On the Bennett-Hoeffding inequality

Iosif Pinelis 1,2,3

1Department of Mathematical Sciences
Michigan Technological University

2Supported by NSF grant DMS-0805946

October 14, 2009
1. Introduction

2. Main results

3. Sketch of proof

4. Computation of bounds

5. Comparison of bounds
X_1, \ldots, X_n: indep. r.v.'s s.t.
$X_i \leq y$ a.s. for some $y > 0$;
$\mathbb{E}X_i \leq 0$;
$\sum_i \mathbb{E}X_i^2 \leq \sigma^2$.

$S := X_1 + \cdots + X_n$.
X_1, \ldots, X_n: indep. r.v.’s s.t. $X_i \leq y$ a.s. for some $y > 0$; $E X_i \leq 0$; $\sum_i E X_i^2 \leq \sigma^2$. $S := X_1 + \cdots + X_n$.
Classes of (generalized moment) functions $f : \mathbb{R} \to \mathbb{R}$

\[
f \in \mathcal{E} \iff \exists \lambda > 0 \ \forall u \in \mathbb{R} \ f(u) = e^{\lambda u};
\]

\[
f \in \mathcal{H}_+^\alpha \iff \exists \mu \geq 0 \ \forall u \in \mathbb{R} \ f(u) = \int_{-\infty}^{\infty} (u - t)^\alpha \mu(dt).
\]

\[
0 < \beta < \alpha \implies \mathcal{H}_+^\alpha \subseteq \mathcal{H}_+^\beta.
\]

For $\alpha = 1, 2, \ldots$:

- $f \in \mathcal{H}_+^\alpha$ iff $f^{(\alpha - 1)}$ is convex and $f^{(j)}(-\infty) = 0$ for $j = 0, \ldots, \alpha - 1$.

- \[
\bigcap_{\alpha > 0} \mathcal{H}_+^\alpha = \{ f : f(x) = \int_{(0,\infty)} e^{tx} \mu(dt) \ \forall x \in \mathbb{R} \}.
\]
Classes of (generalized moment) functions \(f : \mathbb{R} \to \mathbb{R} \)

\[
f \in \mathcal{E} \iff \exists \lambda > 0 \ \forall u \in \mathbb{R} \quad f(u) = e^{\lambda u};
\]

\[
f \in \mathcal{H}_+^\alpha \iff \exists \mu \geq 0 \ \forall u \in \mathbb{R} \quad f(u) = \int_{-\infty}^{\infty} (u - t)^\alpha_+ \mu(dt).
\]

\[0 < \beta < \alpha \implies \mathcal{H}_+^\alpha \subseteq \mathcal{H}_+^\beta.
\]

For \(\alpha = 1, 2, \ldots \): \(f \in \mathcal{H}_+^\alpha \) iff \(f^{(\alpha-1)} \) is convex and \(f^{(j)}(-\infty) = 0 \) for \(j = 0, \ldots, \alpha - 1 \).

\[
\bigcap_{\alpha > 0} \mathcal{H}_+^\alpha = \{ f : f(x) = \int_{(0, \infty)} e^{tx} \mu(dt) \ \forall x \in \mathbb{R} \}.
\]
Classes of (generalized moment) functions $f : \mathbb{R} \rightarrow \mathbb{R}$

$\mathcal{E} \overset{\text{def}}{=} \{ f : \mathbb{R} \rightarrow \mathbb{R} \mid \exists \lambda > 0 \ \forall u \in \mathbb{R} \ f(u) = e^{\lambda u} \}$;

$\mathcal{H}_+^\alpha \overset{\text{def}}{=} \{ f : \mathbb{R} \rightarrow \mathbb{R} \mid \exists \mu \geq 0 \ \forall u \in \mathbb{R} \ f(u) = \int_{-\infty}^{\infty} (u - t)^{\alpha} \mu(dt) \}$.

$0 < \beta < \alpha \implies \mathcal{H}_+^\alpha \subseteq \mathcal{H}_+^\beta$.

For $\alpha = 1, 2, \ldots$: $f \in \mathcal{H}_+^\alpha$ iff $f^{(\alpha-1)}$ is convex and $f^{(j)}(-\infty) = 0$ for $j = 0, \ldots, \alpha - 1$.

$\bigcap_{\alpha > 0} \mathcal{H}_+^\alpha = \{ f : f(x) = \int_{(0,\infty)} e^{tx} \mu(dt) \ \forall x \in \mathbb{R} \}$.
Classes of (generalized moment) functions $f : \mathbb{R} \rightarrow \mathbb{R}$

$$f \in \mathcal{E} \iff \exists \lambda > 0 \ \forall u \in \mathbb{R} \ f(u) = e^{\lambda u};$$

$$f \in \mathcal{H}_+^\alpha \iff \exists \mu \geq 0 \ \forall u \in \mathbb{R} \ f(u) = \int_{-\infty}^{\infty} (u - t)^{\alpha} \mu(dt).$$

$$0 < \beta < \alpha \implies \mathcal{H}_+^\alpha \subseteq \mathcal{H}_+^\beta.$$

For $\alpha = 1, 2, \ldots$: $f \in \mathcal{H}_+^\alpha$ iff $f^{(\alpha-1)}$ is convex and $f^{(j)}(-\infty) = 0$ for $j = 0, \ldots, \alpha - 1.$

$$\bigcap_{\alpha > 0} \mathcal{H}_+^\alpha = \{f : f(x) = \int_{(0,\infty)} e^{tx} \mu(dt) \ \forall x \in \mathbb{R}\}.$$
Classes of (generalized moment) functions $f : \mathbb{R} \to \mathbb{R}$

$$f \in \mathcal{E} \overset{\text{def}}{\iff} \exists \lambda > 0 \ \forall u \in \mathbb{R} \ f(u) = e^{\lambda u};$$

$$f \in \mathcal{H}^\alpha_+ \overset{\text{def}}{\iff} \exists \mu \geq 0 \ \forall u \in \mathbb{R} \ f(u) = \int_{-\infty}^{\infty} (u - t)^\alpha_+ \mu(dt).$$

$$0 < \beta < \alpha \ \Rightarrow \ \mathcal{H}^\alpha_+ \subseteq \mathcal{H}^\beta_+.$$

For $\alpha = 1, 2, \ldots$: $f \in \mathcal{H}^\alpha_+$ iff

$f^{(\alpha-1)}$ is convex and $f^{(j)}(-\infty) = 0$ for $j = 0, \ldots, \alpha - 1$.

$$\bigcap_{\alpha > 0} \mathcal{H}^\alpha_+ = \{ f : f(x) = \int_{(0,\infty)} e^{tx} \mu(dt) \ \forall x \in \mathbb{R} \}. $$
Classes of (generalized moment) functions \(f : \mathbb{R} \to \mathbb{R} \)

\[
\begin{align*}
 f \in \mathcal{E} & \iff \exists \lambda > 0 \ \forall u \in \mathbb{R} \ f(u) = e^{\lambda u}; \\
 f \in \mathcal{H}_+^\alpha & \iff \exists \mu \geq 0 \ \forall u \in \mathbb{R} \ f(u) = \int_{-\infty}^{\infty} (u - t)^\alpha_+ \mu(dt).
\end{align*}
\]

\(0 < \beta < \alpha \Rightarrow \mathcal{H}_+^\alpha \subseteq \mathcal{H}_+^\beta.\)

