
Remarks.

(A) Closed and bounded centrally symmetric sets S in En can also be characterized
by the property that for each n-dimensional simplex T with vertices in S there
is a translate of −T also having its vertices in S. This, of course, is a conse-
quence of Theorem 1, since the three-point sets belonging to S are subsets of
the (n + 1)-point sets with vertices in S.

(B) Theorem 1 does not generalize to closed sets without some other condition
imposed on them. By way of example, consider the closed half-plane S =
{(x, y) : y ≥ 0} in E2. Note that for each three-point subset T of S, there ex-
ists a translate of −T that is a subset of S, yet S is not centrally symmetric. A
closed half-space provides a similar example in En when n > 2.

(C) The theorem also fails to generalize to bounded sets without further restric-
tions. To see this, let

S = {
(x, y) ∈ E2 : x2 + y2 < 1

} ∪ {
(1, 0)

}
.

Then S is not centrally symmetric, yet S satisfies the three-point property. To
check this, suppose first T = {x1, x2, x3} ⊂ S with xi �= (1, 0) for i = 1, 2, 3.
Then −T itself is a subset of S. On the other hand if, say, x1 = (1, 0), with
x2 and x3 contained in the open disk {(x, y) : x2 + y2 < 1}, then we have
−T = {−x1, −x2, −x3}, where −x2 and −x3 are contained in the open disk
and −x1 = (−1, 0). If we take p = (ε, 0), with ε > 0 and ε sufficiently small,
then p + (−T ) is a subset of the open disk and a fortiori a subset of S. An open
ball with a boundary point adjoined provides a suitable counterexample in En

with n > 2.
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L’Hospital Rules for Monotonicity and the
Wilker-Anglesio Inequality

Iosif Pinelis

1. L’HOSPITAL RULES FOR MONOTONICITY. Let −∞ ≤ a < b ≤ ∞, let f
and g be continuously differentiable functions defined on the interval (a, b), and let
r = f/g. Suppose one wants to prove the inequality f > g. Then it would suffice to
show, for example, that g > 0, r is increasing, and r(a+) = limx→a+ r(x) = 1.

In [11], general “rules” for monotonicity patterns, resembling the usual l’Hospital
rules for limits, were given. In particular, according to Proposition 1.9 in [11], one
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has the following dependence of the monotonicity pattern of r (on (a, b)) on that of
ρ := f ′/g′ (and also on the sign of gg′, assuming that gg′ does not vanish anywhere
on (a, b)):

Table 1.

ρ gg′ r

↗ > 0 ↗ or ↘ or ↘↗
↘ > 0 ↗ or ↘ or ↗↘
↗ < 0 ↗ or ↘ or ↗↘
↘ < 0 ↗ or ↘ or ↘↗

Here, for instance, r ↘↗ means that there is some c in (a, b) such that r is de-
creasing (↘) on (a, c) and increasing (↗) on (c, b). Now suppose that one also knows
whether r is increasing or decreasing in a right neighborhood of a and in a left neigh-
borhood of b. Then Table 1 uniquely determines the monotonicity pattern of r .

Clearly, these l’Hospital-type rules for monotonicity patterns are helpful wherever
the l’Hospital rules for limits are. Moreover, the monotonicity rules apply even outside
such contexts, because they do not require that both f and g (or either of them) tend
to 0 or ∞ at any point. In the special case when both f and g vanish at an endpoint
of the interval (a, b), l’Hospital-type rules for monotonicity can be found, in different
forms and with different proofs, in [1]–[7] and [9]–[13]. In view of what has been
said here, it should not be surprising that a very wide variety of applications of these
l’Hospital-type rules for monotonicity patterns were given in these papers.

Given Table 1, one can generally infer the monotonicity pattern of r given that of
ρ, however complicated the latter might be. This is illustrated in Table 2.

Table 2.

ρ gg′ r

↗↘ > 0 ↗ or ↘ or ↗↘ or ↘↗ or ↘↗↘
↘↗ > 0 ↗ or ↘ or ↗↘ or ↘↗ or ↗↘↗
↗↘ < 0 ↗ or ↘ or ↗↘ or ↘↗ or ↗↘↗
↘↗ < 0 ↗ or ↘ or ↗↘ or ↘↗ or ↘↗↘

2. THE WILKER-ANGLESIO INEQUALITY. This inequality provides another
good opportunity to illustrate the foregoing “rules.” Let

A(x) =
(

sin x

x

)2

+ tan x

x
− 2

and B(x) = x3 tan x . In [15], Wilker asked to (a) prove that A > 0 on (0, π/2) and (b)
find the largest constant C such that A > CB on (0, π/2). In [14], Anglesio showed
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that the ratio A/B is decreasing on (0, π/2), so

C = lim
x→(π/2)−

A(x)

B(x)
= 16

π4
.

In particular, this implies Wilker’s inequality (a).
Anglesio’s proof is elementary but nontrivial. In fact, of all this MONTHLY’s readers

at the time, only Anglesio and the Lamar University Problem Solving Group were able
to solve part (b) of Wilker’s problem. A shorter proof of Anglesio’s result was given
just recently in [8]; however, the latter proof uses certain properties of the Bernoulli
numbers, which apparently cannot be established without complex analysis. Here we
show that Anglesio’s result can be proved in an almost algorithmic manner, based on
the foregoing l’Hospital-type rules for monotonicity.

