyn et al. as well as the corresponding 
specific applications of the current model.  
 
Passive Response 
 
Recall from Equation (21) that the passive mechanical response of skeletal muscle is dependent 
on four material parameters: μ, α, β, and w1.  The values of these parameters are established by 
comparing Equation (18) to the two-dimensional passive strain-energy density function 
developed by. Jenkyn et. al. [9]   The passive strain energy for a two-dimensional model of 
skeletal muscle from the Jenkyn model is  
 
 ( ) ( ) ( ) ( )1 11 2 22 12 12

ˆ J J J JE E EΨ = Ψ + Ψ + ΨE  (30) 
 
where E is the Green strain tensor (henceforth referred to as the strain tensor), ( )( )1 2= −E C I ; 

the fiber axis is parallel to the e1 basis vector ; and 1
JΨ , 2

JΨ , and 12
JΨ  are given by 

 

 

( ) ( )

( ) ( )

( ) ( )

1 11 1 11 1 11
1

2 22 2 22 2 22
2

12 12 12 12 12 12
12

exp 1

exp 1

exp 1

J

J

J

kE a E a E
a
kE a E a E
a

kE a E a E
a

Ψ = − −⎡ ⎤⎣ ⎦

Ψ = − −⎡ ⎤⎣ ⎦

⎡ ⎤Ψ = − −⎣ ⎦

 (31) 

 
for which k = 50,000 N/m2, a1 = 6, a2 = 8, and a12 = 6.  To make Equation (31) physically 
meaningful, it has been modified from what was reported by Jenkyn et. al. by adding the term -1 
in the brackets such that ˆ JΨ = 0 when all strain components are zero-valued, thus satisfying the 
usual normalization condition for strain-energy functions.  Equation (31)3 has been further 
modified by adding the absolute value operator to the shear strain component E12, thus providing 
an independence of  ˆ JΨ  on the sign of the shear strain E12.  Additionally, for the purpose of 
direct comparison with the proposed three-dimensional constitutive formulation, Equation (30) 
was modified for three dimensions by adding a strain-energy density term ( )3 33

J EΨ  which 
describes the response of the material to the strain component E33.  The functional form of this 
added term is  
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 ( ) ( )3 33 2 33 2 33
2

exp 1J kE a E a E
a

Ψ = − −⎡ ⎤⎣ ⎦  (32) 

 
This function was chosen so that the response of the material to strain component E33 was the 
same as the material response to strain component E22, because of the transverse isotropy.  
Strain-energy density terms can be added to Equation (30) corresponding to E13 and E23 that are 
similar in form to Equation (31)3, however, these terms have not been added here as they are not 
necessary for the particular set of applied deformations that are discussed below as E13 and E23 
are zero-valued. 
 
Longitudinal Extension 
 
The motion equations x = χ(X) for a longitudinal extension deformation are  
 
 1 1 1 2 1 2 3 1 31 1x X x X x Xλ λ λ= = =  (33) 
 
where λ1 {λ1∈R: λ1>0} represents the magnitude of the applied longitudinal extension 

deformation.  This deformation mode is therefore a uniaxial extension parallel to the fiber axis.  
The corresponding deformation gradient tensor components with respect to the basis set e 
(described above) is 
 

 [ ] [ ]
1

1

1

0 0

0 1 0

0 0 1

λ

χ λ

λ

⎡ ⎤
⎢ ⎥

= ∇ = ⎢ ⎥
⎢ ⎥
⎣ ⎦

F  (34) 

 
where it is easily observed that J = 1 for all λ1.  The deformation and strain tensor components 
are, respectively, 
 

 [ ] [ ] [ ] [ ] ( )
( )

2 2
1 1

1 1

1 1

0 0 1 0 0
10 1 0 0 1 1 0
2

0 0 1 0 0 1 1

T
λ λ

λ λ
λ λ

⎡ ⎤ ⎡ ⎤−
⎢ ⎥ ⎢ ⎥= = = −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

C F F E  (35) 

 
It follows from Equation (16) that 
 

 
( )

( )