For \(\alpha = 1, 2, \ldots:\) \(f \in \mathcal{H}_+^\alpha \) iff \(f^{(\alpha-1)} \) is convex and \(f^{(j)}(-\infty) = 0 \) for \(j = 0, \ldots, \alpha - 1.\)

\[
\bigcap_{\alpha > 0} \mathcal{H}_+^\alpha = \{ f : f(x) = \int_{(0, \infty)} e^{tx} \mu(dt) \ \forall x \in \mathbb{R} \}.\]
4/32 Classes of (generalized moment) functions $f : \mathbb{R} \to \mathbb{R}$

$$f \in \mathcal{E} \iff \exists \lambda > 0 \ \forall u \in \mathbb{R} \ f(u) = e^{\lambda u};$$

$$f \in \mathcal{H}_+^{\alpha} \iff \exists \mu \geq 0 \ \forall u \in \mathbb{R} \ f(u) = \int_{-\infty}^{\infty} (u - t)^{\alpha}_+ \mu(dt).$$

$$0 < \beta < \alpha \implies \mathcal{H}_+^{\alpha} \subseteq \mathcal{H}_+^{\beta}.$$

For $\alpha = 1, 2, \ldots$: $f \in \mathcal{H}_+^{\alpha}$ iff $f^{(\alpha-1)}$ is convex and $f^{(j)}(-\infty) = 0$ for $j = 0, \ldots, \alpha - 1$.

$$\bigcap_{\alpha > 0} \mathcal{H}_+^{\alpha} = \{ f : f(x) = \int_{(0,\infty)} e^{tx} \mu(dt) \ \forall x \in \mathbb{R} \}. $$
Let Γ_{a^2} and Π_θ be any indep. r.v.’s s.t.

$$\Gamma_{a^2} \sim \mathcal{N}(0, a^2) \text{ and } \Pi_\theta \sim \text{Pois}(\theta).$$

$$\tilde{\Pi}_\theta := \Pi_\theta - \mathbb{E}\Pi_\theta = \Pi_\theta - \theta.$$
Let Γ_{a^2} and Π_θ be any indep. r.v.'s s.t.

$$\Gamma_{a^2} \sim N(0, a^2) \text{ and } \Pi_\theta \sim \text{Pois}(\theta).$$

$$\tilde{\Pi}_\theta := \Pi_\theta - \mathbb{E}\Pi_\theta = \Pi_\theta - \theta.$$
Let Γ_{a^2} and Π_θ be any independent r.v.'s s.t.

$$\Gamma_{a^2} \sim \mathcal{N}(0, a^2) \quad \text{and} \quad \Pi_\theta \sim \text{Pois}(\theta).$$

$$\tilde{\Pi}_\theta := \Pi_\theta - \mathbb{E}\Pi_\theta = \Pi_\theta - \theta.$$
Take any $\beta > 0$ s.t. $\epsilon := \beta \sigma^2 y \in (0, 1)$. Suppose that $\epsilon \in \mathcal{E}(X_i^\beta)$.

Then

$\mathbb{E}[S] \geq \mathbb{E}[f(\Gamma^{1-\epsilon} \sigma^2 + \epsilon \tilde{\Pi} \epsilon \sigma^2 / y^2)] \quad \forall f \in \mathcal{H}^3 +$.
Theorem (Main)

Take any $\beta > 0$ s.t.

$$\varepsilon := \frac{\beta}{\sigma^2 y} \in (0, 1).$$

Suppose that

$$\sum_i E(X_i)^3 \leq \beta.$$

Then

$$E f(S) \leq E f\left(\Gamma(1-\varepsilon)\sigma^2 + y\tilde{\Pi}_{\varepsilon\sigma^2/y^2}\right) \quad \forall f \in \mathcal{H}_+^3.$$
Theorem (Main)

Take any $\beta > 0$ s.t.

$$\varepsilon := \frac{\beta}{\sigma^2 y} \in (0, 1).$$

Suppose that

$$\sum_i \mathbb{E}(X_i)^3_+ \leq \beta.$$

Then

$$\mathbb{E} f(S) \leq \mathbb{E} f\left(\Gamma_{(1-\varepsilon)} \sigma^2 + y \tilde{\Pi}_{\varepsilon \sigma^2 / y^2}\right) \quad \forall f \in \mathcal{H}_3^+.$$
Theorem (Main)

Take any $\beta > 0$ s.t.

$$\varepsilon := \frac{\beta}{\sigma^2 y} \in (0, 1).$$

Suppose that

$$\sum_i \mathbb{E}(X_i)^3 \leq \beta.$$

Then

$$\mathbb{E}f(S) \leq \mathbb{E}f\left(\Gamma_{(1-\varepsilon)\sigma^2} + y\widetilde{\Pi}_{\varepsilon\sigma^2/y^2}\right) \quad \forall f \in \mathcal{H}_+^3.$$
Theorem (Main)

Take any $\beta > 0$ s.t.

$$\varepsilon := \frac{\beta}{\sigma^2 y} \in (0, 1).$$

Suppose that

$$\sum_i \mathbb{E}(X_i)^3 \leq \beta.$$

Then

$$\mathbb{E} f(S) \leq \mathbb{E} f \left(\Gamma (1 - \varepsilon) \sigma^2 + y \tilde{\Pi} \varepsilon \sigma^2 / y^2 \right) \quad \forall f \in \mathcal{H}_+^3.$$
Proposition (Exactness for each f)

For each triple (σ, y, β) as in Theorem (Main) and each $f \in \mathcal{H}_+^3$, the upper bound $E f \left(\Gamma (1 - \varepsilon) \sigma^2 + y \tilde{\Pi}_\varepsilon \sigma^2 / y^2 \right)$ on $E f(S)$ is exact.

Proposition (Exactness in p)

For any given $p \in (0, 3)$, one cannot replace \mathcal{H}_+^3 in Theorem (Main) by the larger class \mathcal{H}_+^p.

7/32 Exactness properties
Proposition (Exactness for each f)

For each triple (σ, y, β) as in Theorem (Main) and each $f \in \mathcal{H}_+^3$, the upper bound $\mathbb{E} f \left(\Gamma (1-\varepsilon) \sigma^2 + y \tilde{\Pi} \varepsilon \sigma^2 / y^2 \right)$ on $\mathbb{E} f(S)$ is exact.

Proposition (Exactness in p)

For any given $p \in (0, 3)$, one cannot replace \mathcal{H}_+^3 in Theorem (Main) by the larger class \mathcal{H}_+^p.
Proposition (Exactness for each f)

For each triple (σ, y, β) as in Theorem (Main) and each $f \in \mathcal{H}^3_+$, the upper bound $E f\left(\Gamma_{(1-\varepsilon)\sigma^2 + y\tilde{\Pi}_{\varepsilon}\sigma^2/y^2}\right)$ on $E f(S)$ is exact.