Let us consider the inverse ratio B(x)/A(x), in which we make the substitution x =
arccot c. This is done because the derivative of the arccotangent is a rational function.
Essentially, this substitution is the only ingredient in our proof that could count as any
sort of “idea.” Once this is done, the rest of the proof is rather algorithmic. Thus, the
monotonicity of A/B is seen to be equivalent to the assertion that the ratio r := f/g
is decreasing on (0, ∞), where f and g are given by

f (c) = arccot5 c, g(c) = c

1 + c2
+ arccot c − 2c arccot2 c.

Let f0 = f . For any natural number n, define fn recursively on (0, ∞) by fn(c) =
f ′
n−1(c) if n is odd and fn(c) = f ′

n−1(c)(1 + c2)2 if n is even. Functions gn are defined
in the analogous manner, with g0 = g. We then let rn = fn/gn and ρn = rn+1. Note
that ρn = f ′

n/g′
n for n = 0, 1, 2 . . . .

Calculations (best done with Mathematica or similar software) show that

g3(c) = − 16

(1 + c2)2
, g4(c) = 64c

1 + c2
,

g2m(c) = (−1)m−1 23m−2c(c2 − 3)

1 + c2
,

g2m+1(c) = (−1)m−1 23m−2(c4 + 6c2 − 3)

(1 + c2)2

for m = 3, 4, . . . . Hence, for each n ≥ 3, the function gn does not change sign on any
of the intervals

(
0,

√
2
√

3 − 3

)
,

(√
2
√

3 − 3, 1

)
,

(
1,

√
3
)

,
(√

3, ∞
)

. (1)

Moreover, for n = 0, 1, or 2, it is the case that (−1)ngn > 0 on the entire interval
(0, ∞), which follows because g3 < 0 and gn(c) → 0 as c → ∞ for n = 0, 1, or 2.

Next,

r10(c) = 15(1 + c2)

32(c2 − 3)
,

so r10 is decreasing on each of the intervals in (1). This puts us in a position to go back
from r10 to r0(= r) on each of these intervals.
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First consider (a, b) = (0,
√

2
√

3 − 3 ). Then, using Tables 1 and 2, one succes-
sively obtains the monotonicity patterns of r9, . . . , r0 = r on (a, b):

n ρn gn g′
n rn in a r.n. of a rn in a l.n. of b rn (on (a, b))

9 ↘ < 0 ↘ ↘
8, 7, 6, 5 ↘ ↘ ↘ ↘

4 ↘ ↗ ↘ ↗↘
3, 2 ↗↘ ↗ ↘ ↗↘
1 ↗↘ < 0 ↘ ↘ ↘
0 ↘ ↘ ↘ ↘

Here, the conclusions regarding the pattern of rn on (a, b) do not depend on the content
of the five empty cells in this table. The local monotonicity patterns of rn in a right
neighborhood of a and in a left neighborhood of b are determined according to the
signs of the nonzero limits r ′

n(a+) and r ′
n(b−). The only exception is the zero value of

r ′
1(a+); however, r ′′

1 (a+) < 0.

On each of the intervals (
√

2
√

3 − 3, 1) and (1,
√

3 ) the matter is much simpler.
Namely, letting (a, b) signify either of these two intervals, one obtains successively
for n = 9, . . . , 0 that ρn is decreasing on (a, b) and rn is decreasing in a right neigh-
borhood of a and in a left neighborhood of b, whence rn is decreasing on (a, b). (Here,
r ′

n(a+) and r ′
n(b−) are negative for all n = 9, . . . , 0.)

It remains to consider the interval (a, b) = (
√

3, ∞). For this interval one obtains
the following table:

n ρn gng′
n rn in a r.n. of a rn in a l.n. of b rn (on (a, b))

9 ↘ ↘ ↗ ↘↗
8 ↘↗ > 0 ↘ ↘ ↘
7 ↘ ↘ ↗ ↘↗
6 ↘↗ > 0 ↘ ↘ ↘

5, . . . , 0 ↘ ↘ ↘ ↘

(Here, r ′
n(a+) is nonzero for all n = 9, . . . , 0, while limc→∞ c3r ′

n(c) is positive for
n = 7 or 9 and negative for n in {0, . . . , 6, 8}.) Thus, r is decreasing on the entire
interval (0, ∞) from r(0+) = π4/16 = 6.08 . . . to r(∞−) = 45/8 = 5.62 . . . .

3. CONCLUSION. The proofs in [8] and [14] require a good deal of ingenuity that
cleverly exploits specific features of the problem. In contrast, the argument just pre-
sented is straightforward and rather mechanical.

This is exactly the point that we wish to make in this paper. Now a wide class of
inequalities become almost trivial in that ad hoc creativity is no longer needed for
many such problems. But then is there any excitement left? Yes, what is exciting now
is to have such general rules for monotonicity!
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Infinitely Many Insolvable
Diophantine Equations

Noriaki Kimura and Kenneth S. Williams

Let f (x1, . . . , xn) be a quadratic form in n variables x1, . . . , xn with integral coeffi-
cients, let p be a prime, and let k be a positive integer. The congruence f (x1, . . . , xn) ≡
0 (mod pk) is said to be solvable nontrivially if there exist integers x1, . . . , xn such that
f (x1, . . . , xn) ≡ 0 (mod pk) with at least one of x1, . . . , xn not divisible by p. Thus the
congruence x2

1 + x2
2 ≡ 0 (mod 3k) is solvable (with x1 = x2 = 0) but is not solvable

nontrivially as any solution x1, x2 satisfies x1 ≡ x2 ≡ 0 (mod 3). Let m be a positive
integer larger than 1. The congruence f (x1, . . . , xn) ≡ 0 (mod m) is said to be solv-
able nontrivially if f (x1, . . . , xn) ≡ 0 (mod pk) is solvable nontrivially for each prime
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