PH3110 Fall 2008 Ulrich H.E. Hansmann

Office hours: Fisher 110, Mon., Wed. 4:00 - 5:00 p.m.

Book: “Analytical Mechanics”

7th Edition, Fowles and Cassiday

Course Grade
The course grade will be based on your scores from homework (30%), midterm exam (30 %), and final exam (40%).

Mid-Term Exam: Do. Oct. 9, 2008, 6-7 pm
Final Exam: Mo. Dec. 15, 2008, 3-5 pm

The place of the exams (and any changes in the times) will be announced later. For each of the components of the final grade you will be given a numerical grade in the form of the percentage point. The letter grades will be based on the following scheme:

\[
\begin{align*}
A & \geq 88 \\
AB & = 86 - 87 \\
B & = 76 - 85 \\
BC & = 74 - 75 \\
C & = 65 - 73 \\
CD & = 63 - 64 \\
D & = 55 - 62 \\
F & = 0 - 54
\end{align*}
\]

An unexcused absence from the exam, or a homework not turned in timely, will be graded zero. The exam will be closed books.

Homework and Classroom Performance:
It is expected that you read the appropriate chapter sections before lectures. A more thorough reading should be done afterwards. You are responsible for the content of the reading assignments as well as what is covered in lecture. Attendance of the lectures is expected. Use of cellular phones is not allowed during class. You may be asked to come to the blackboard and solve problems. Homework will be handed about 10-12 times, and typically will be due the following Monday.

0MTU complies with all federal and state laws and regulations regarding discrimination, including the Americans with Disabilities Act of 1990 (ADA). If you have a disability and need a reasonable accommodation for equal access to education or services at MTU, please call the Associate Dean of Students, at 487-2212. For other concerns about discrimination, you may contact your advisor, department head/chair, or the Affirmative Action Office.
Lecture schedule
Below you will an outline for the course. It is strongly advised to read the appropriate sections from the textbook before the scheduled lecture.

- **Week 1-3**: Fundamental Concepts
- **Week 3-5**: Rectilinear Motion of a Particle
- **Week 6-7**: Oscillations
- **Week 8-9**: General Motion of a Particle
- **Week 10**: Noninertial Reference Systems
- **Week 11-12**: Gravitational and Central Forces
- **Week 13-14**: Introduction into Special Relativity