Proposition (Exactness in p)

For any given $p \in (0, 3)$, one cannot replace \mathcal{H}^3_+ in Theorem (Main) by the larger class \mathcal{H}^p_+.
Related preceding results – all of the form:

\[\forall f \in \mathcal{F} \quad \sup E f(S) = E f(\eta), \]

sup over all indep. \(X_i \)'s as before, with the cond.
\[\sum E(X_i)_+^3 \leq \beta \]
imposed or not, and where the class \(\mathcal{F} \) of functions and the r.v. \(\eta \) are as in the following table:

<table>
<thead>
<tr>
<th>Bound</th>
<th>(\mathcal{F})</th>
<th>(\sum E(X_i)_+^3 \leq \beta) imposed?</th>
<th>(\eta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BH</td>
<td>(\mathcal{E})</td>
<td>no</td>
<td>(y\tilde{\Pi}_{\sigma^2/y^2})</td>
</tr>
<tr>
<td>PU</td>
<td>(\mathcal{E})</td>
<td>yes</td>
<td>(\Gamma (1-\varepsilon)\sigma^2 + y\tilde{\Pi}_{\varepsilon\sigma^2/y^2})</td>
</tr>
<tr>
<td>Be</td>
<td>(\mathcal{H}_+^2)</td>
<td>no</td>
<td>(y\tilde{\Pi}_{\sigma^2/y^2})</td>
</tr>
<tr>
<td>Pin</td>
<td>(\mathcal{H}_+^3)</td>
<td>yes</td>
<td>(\Gamma (1-\varepsilon)\sigma^2 + y\tilde{\Pi}_{\varepsilon\sigma^2/y^2})</td>
</tr>
</tbody>
</table>
8/32 Related preceding results – all of the form:

\[\forall f \in \mathcal{F} \quad \sup E f(S) = E f(\eta), \]

sup over all indep. \(X_i\)'s as before, with the cond.
\[\sum E(X_i)^3 \leq \beta \] imposed or not, and where the class \(\mathcal{F}\) of functions and the r.v. \(\eta\) are as in the following table:

<table>
<thead>
<tr>
<th>Bound</th>
<th>(\mathcal{F})</th>
<th>(\sum E(X_i)^3 \leq \beta) imposed?</th>
<th>(\eta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BH</td>
<td>(\mathcal{E})</td>
<td>no</td>
<td>(y \tilde{\Pi} \sigma^2 / y^2)</td>
</tr>
<tr>
<td>PU</td>
<td>(\mathcal{E})</td>
<td>yes</td>
<td>(\Gamma(1-\varepsilon)\sigma^2 + y \tilde{\Pi} \epsilon \sigma^2 / y^2)</td>
</tr>
<tr>
<td>Be</td>
<td>(\mathcal{H}_+^2)</td>
<td>no</td>
<td>(y \tilde{\Pi} \sigma^2 / y^2)</td>
</tr>
<tr>
<td>Pin</td>
<td>(\mathcal{H}_+^3)</td>
<td>yes</td>
<td>(\Gamma(1-\varepsilon)\sigma^2 + y \tilde{\Pi} \epsilon \sigma^2 / y^2)</td>
</tr>
</tbody>
</table>
Corollary: the upper bound $\text{Pin}(x)$ on the tail

Corollary (Upper bound on the tail)

Under the conditions of Theorem (Main), $\forall x \in \mathbb{R}$

\[
P(S \geq x) \leq \text{Pin}(x) := P_{H^3_+} (\Gamma (1-\varepsilon) \sigma^2 + y \tilde{\eta} \varepsilon \sigma^2 / y^2; x)
\leq c_{3,0} \ P^{\text{LC}} (\Gamma (1-\varepsilon) \sigma^2 + y \tilde{\eta} \varepsilon \sigma^2 / y^2 \geq x),
\]

$c_{3,0} = 2e^3 / 9 = 4.46 \ldots$.

Here, $P^{\text{LC}} (\eta \geq \cdot)$ is the least log-concave majorant of $P(\eta \geq \cdot)$, and

\[
P_F (\eta; x) = \inf \left\{ \frac{E f(\eta)}{f(x)} : f \in \mathcal{F}, \ f(x) > 0 \right\},
\]

the best upper bound on $P(S \geq x)$ based on comparison $E f(S) \leq E f(\eta)$ for all $f \in \mathcal{F}$.
Corollary (Upper bound on the tail)

Under the conditions of Theorem (Main), \(\forall x \in \mathbb{R} \)

\[
P(S \geq x) \leq \text{Pin}(x) := P_{H_3^+} \left(\Gamma (1-\varepsilon)\sigma^2 + y\tilde{\Pi}_{\varepsilon\sigma^2/y^2}; x \right) \\
\leq c_{3,0} \ P_{\text{LC}}^F(\Gamma (1-\varepsilon)\sigma^2 + y\tilde{\Pi}_{\varepsilon\sigma^2/y^2} \geq x),
\]

\(c_{3,0} = 2e^3/9 = 4.46 \ldots \)

Here, \(P_{\text{LC}}(\eta \geq \cdot) \) is the least log-concave majorant of \(P(\eta \geq \cdot) \), and

\[
P_{\mathcal{F}}(\eta; x) = \inf \left\{ \frac{E f(\eta)}{f(x)} : f \in \mathcal{F}, \ f(x) > 0 \right\},
\]

the best upper bound on \(P(S \geq x) \) based on comparison \(E f(S) \leq E f(\eta) \) for all \(f \in \mathcal{F} \).
Corollary: the upper bound $\text{Pin}(x)$ on the tail

Corollary (Upper bound on the tail)

Under the conditions of Theorem (Main), $\forall x \in \mathbb{R}$

\[
P(S \geq x) \leq \text{Pin}(x) := P_{\mathcal{H}_+^3} \left(\Gamma (1-\varepsilon)\sigma^2 + y\tilde{\Pi}_\varepsilon\sigma^2/y^2; x \right)
\leq c_{3,0} P^{\text{LC}} \left(\Gamma (1-\varepsilon)\sigma^2 + y\tilde{\Pi}_\varepsilon\sigma^2/y^2 \geq x \right),
\]

$c_{3,0} = 2e^3/9 = 4.46 \ldots$.

Here, $P^{\text{LC}}(\eta \geq \cdot)$ is the least log-concave majorant of $P(\eta \geq \cdot)$, and

\[
P_{\mathcal{F}}(\eta; x) = \inf \left\{ \frac{E f(\eta)}{f(x)} : f \in \mathcal{F}, \ f(x) > 0 \right\},
\]

the best upper bound on $P(S \geq x)$ based on comparison $E f(S) \leq E f(\eta)$ for all $f \in \mathcal{F}$.
Corollary: the upper bound $\text{Pin}(x)$ on the tail

Corollary (Upper bound on the tail)

Under the conditions of Theorem (Main), $\forall x \in \mathbb{R}$

\[
P(S \geq x) \leq \text{Pin}(x) := P_{\mathcal{H}^3_+} \left(\Gamma (1-\varepsilon) \sigma^2 + y \tilde{\Pi} \varepsilon \sigma^2 / y^2 ; x \right)
\]

\[
\leq c_{3,0} \ P_{\text{LC}} \left(\Gamma (1-\varepsilon) \sigma^2 + y \tilde{\Pi} \varepsilon \sigma^2 / y^2 \geq x \right),
\]

\[c_{3,0} = 2e^3/9 = 4.46 \ldots .\]

Here, $P_{\text{LC}}(\eta \geq \cdot)$ is the least log-concave majorant of $P(\eta \geq \cdot)$, and

\[
P_{\mathcal{F}}(\eta; x) = \inf \left\{ \frac{E f(\eta)}{f(x)} : f \in \mathcal{F}, \ f(x) > 0 \right\},
\]

the best upper bound on $P(S \geq x)$ based on comparison $E f(S) \leq E f(\eta)$ for all $f \in \mathcal{F}$.
Remark

Since the class \(\mathcal{H}_+^3 \) of generalized moment functs. is shift-invariant, it is enough to prove Theorem (Main) just for \(n = 1 \).

Fix any \(\sigma > 0 \) and \(y > 0 \).