1 2
1 1 1 2 1

21
2 1 1 2 1

2

2

L w w

L w w

λ λ

λ λ

= +

= +
 (36) 

 
where the superscripted (1) denotes the deformation associated with λ1.  For the case in which 
q=0, Equation (27) becomes 
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 ( ) ( ) ( )22
1 1 2 1 1 1 2 1

1 1ˆ , , 2 1 2 1
4

q w w w w
βαμζ λ λ λ λ

α β
⎧ ⎫⎡ ⎤⎡ ⎤Ψ = + − + + −⎨ ⎬⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎩ ⎭

C  (37) 

 
Transverse Extension 
 
The motion equations x = χ(X) for a transverse extension deformation are  
 
 ( )2

1 2 1 2 2 2 3 2 31x X x X x Xλ λ λ= = =  (38) 
 
where λ2 {λ2∈R: λ2>0} represents the magnitude of the applied transverse extension 

deformation.  The corresponding deformation gradient tensor components with respect to the 
basis set e are 
 

 [ ]
2

2

2

2

1 0 0
0 0
0 0

λ
λ

λ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

F  (39) 

 
where J = 1 for all λ2.  The deformation and strain tensor components are 
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It follows from Equation (16) that 
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where the superscripted (2) denotes the deformation associated with λ2.  For the case in which 
q=0, Equation (27) becomes 
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α β
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C  (42) 

 
 
Longitudinal Shear 
 
The motion equations x = χ(X) for a longitudinal shear deformation are  
 



 16

 1 1 3 2 2 2 3 3x X X x X x Xλ= + = =  (43) 
 
where λ3 {λ3∈R: λ3>0} represents the magnitude of the applied longitudinal shear deformation.  

This deformation corresponds to shearing in a plane parallel to the fiber axis.  The corresponding 
deformation gradient tensor components with respect to the basis set e are 
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where J = 1 for all λ3.  The deformation and strain tensor components are 
 

 [ ] [ ]
3 3

2 2
3 3 3 3

1 0 0 0
11 0 0
2

0 0 1 0 0 0

λ λ
λ λ λ λ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= + =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

C E  (45) 

 
It follows from Equation (16) that 
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where the superscripted (3) denotes the deformation associated with λ3.  For the case in which 
q=0, Equation (27) becomes 
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Active Response  
 
Recall that the active mechanical response of skeletal muscle is dependent on two material 
parameters: γ and 0

4J .  The values of the parameters have been established by comparing 
Equation (25) to the active stress given by the Jenkyn model [9] which was originally established 
by Hill [2], given by 
 
 ( ) ( )11

a
J q SF M E=S  (48) 

 
where SF = 225,000 N/m2 [29, 30]  and 
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In Equation (49), b1 = 10 and b2 = -6.  An iterative least squares analysis was used to minimize 
the error between the current model and the Jenkyn model for a range of E11 values of  (-0.3 ≤ 
E11 ≤ 1.3) under conditions of full muscle activation (q = 1) for the longitudinal extension 
(section 8.1).  This range was chosen based on the longitudinal extension range used in the 
previous sections. 
 
Combined Passive/Active Response 
 
To demonstrate the predicted skeletal muscle response with both active and passive components 
of stress, a longitudinal extension was applied to the model with q = 1.  From Equations (15), 
(28), (33), (35), and (36) the S11 component of stress is 
 

 ( ) ( ) 11 22 4
11 1 1 1 2 1 1 1 1 1 2 12 2

2
S w w w w w w q

βαμ λ λ λ λ λ γ φ
−− −⎡ ⎤= + − + +⎢ ⎥⎣ ⎦

 (50) 

 
For the Jenkyn model, the same component of stress is [9]  
 

 ( ) ( ) ( )11 1 1 11 1 11
1

expJ kS a a E a q SF M E
a

= − +⎡ ⎤⎣ ⎦  (51) 