For any \(a \geq 0 \) and \(b > 0 \), let \(X_{a,b} \) denote any r.v. with the unique zero-mean distr. on the two-point set \(\{-a, b\} \).
Remark

Since the class \mathcal{H}_3^+ of generalized moment functs. is shift-invariant, it is enough to prove Theorem (Main) just for $n = 1$.

Fix any $\sigma > 0$ and $y > 0$.

For any $a \geq 0$ and $b > 0$, let $X_{a,b}$ denote any r.v. with the unique zero-mean distr. on the two-point set $\{-a, b\}$.
Remark

Since the class \mathcal{H}_+^3 of generalized moment functs. is shift-invariant, it is enough to prove Theorem (Main) just for $n = 1$.

Fix any $\sigma > 0$ and $y > 0$.

For any $a \geq 0$ and $b > 0$, let $X_{a,b}$ denote any r.v. with the unique zero-mean distr. on the two-point set $\{-a, b\}$.
Remark

Since the class \mathcal{H}_3^+ of generalized moment functs. is shift-invariant, it is enough to prove Theorem (Main) just for $n = 1$.

Fix any $\sigma > 0$ and $y > 0$.

For any $a \geq 0$ and $b > 0$, let $X_{a,b}$ denote any r.v. with the unique zero-mean distr. on the two-point set $\{-a, b\}$.
Lemma (Possible values of $E X_3^+$)

(i) For any r.v. X s.t. $X \leq y$ a.s., $EX \leq 0$, and $EX^2 \leq \sigma^2$,

$$EX_+^3 \leq \frac{y^3 \sigma^2}{y^2 + \sigma^2}.$$

(ii) For any

$$\beta \in \left(0, \frac{y^3 \sigma^2}{y^2 + \sigma^2}\right)$$

$$\exists! (a, b) \in (0, \infty) \times (0, \infty) \text{ s.t. } X_{a,b} \leq y \text{ a.s., } EX_{a,b}^2 = \sigma^2, \text{ and } E(X_{a,b})_+^3 = \beta.$$

In particular, the ineq. in part (i) is exact.
Lemma (Possible values of $E X_+^3$)

(i) For any r.v. X s.t. $X \leq y$ a.s., $EX \leq 0$, and $EX^2 \leq \sigma^2$,

$$EX_+^3 \leq \frac{y^3 \sigma^2}{y^2 + \sigma^2}.$$

(ii) For any

$$\beta \in \left(0, \frac{y^3 \sigma^2}{y^2 + \sigma^2}\right)$$

$$\exists! (a, b) \in (0, \infty) \times (0, \infty) \text{ s.t. } X_{a,b} \leq y \text{ a.s., } EX_{a,b}^2 = \sigma^2,$$

and $E(X_{a,b})_+^3 = \beta$.

In particular, the ineq. in part (i) is exact.
Lemma (Possible values of $E X^3_+$)

(i) For any r.v. X s.t. $X \leq y$ a.s., $E X \leq 0$, and $E X^2 \leq \sigma^2$,

$$E X^3_+ \leq \frac{y^3 \sigma^2}{y^2 + \sigma^2}.$$

(ii) For any

$$\beta \in \left(0, \frac{y^3 \sigma^2}{y^2 + \sigma^2}\right]$$

$$\exists! (a, b) \in (0, \infty) \times (0, \infty) \text{ s.t. } X_{a,b} \leq y \text{ a.s., } E X_{a,b}^2 = \sigma^2,$$

and $E(X_{a,b})^3_+ = \beta$.

In particular, the ineq. in part (i) is exact.
Lemma (Possible values of $E X_+^3$)

(i) For any r.v. X s.t. $X \leq y$ a.s., $E X \leq 0$, and $E X^2 \leq \sigma^2$,

$$E X_+^3 \leq \frac{y^3 \sigma^2}{y^2 + \sigma^2}.$$

(ii) For any

$$\beta \in \left(0, \frac{y^3 \sigma^2}{y^2 + \sigma^2} \right]$$

$$\exists! (a, b) \in (0, \infty) \times (0, \infty) \text{ s.t. } X_{a,b} \leq y \text{ a.s., } E X_{a,b}^2 = \sigma^2,$$
and $E(X_{a,b})_+^3 = \beta$.

In particular, the ineq. in part (i) is exact.
Lemma (Possible values of $E X_+^3$)

(i) For any r.v. X s.t. $X \leq y$ a.s., $E X \leq 0$, and $E X^2 \leq \sigma^2$,

$$E X_+^3 \leq \frac{y^3 \sigma^2}{y^2 + \sigma^2}.$$

(ii) For any

$$\beta \in \left(0, \frac{y^3 \sigma^2}{y^2 + \sigma^2}\right)$$

$\exists (a, b) \in (0, \infty) \times (0, \infty)$ s.t. $X_{a,b} \leq y$ a.s., $E X_{a,b}^2 = \sigma^2$, and $E(X_{a,b})_+^3 = \beta$.

In particular, the ineq. in part (i) is exact.
Lemma (Possible values of $E X^3_+$)

(i) For any r.v. X s.t. $X \leq y$ a.s., $E X \leq 0$, and $E X^2 \leq \sigma^2$,

$$E X^3_+ \leq \frac{y^3 \sigma^2}{y^2 + \sigma^2}.$$

(ii) For any

$$\beta \in (0, \frac{y^3 \sigma^2}{y^2 + \sigma^2}]$$

$$\exists!(a, b) \in (0, \infty) \times (0, \infty) \text{ s.t. } X_{a,b} \leq y \text{ a.s., } E X_{a,b}^2 = \sigma^2, \text{ and } E(X_{a,b})^3_+ = \beta.$$

In particular, the ineq. in part (i) is exact.
Lemma (Possible values of $E X^3_+$)

(i) For any r.v. X s.t. $X \leq y$ a.s., $E X \leq 0$, and $E X^2 \leq \sigma^2$,

$$E X^3_+ \leq \frac{y^3 \sigma^2}{y^2 + \sigma^2}.$$

(ii) For any

$$\beta \in \left(0, \frac{y^3 \sigma^2}{y^2 + \sigma^2}\right]$$

$$\exists (a, b) \in (0, \infty) \times (0, \infty) \text{ s.t. } X_{a,b} \leq y \text{ a.s., } E X_{a,b}^2 = \sigma^2, \text{ and } E(X_{a,b})^3_+ = \beta.$$

In particular, the ineq. in part (i) is exact.
Lemma (2-point zero-mean distr. are extremal)

Fix any $w \in \mathbb{R}$, $y > 0$, $\sigma > 0$, and β s.t. $\beta \in \left(0, \frac{y^3 \sigma^2}{y^2 + \sigma^2}\right]$, and let (a, b) be the unique pair as in the previous lemma. Then

$$\max \{E(X - w)^3_+ : X \leq y \text{ a.s., } E X \leq 0, E X^2 \leq \sigma^2, E X^3_+ \leq \beta\}$$

$$= \begin{cases}
E(X_{a,b} - w)^3_+ & \text{if } w \leq 0, \\
E(X_{\tilde{a}, \tilde{b}} - w)^3_+ & \text{if } w \geq 0,
\end{cases}$$

where $\tilde{b} := y$ and $\tilde{a} := \frac{\beta y}{y^3 - \beta}$. At that, $\tilde{a} > 0$, $X_{\tilde{a}, \tilde{b}} \leq y$ a.s., $E X_{\tilde{a}, \tilde{b}} = 0$, and $E(X_{\tilde{a}, \tilde{b}})^3_+ = \beta$, but one can only say that $E X^2_{\tilde{a}, \tilde{b}} \leq \sigma^2$, and the latter inequality is strict if $\beta \neq \frac{y^3 \sigma^2}{y^2 + \sigma^2}$.
Lemma (2-point zero-mean distrs. are extremal)

Fix any $w \in \mathbb{R}$, $y > 0$, $\sigma > 0$, and β s.t. $\beta \in \left(0, \frac{y^3\sigma^2}{y^2+\sigma^2}\right]$, and let (a, b) be the unique pair as in the previous lemma. Then

$$\max\{E(X - w)^3_+ : X \leq y \text{ a.s., } EX \leq 0, EX^2 \leq \sigma^2, EX^3_+ \leq \beta\}$$

$$= \begin{cases} E(X_{a, b} - w)^3_+ & \text{if } w \leq 0, \\ E(X_{\tilde{a}, \tilde{b}} - w)^3_+ & \text{if } w \geq 0, \end{cases}$$

where $\tilde{b} := y$ and $\tilde{a} := \frac{\beta y}{y^3 - \beta}$. At that, $\tilde{a} > 0$, $X_{\tilde{a}, \tilde{b}} \leq y$ a.s., $EX_{\tilde{a}, \tilde{b}} = 0$, and $E(X_{\tilde{a}, \tilde{b}})^3_+ = \beta$, but one can only say that $EX_{\tilde{a}, \tilde{b}}^2 \leq \sigma^2$, and the latter inequality is strict if $\beta \neq \frac{y^3\sigma^2}{y^2+\sigma^2}$.

Lemma (2-point zero-mean distrs. are extremal)

Fix any \(w \in \mathbb{R}, \ y > 0, \ \sigma > 0, \) and \(\beta \) s.t. \(\beta \in \left(0, \frac{y^3\sigma^2}{y^2+\sigma^2} \right) \), and let \((a, b)\) be the unique pair as in the previous lemma. Then

\[
\max\{E(X - w)^3_+ : X \leq y \ a.s., \ E X \leq 0, \ E X^2 \leq \sigma^2, \ E X^3_+ \leq \beta\} = \begin{cases}
E(X_{a,b} - w)^3_+ & \text{if } w \leq 0, \\
E(X_{\tilde{a},\tilde{b}} - w)^3_+ & \text{if } w \geq 0,
\end{cases}
\]

where \(\tilde{b} := y \) and \(\tilde{a} := \frac{\beta y}{y^3 - \beta} \). At that, \(\tilde{a} > 0, \ X_{\tilde{a},\tilde{b}} \leq y \ a.s., \ E X_{\tilde{a},\tilde{b}} = 0, \) and \(E(X_{\tilde{a},\tilde{b}})^3_+ = \beta \), but one can only say that \(E X^2_{\tilde{a},\tilde{b}} \leq \sigma^2 \), and the latter inequality is strict if \(\beta \neq \frac{y^3\sigma^2}{y^2+\sigma^2} \).
2-point zero-mean distrs. are extremal

Lemma (2-point zero-mean distrs. are extremal)

Fix any \(w \in \mathbb{R}, y > 0, \sigma > 0, \) and \(\beta \) s.t. \(\beta \in \left(0, \frac{y^3 \sigma^2}{y^2 + \sigma^2} \right) \), and let \((a, b)\) be the unique pair as in the previous lemma. Then

\[
\max \{ E(X - w)^3_+ : X \leq y \text{ a.s.}, E\, X \leq 0, E\, X^2 \leq \sigma^2, E\, X^3_+ \leq \beta \}
= \begin{cases}
E(X_{a,b} - w)^3_+ & \text{if } w \leq 0, \\
E(X_{\tilde{a},\tilde{b}} - w)^3_+ & \text{if } w \geq 0,
\end{cases}
\]

where \(\tilde{b} := y \) and \(\tilde{a} := \frac{\beta y}{y^3 - \beta} \). At that, \(\tilde{a} > 0, X_{\tilde{a},\tilde{b}} \leq y \text{ a.s.}, E\, X_{\tilde{a},\tilde{b}} = 0, \) and \(E(X_{\tilde{a},\tilde{b}})^3_+ = \beta \), but one can only say that \(E\, X^2_{\tilde{a},\tilde{b}} \leq \sigma^2 \), and the latter inequality is strict if \(\beta \neq \frac{y^3 \sigma^2}{y^2 + \sigma^2} \).
Lemma (2-point zero-mean distr. are extremal)

Fix any $w \in \mathbb{R}$, $y > 0$, $\sigma > 0$, and β s.t. $\beta \in \left(0, \frac{y^3 \sigma^2}{y^2 + \sigma^2}\right]$, and let (a, b) be the unique pair as in the previous lemma. Then

$$\max\left\{E(X - w)^3_{+} : X \leq y \text{ a.s., } E X \leq 0, E X^2 \leq \sigma^2, E X^3_{+} \leq \beta\right\}$$

$$= \begin{cases} E(X_{a,b} - w)^3_{+} & \text{if } w \leq 0, \\ E(X_{\tilde{a},\tilde{b}} - w)^3_{+} & \text{if } w \geq 0, \end{cases}$$

where $\tilde{b} := y$ and $\tilde{a} := \frac{\beta y}{y^3 - \beta}$. At that, $\tilde{a} > 0$, $X_{\tilde{a},\tilde{b}} \leq y$ a.s., $E X_{\tilde{a},\tilde{b}} = 0$, and $E(X_{\tilde{a},\tilde{b}})^3_{+} = \beta$, but one can only say that $E X^2_{\tilde{a},\tilde{b}} \leq \sigma^2$, and the latter inequality is strict if $\beta \neq \frac{y^3 \sigma^2}{y^2 + \sigma^2}$.
Lemma (2-point zero-mean distr. are extremal)

Fix any $w \in \mathbb{R}$, $y > 0$, $\sigma > 0$, and β s.t. $\beta \in \left(0, \frac{y^3 \sigma^2}{y^2 + \sigma^2}\right]$, and let (a, b) be the unique pair as in the previous lemma. Then

$$
\max\{E(X - w)^3_+ : X \leq y \ a.s., \ E \ X \leq 0, \ E \ X^2 \leq \sigma^2, \ E \ X^3_+ \leq \beta\}
$$

$$
= \begin{cases}
E(X_{a,b} - w)^3_+ & \text{if } w \leq 0,
\end{cases}
$$

$$
E(X_{\tilde{a},\tilde{b}} - w)^3_+ & \text{if } w \geq 0,
\end{cases}
$$

where $\tilde{b} := y$ and $\tilde{a} := \frac{\beta y}{y^3 - \beta}$. At that, $\tilde{a} > 0$, $X_{\tilde{a},\tilde{b}} \leq y$ a.s., $E X_{\tilde{a},\tilde{b}} = 0$, and $E(X_{\tilde{a},\tilde{b}})^3_+ = \beta$, but one can only say that $E X^2_{\tilde{a},\tilde{b}} \leq \sigma^2$, and the latter inequality is strict if $\beta \neq \frac{y^3 \sigma^2}{y^2 + \sigma^2}$.
Lemma (2-point zero-mean distrs. are extremal)