 
Results 
 
Passive Response 
The parameters μ, α, β, and w1 were determined by directly comparing strain-energy densities 
from the current model and the model of Jenkyn et. al. [9] .  For all three sets of deformations 
described above, an iterative least-squares procedure was used to minimize the error between the 
two models for ranges of deformations of 0.632≤λ1≤1.897, 0.632≤ λ2≤1.897, and 
0.632≤ λ3≤1.897 corresponding to the applied strains of -0.3≤E11≤1.3, -0.3≤E22=E33≤1.3, and -
0.3≤E12≤0.3, respectively, with the unidentified strain components determined using Equations 
(35)2, (40)2, and (45)2, respectively.  The range of deformations for the longitudinal extension 
case was based on experimental data for tension [28] and the kinematics constraints for 
incompressible materials in compression.  The range of deformation of the transverse extension 
case was chosen to match the strain for the longitudinal extension case.  Lacking empirical data 
the range of strain for the longitudinal shear case was chosen based on the expected longitudinal 
shear strains in skeletal muscle tissue.  The comparisons of strain-energy densities for each of the 
three deformations over corresponding ranges of deformations are shown in Figures 3 – 5.  The 
resulting values from the least-squares analysis of the material parameters are 
 
 1300 kPa 11.1 5.3 0.5wμ α β= = = =  (52) 
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Figure 3.  Strain-energy density for passive longitudinal extension deformation 
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Figure 4.  Strain-energy density for passive transverse extension deformation 
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Figure 5.  Strain-energy density for passive longitudinal shear deformation 
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 Figure 6.  Active stress versus strain diagram for fully activated skeletal muscle 
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It is important to note that longitudinal-shear loading condition consists of a shear-dominated 
combined loading in order to maintain the incompressible kinematic constraint for large 
deformations.  It is also important to note that the Lagrange multiplier p  cannot be evaluated 
from the above-described loading conditions, since they are isochoric deformations.  The 
Lagrange multiplier is necessary when using the proposed constitutive model under more 
complex loading conditions, as is often performed in finite element modeling.  The value of this 
parameter does not necessarily reflect the material response, and is thus not a unique material 
parameter.  In fact, standard routines are used to adjust this parameter in finite element analyses 
to enforce incompressibility [31].  Because the current study is only concerned with simple 
isochoric deformations of a volume of muscle for the purposes of constitutive modeling 
development, a full structural analysis of muscle tissue under complex loadings has not been 
performed.  Therefore, it is out of the scope of this paper to analyze the behavior of the Lagrange 
multiplier for a full muscle subjected to loads. 
 
Active Response 
 
The resulting values of the parameters are 
 

 0
4

232 kPa
0.91J

γ =

=
 (53) 

 
A comparison of the active stress component 11

aS  for the two models using these parameters is 
shown in Figure 6.   
 
Combined Passive/Active Response 
 
A comparison of the total stress response for the two models is shown in Figure 7 for the range 
of longitudinal strains of -0.3 ≤ E11 ≤ 1.3.  This range was chosen for consistency with the strains 
used in the previous sections.  The inset of Figure 7 is the small-strain region of the plot.  The 
nonlinearity of the data in the small-strain region resembles the expected combined response 
sketched in Figure 2.  An inflection point exists at E11 ≈ 0.1 where the active tension is 
decreasing and the passive tension is increasing with increasing E11. 
 
Discussion 
 
The passive response predicted by the proposed model (Figs. 3 – 5) shows excellent agreement 
with the response predicted by the Jenkyn model for the three passive deformations.  Similarly, 
the active response also shows excellent agreement between the two models, as demonstrated in 
Figure 6.  Likewise, as one might expect from these results, the combined passive and active 
stresses for the longitudinal extension show excellent agreement (Fig. 7).  The lack of a single 
comprehensive set of empirical data for the described deformation modes (active longitudinal, 
passive longitudinal, passive transverse, and passive shear deformations) makes it difficult to 
assess the accuracy of the predicted behavior of the two models.  Qualitatively, the predicted 
behavior for the individual deformation modes exhibits the expected trends.  In that the other 
existent model do not characterize muscle in either transverse elongation or longitudinal shear, 
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the Jenkyn model appears to be the most comprehensive model for skeletal muscle tissue 
currently available in the literature in that it incorporates all of the deformation modes listed 
above, albeit in two dimensions.  Therefore, in the absence of an experimental validation, the 
results from this first evaluation indicate that the predicted behavior from the proposed model 
agrees with the expected behavior and with the most comprehensive model currently available 
for skeletal muscle tissue. 
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Figure 7.  Total stress versus strain diagram for fully activated skeletal muscle.  The inset is the 

small-strain region.  The nonlinearity of the data in the small-strain region is consistent 
with the expected physiological response (see Figure 2).  An inflection point exists at 
E11~0.1 where the active tension is decreasing and the passive tension is increasing.  