Fix any \(w \in \mathbb{R}, y > 0, \sigma > 0, \) and \(\beta \) s.t. \(\beta \in \left(0, \frac{y^3\sigma^2}{y^2+\sigma^2} \right) \), and let \((a, b)\) be the unique pair as in the previous lemma. Then

\[
\max \{ E(X - w)^3_+ : X \leq y \text{ a.s., } E X \leq 0, E X^2 \leq \sigma^2, E X^3_+ \leq \beta \} =
\begin{cases}
E(X_{a,b} - w)^3_+ & \text{if } w \leq 0, \\
E(X_{\tilde{a},\tilde{b}} - w)^3_+ & \text{if } w \geq 0,
\end{cases}
\]

where \(\tilde{b} := y \) and \(\tilde{a} := \frac{\beta y}{y^3 - \beta} \). At that, \(\tilde{a} > 0, X_{\tilde{a},\tilde{b}} \leq y \text{ a.s.}, E X_{\tilde{a},\tilde{b}} = 0, \) and \(E(X_{\tilde{a},\tilde{b}})^3_+ = \beta \), but one can only say that \(E X^2_{\tilde{a},\tilde{b}} \leq \sigma^2 \), and the latter inequality is strict if \(\beta \neq \frac{y^3\sigma^2}{y^2+\sigma^2} \).
Lemma (2-point zero-mean distrs. are extremal)

Fix any \(w \in \mathbb{R}, y > 0, \sigma > 0, \text{ and } \beta \text{ s.t. } \beta \in \left(0, \frac{y^3 \sigma^2}{y^2 + \sigma^2}\right), \) and let \((a, b)\) be the unique pair as in the previous lemma. Then

\[
\max \{E(X - w)^3_+: X \leq y \text{ a.s., } E X \leq 0, E X^2 \leq \sigma^2, E X^3_+ \leq \beta\} = \begin{cases} E(X_{a,b} - w)_+^3 & \text{if } w \leq 0, \\ E(X_{\tilde{a},\tilde{b}} - w)_+^3 & \text{if } w \geq 0, \end{cases}
\]

where \(\tilde{b} := y \) and \(\tilde{a} := \frac{\beta y}{y^3 - \beta} \). At that, \(\tilde{a} > 0, X_{\tilde{a},\tilde{b}} \leq y \text{ a.s., } E X_{\tilde{a},\tilde{b}} = 0, \text{ and } E(X_{\tilde{a},\tilde{b}})_+^3 = \beta, \) but one can only say that

\[
E X_{\tilde{a},\tilde{b}}^2 \leq \sigma^2, \text{ and the latter inequality is strict if } \beta \neq \frac{y^3 \sigma^2}{y^2 + \sigma^2}.
\]
Lemma (2-point zero-mean distr. are extremal)

Fix any $w \in \mathbb{R}$, $y > 0$, $\sigma > 0$, and β s.t. $\beta \in \left(0, \frac{y^3\sigma^2}{y^2+\sigma^2}\right]$, and let (a, b) be the unique pair as in the previous lemma. Then

$$\max\{E(X - w)_+^3 : X \leq y \text{ a.s., } E X \leq 0, E X^2 \leq \sigma^2, E X^3_+ \leq \beta\}$$

$$= \begin{cases}
E(X_{a,b} - w)_+^3 & \text{if } w \leq 0, \\
E(X_{\tilde{a},\tilde{b}} - w)_+^3 & \text{if } w \geq 0,
\end{cases}$$

where $\tilde{b} := y$ and $\tilde{a} := \frac{\beta y}{y^3-\beta}$. At that, $\tilde{a} > 0$, $X_{\tilde{a},\tilde{b}} \leq y$ a.s., $E X_{\tilde{a},\tilde{b}} = 0$, and $E(X_{\tilde{a},\tilde{b}})_+^3 = \beta$, but one can only say that $E X_{\tilde{a},\tilde{b}}^2 \leq \sigma^2$, and the latter inequality is strict if $\beta \neq \frac{y^3\sigma^2}{y^2+\sigma^2}$.
Lemma (2-point zero-mean distrs. are extremal)

Fix any \(w \in \mathbb{R}, \ y > 0, \ \sigma > 0, \ \text{and} \ \beta \ \text{s.t.} \ \beta \in \left(0, \frac{y^3 \sigma^2}{y^2 + \sigma^2}\right), \ \text{and let} \ (a, b) \ \text{be the unique pair as in the previous lemma. Then}

\[
\max\{E(X - w)^3 : X \leq y \ a.s., \ E X \leq 0, \ E X^2 \leq \sigma^2, \ E X^3_+ \leq \beta\} \\
= \begin{cases} \\
E(X_{a,b} - w)^3_+ & \text{if} \ w \leq 0, \\
E(X_{\tilde{a},\tilde{b}} - w)^3_+ & \text{if} \ w \geq 0,
\end{cases}
\]

where \(\tilde{b} := y \) and \(\tilde{a} := \frac{\beta y}{y^3 - \beta} \). At that, \(\tilde{a} > 0, \ X_{\tilde{a},\tilde{b}} \leq y \ a.s., \ E X_{\tilde{a},\tilde{b}} = 0, \ \text{and} \ E(X_{\tilde{a},\tilde{b}})^3_+ = \beta, \ \text{but one can only say that} \ E X^2_{\tilde{a},\tilde{b}} \leq \sigma^2, \ \text{and the latter inequality is strict if} \ \beta \neq \frac{y^3 \sigma^2}{y^2 + \sigma^2}. \)
Lemma (2-point zero-mean distrs. are extremal)

Fix any $w \in \mathbb{R}$, $y > 0$, $\sigma > 0$, and β s.t. $\beta \in \left(0, \frac{y^3 \sigma^2}{y^2 + \sigma^2}\right]$, and let (a, b) be the unique pair as in the previous lemma. Then

$$
\max\{E(X - w)^3_+ : X \leq y \text{ a.s., } E X \leq 0, E X^2 \leq \sigma^2, E X^3_+ \leq \beta\}
$$

$$
= \begin{cases}
E(X_{a,b} - w)^3_+ & \text{if } w \leq 0, \\
E(X_{\tilde{a},\tilde{b}} - w)^3_+ & \text{if } w \geq 0,
\end{cases}
$$

where $\tilde{b} := y$ and $\tilde{a} := \frac{\beta y}{y^3 - \beta}$. At that, $\tilde{a} > 0$, $X_{\tilde{a},\tilde{b}} \leq y$ a.s., $E X_{\tilde{a},\tilde{b}} = 0$, and $E(X_{\tilde{a},\tilde{b}})^3_+ = \beta$, but one can only say that

$E X^2_{\tilde{a},\tilde{b}} \leq \sigma^2$, and the latter inequality is strict if $\beta \neq \frac{y^3 \sigma^2}{y^2 + \sigma^2}$.

Lemma (2-point zero-mean distrs. are extremal)

Fix any \(w \in \mathbb{R}, \ y > 0, \ \sigma > 0, \) and \(\beta \) s.t. \(\beta \in \left(0, \frac{y^3 \sigma^2}{y^2 + \sigma^2}\right) \), and let \((a, b)\) be the unique pair as in the previous lemma. Then

\[
\max\{E(X - w)^3_+ : X \leq y \ a.s., \ E X \leq 0, \ E X^2 \leq \sigma^2, \ E X^3_+ \leq \beta\}
= \begin{cases}
E(X_{a,b} - w)^3_+ & \text{if } w \leq 0, \\
E(X_{\tilde{a}, \tilde{b}} - w)^3_+ & \text{if } w \geq 0,
\end{cases}
\]

where \(\tilde{b} := y \) and \(\tilde{a} := \frac{\beta y}{y^3 - \beta} \). At that, \(\tilde{a} > 0, \ X_{\tilde{a}, \tilde{b}} \leq y \ a.s., \ E X_{\tilde{a}, \tilde{b}} = 0, \) and \(E(X_{\tilde{a}, \tilde{b}})^3_+ = \beta \), but one can only say that

\[
E X_{\tilde{a}, \tilde{b}}^2 \leq \sigma^2, \ \text{and the latter inequality is strict if } \beta \neq \frac{y^3 \sigma^2}{y^2 + \sigma^2}.
\]
Lemma (2-point zero-mean distrs. are extremal)

Fix any $w \in \mathbb{R}$, $y > 0$, $\sigma > 0$, and β s.t. $\beta \in \left(0, \frac{y^3 \sigma^2}{y^2 + \sigma^2}\right]$, and let (a, b) be the unique pair as in the previous lemma. Then

$$\max\{E((X - w)^3_+ : X \leq y \text{ a.s.}, E X \leq 0, E X^2 \leq \sigma^2, E X^3_+ \leq \beta\}$$

$$= \begin{cases} E(X_{a,b} - w)^3_+ & \text{if } w \leq 0, \\ E(X_{\tilde{a},\tilde{b}} - w)^3_+ & \text{if } w \geq 0, \end{cases}$$

where $\tilde{b} := y$ and $\tilde{a} := \frac{\beta y}{y^3 - \beta}$. At that, $\tilde{a} > 0$, $X_{\tilde{a},\tilde{b}} \leq y$ a.s., $E X_{\tilde{a},\tilde{b}} = 0$, and $E(X_{\tilde{a},\tilde{b}})^3_+ = \beta$, but one can only say that

$$E X^2_{\tilde{a},\tilde{b}} \leq \sigma^2,$$

and the latter inequality is strict if $\beta \neq \frac{y^3 \sigma^2}{y^2 + \sigma^2}$.
Lemma (2-point zero-mean distr. are extremal)

Fix any $w \in \mathbb{R}$, $y > 0$, $\sigma > 0$, and β s.t. $\beta \in \left(0, \frac{y^3 \sigma^2}{y^2 + \sigma^2}\right]$, and let (a, b) be the unique pair as in the previous lemma. Then

$$
\max\{E(X - w)^3_+ : X \leq y \text{ a.s., } E X \leq 0, E X^2 \leq \sigma^2, E X^3_+ \leq \beta\} = \begin{cases}
E(X_{a,b} - w)^3_+ & \text{if } w \leq 0, \\
E(X_{\tilde{a},\tilde{b}} - w)^3_+ & \text{if } w \geq 0,
\end{cases}
$$

where $\tilde{b} := y$ and $\tilde{a} := \frac{\beta y}{y^3 - \beta}$. At that, $\tilde{a} > 0$, $X_{\tilde{a},\tilde{b}} \leq y$ a.s., $E X_{\tilde{a},\tilde{b}} = 0$, and $E(X_{\tilde{a},\tilde{b}})^3_+ = \beta$, but one can only say that $E X_{\tilde{a},\tilde{b}}^2 \leq \sigma^2$, and the latter inequality is strict if $\beta \neq \frac{y^3 \sigma^2}{y^2 + \sigma^2}$.
Lemma (Monotonicity in σ and β)

Take any $\sigma_0, \beta_0, \sigma, \beta$ s.t.

$0 \leq \sigma_0 \leq \sigma$, $0 \leq \beta_0 \leq \beta$,

$\beta_0 \leq \sigma_0^2 y$, and $\beta \leq \sigma^2 y$. Then

$$E f(\Gamma_{\sigma_0^2 - \beta_0/y + y \tilde{\Pi}_{\beta_0/y^3}}) \leq E f(\Gamma_{\sigma^2 - \beta/y + y \tilde{\Pi}_{\beta/y^3}}) \quad (1)$$

$\forall f \in \mathcal{H}^2_+$, and hence $\forall f \in \mathcal{H}^3_+$.
Lemma (Monotonicity in σ and β)

Take any $\sigma_0, \beta_0, \sigma, \beta$ s.t.
$0 \leq \sigma_0 \leq \sigma$, $0 \leq \beta_0 \leq \beta$,
$\beta_0 \leq \sigma_0^2 y$, and $\beta \leq \sigma^2 y$. Then

$$
E f(\Gamma_{\sigma_0^2 - \beta_0/y} + y \tilde{\Pi}_{\beta_0/y^3}) \leq E f(\Gamma_{\sigma^2 - \beta/y} + y \tilde{\Pi}_{\beta/y^3}) \quad (1)
$$

$\forall f \in \mathcal{H}_+^2$, and hence $\forall f \in \mathcal{H}_+^3$.
Monotonicity in σ and β

Lemma (Monotonicity in σ and β)

Take any $\sigma_0, \beta_0, \sigma, \beta$ s.t.

$0 \leq \sigma_0 \leq \sigma$, $0 \leq \beta_0 \leq \beta$,

$\beta_0 \leq \sigma_0^2 y$, and $\beta \leq \sigma^2 y$. Then

$$
E f(\Gamma_{\sigma_0^2 - \beta_0/y} + y \tilde{\Pi}_{\beta_0/y^3}) \leq E f(\Gamma_{\sigma^2 - \beta/y} + y \tilde{\Pi}_{\beta/y^3}) \quad (1)
$$

$\forall f \in \mathcal{H}_+^2$, and hence $\forall f \in \mathcal{H}_+^3$.

Lemma (Monotonicity in \(\sigma \) and \(\beta \))

Take any \(\sigma_0, \beta_0, \sigma, \beta \) s.t.

\[
0 \leq \sigma_0 \leq \sigma, \ 0 \leq \beta_0 \leq \beta, \\
\beta_0 \leq \sigma_0^2 y, \text{ and } \beta \leq \sigma^2 y. \text{ Then}
\]

\[
\mathbb{E} f\left(\Gamma_{\sigma_0^2 - \beta_0/y} + y \tilde{\Pi}_{\beta_0/y^3}\right) \leq \mathbb{E} f\left(\Gamma_{\sigma^2 - \beta/y} + y \tilde{\Pi}_{\beta/y^3}\right) \tag{1}
\]

\(\forall f \in \mathcal{H}_+^2, \text{ and hence } \forall f \in \mathcal{H}_+^3. \)
Lemma (Monotonicity in σ and β)

Take any $\sigma_0, \beta_0, \sigma, \beta$ s.t.

$0 \leq \sigma_0 \leq \sigma$, $0 \leq \beta_0 \leq \beta$,

$\beta_0 \leq \sigma_0^2 y$, and $\beta \leq \sigma^2 y$. Then

$$E f(\Gamma_{\sigma_0^2-\beta_0/y} + y \tilde{\Pi}_{\beta_0/y^3}) \leq E f(\Gamma_{\sigma^2-\beta/y} + y \tilde{\Pi}_{\beta/y^3})$$

(1)

$\forall f \in \mathcal{H}^2_+, \text{ and hence } \forall f \in \mathcal{H}^3_+$.
Lemma (Monotonicity in σ and β)

Take any $\sigma_0, \beta_0, \sigma, \beta$ s.t.

$0 \leq \sigma_0 \leq \sigma$, $0 \leq \beta_0 \leq \beta,$

$\beta_0 \leq \sigma_0^2 y$, and $\beta \leq \sigma^2 y$. Then

$$
E f(\Gamma_{\sigma_0^2-\beta_0/y} + y \tilde{\Pi}_{\beta_0/y^3}) \leq E f(\Gamma_{\sigma^2-\beta/y} + y \tilde{\Pi}_{\beta/y^3}) \quad (1)
$$

$\forall f \in \mathcal{H}^2_+, \text{ and hence } \forall f \in \mathcal{H}^3_+.$
Monotonicity in σ and β

Lemma (Monotonicity in σ and β)

Take any $\sigma_0, \beta_0, \sigma, \beta$ s.t.