 
 
It is also important to note that the proposed model has been characterized for specific ranges of 
deformation in the current study.  These ranges were chosen based on the entire ranges of 
deformations that are physiologically realizable for in vivo skeletal muscle.  Alternatively, the 
model can be characterized for different sub-sets of these strain ranges, based on the regions of 
interest for specific muscles, further improving the model’s accuracy.   
 
The proposed model has achieved three important goals.  First, the model has been developed to 
describe the incompressible response of skeletal muscle tissue under any three-dimensional, 
isochoric deformation.  This is evident in viewing Equations (27) and (28), which are formulated 
using three-dimensional stress and deformation tensors.  Expanding the formulation to three-
dimensions is a necessary step for modeling muscles with complex geometries and is a distinct 
improvement over previous two-dimensional models [8, 9].   
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Second, the proposed model is formulated in terms of both the strain energy and stress tensor for 
both passive and active responses, as shown in Equations (27) and (28).  Previous models for 
skeletal muscle tissue have explicitly modeled the active response in terms of stress only [8-14], 
leaving the strain-energy density function defined as partial derivative with respect to strain. This 
makes the formulation dependent upon the deformation of the tissue and would necessitate 
recalculation of the strain-energy density for each deformation in a proposed analysis.  The 
approach taken with the current model allows the strain-energy density and stress tensor 
components to be easily and directly evaluated throughout skeletal muscle tissue during any 
deformation, without integration of the stress function. For this reason, it is anticipated that use 
of such a formulation will easily lend itself to computational simulation of skeletal muscles in 
vivo, given the complex anatomical paths and interactions with surrounding tissues (e.g., contact 
with bone and other muscles).  
 
Third, this approach, in particular the use of the dynamical formulation approach, is particularly 
useful for incorporating the effects of muscle fatigue and damage [32, 33] on the mechanical 
response of muscle.  Because the current study focuses on the development of the constitutive 
modeling framework, the influence of factors such as fatigue and muscle damage were not 
addressed herein. This modeling approach was specifically designed to be able to allow for the 
future incorporation of these processes that occur in biological tissue. A dynamical approach, 
with an explicit strain-energy density function and open framework will allow for modifying 
terms to be added. While the effects of damage and heat transfer in constitutive models have not 
previously been examined in this manner in muscle, examples illustrating the modeling of these 
pheonomena in other materials are available [34-38]. With this type of approach, the influence of 
outside factors can be easily incorporated into constitutive equations by modifying the strain 
energy expressions, which are scalar.  Otherwise, the influence of outside factors must be 
incorporated into the stress-strain relationships via tensoral functions.  Modeling the influence of 
outside influences with scalar functions is more efficient than with tensoral functions, usually 
will little loss of generality. 
 
Finally, it bears mentioning that any developed constitutive model cannot be fully evaluated until 
it is compared against experimental data. As mentioned previously, there is a dearth of 
experimentation of muscle material properties in transverse elongation and shear. Experiments 
(i.e., load-elongation tests of longitudinal and transverse extension, and longitudinal shear) are 
currently being performed to generate a comprehensive set of tensile material properties from 
which material parameters for the current model may be determined. 
 
Summary 
 
A model for predicting the mechanical response of skeletal muscle tissue under both active and 
passive conditions has been proposed.  The model has be developed to describe the mechanical 
behavior for any isochoric, three-dimensional deformation by predicting the passive and active 
stresses and strain-energy densities for any point in the motion of the muscle.   
 
The proposed model has been characterized through comparison with a previously-published 
model for skeletal muscle tissue [9] for the following deformations: passive extension along the 
fiber axis, passive extension transverse to the fiber axis, passive shear, active extension along the 
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fiber axis, and combined passive and active extension along the fiber axis.  While the resulting 
material parameters are based on a large range of possible deformations, the model can also be 
characterized for limited deformation ranges with improved accuracy pending the availability of 
suitable empirical data.  A comparison of the characterized proposed model and the Jenkyn 
model indicates a general agreement in predicted response to the above-mentioned deformations. 
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