$0 \leq \sigma_0 \leq \sigma$, $0 \leq \beta_0 \leq \beta$,

$\beta_0 \leq \sigma_0^2 y$, and $\beta \leq \sigma^2 y$. Then

$$
E f(\Gamma \sigma_0^2 - \beta_0 / y + y \tilde{\Pi} \beta_0 / y^3) \leq E f(\Gamma \sigma^2 - \beta / y + y \tilde{\Pi} \beta / y^3) \quad (1)
$$

$\forall f \in \mathcal{H}_+^2$, and hence $\forall f \in \mathcal{H}_+^3$.
Lemma (Main)

Let X be any r.v such that $X \leq y$ a.s., $E X \leq 0$, $E X^2 \leq \sigma^2$, and $E X^3_+ \leq \beta$, where $\beta \in \left(0, \frac{y^3\sigma^2}{y^2+\sigma^2}\right]$. Then

$$E f(X) \leq E f(\Gamma_{\sigma^2-\beta/y} + y \tilde{\Pi}_{\beta/y^3}) \quad \forall f \in \mathcal{H}^3_+.$$

Sketch of proof By the “2-point zero-mean distrs. are extremal” lemma and the “monotonicity in σ and β” lemma, w.l.o.g. $X = X_{a_0,b_0}$ for some $a_0 > 0$ and $b_0 > 0$. Also, w.l.o.g. $f(x) \equiv (x - w)_+^3$. Also, by rescaling, w.l.o.g. $y = 1$.

Outline

- Introduction
- Main results
- Sketch of proof
- Computation of bounds
- Comparison of bounds
Lemma (Main)

Let X be any r.v such that $X \leq y$ a.s., $E X \leq 0$, $E X^2 \leq \sigma^2$, and $E X_+^3 \leq \beta$, where $\beta \in \left(0, \frac{y^3 \sigma^2}{y^2 + \sigma^2}\right]$. Then

$$E f(X) \leq E f\left(\Gamma \sigma^2 - \frac{\beta}{y} + y \tilde{\Pi} \frac{\beta}{y^3}\right) \quad \forall f \in \mathcal{H}_+^3.$$

Sketch of proof By the “2-point zero-mean distrs. are extremal” lemma and the “monotonicity in σ and β” lemma, w.l.o.g. $X = X_{a_0, b_0}$ for some $a_0 > 0$ and $b_0 > 0$. Also, w.l.o.g. $f(x) \equiv (x - w)_+^3$. Also, by rescaling, w.l.o.g. $y = 1$.

Lemma (Main)

Let X be any r.v such that $X \leq y$ a.s., $E X \leq 0$, $E X^2 \leq \sigma^2$, and $E X_+^3 \leq \beta$, where $\beta \in \left(0, \frac{y^3 \sigma^2}{y^2 + \sigma^2}\right]$. Then

$$E f(X) \leq E f\left(\Gamma_{\sigma^2-\beta/y} + y \tilde{\Pi}_{\beta/y^3}\right) \quad \forall f \in \mathcal{H}_+^3.$$

Sketch of proof By the “2-point zero-mean distrs. are extremal” lemma and the “monotonicity in σ and β” lemma, w.l.o.g. $X = X_{a_0, b_0}$ for some $a_0 > 0$ and $b_0 > 0$. Also, w.l.o.g. $f(x) \equiv (x - w)^3_+$. Also, by rescaling, w.l.o.g. $y = 1$.
Lemma (Main)

Let X be any r.v such that $X \leq y$ a.s., $E X \leq 0$, $E X^2 \leq \sigma^2$, and $E X^3_+ \leq \beta$, where $\beta \in \left(0, \frac{y^3\sigma^2}{y^2+\sigma^2}\right]$. Then

$$E f(X) \leq E f\left(\Gamma_{\sigma^2-\beta/y} + y \tilde{\Pi}_{\beta/y^3}\right) \quad \forall f \in \mathcal{H}_3^+.$$

Sketch of proof

By the “2-point zero-mean distr.s. are extremal” lemma and the “monotonicity in σ and β” lemma, w.l.o.g. $X = X_{a_0,b_0}$ for some $a_0 > 0$ and $b_0 > 0$. Also, w.l.o.g. $f(x) \equiv (x - w)_+^3$. Also, by rescaling, w.l.o.g. $y = 1$.

Lemma (Main)

Let X be any r.v such that $X \leq y$ a.s., $E X \leq 0$, $E X^2 \leq \sigma^2$, and $E X_+^3 \leq \beta$, where $\beta \in \left(0, \frac{y^3 \sigma^2}{y^2 + \sigma^2}\right]$. Then

$$E f(X) \leq E f(\Gamma_{\sigma^2 - \beta/y} + y \tilde{\Pi}_{\beta/y^3}) \quad \forall f \in \mathcal{H}_+^3.$$

Sketch of proof By the “2-point zero-mean distrs. are extremal” lemma and the “monotonicity in σ and β” lemma, w.l.o.g. $X = X_{a_0, b_0}$ for some $a_0 > 0$ and $b_0 > 0$. Also, w.l.o.g. $f(x) \equiv (x - w)_+^3$. Also, by rescaling, w.l.o.g. $y = 1$.
Lemma (Main)

Let X be any r.v such that $X \leq y$ a.s., $E X \leq 0$, $E X^2 \leq \sigma^2$, and $E X^3_+ \leq \beta$, where $\beta \in \left(0, \frac{y^3 \sigma^2}{y^2 + \sigma^2}\right]$. Then

$$E f(X) \leq E f\left(\Gamma_\sigma^2 - \frac{\beta}{y} + y \tilde{\Pi}_{\beta/y^3}\right) \quad \forall f \in \mathcal{H}^3_+.$$

Sketch of proof By the “2-point zero-mean distrs. are extremal” lemma and the “monotonicity in σ and β” lemma, w.l.o.g. $X = X_{a_0, b_0}$ for some $a_0 > 0$ and $b_0 > 0$. Also, w.l.o.g. $f(x) \equiv (x - w)_+^3$. Also, by rescaling, w.l.o.g. $y = 1$.

14/32 Main lemma
Lemma (Main)

Let X be any r.v such that $X \leq y$ a.s., $E X \leq 0$, $E X^2 \leq \sigma^2$, and $E X_+^3 \leq \beta$, where $\beta \in \left(0, \frac{y^3 \sigma^2}{y^2 + \sigma^2}\right]$. Then

$$E f(X) \leq E f\left(\sigma^2 - \beta/y + y \tilde{\Pi}_{\beta/y^3}\right) \quad \forall f \in \mathcal{H}_+^3.$$

Sketch of proof By the “2-point zero-mean distrs. are extremal” lemma and the “monotonicity in σ and β” lemma, w.l.o.g. $X = X_{a_0, b_0}$ for some $a_0 > 0$ and $b_0 > 0$. Also, w.l.o.g. $f(x) \equiv (x - w)_+^3$. Also, by rescaling, w.l.o.g. $y = 1$.
Lemma (Main)

Let X be any r.v such that $X \leq y$ a.s., $E X \leq 0$, $E X^2 \leq \sigma^2$, and $E X_+^3 \leq \beta$, where $\beta \in \left(0, \frac{y^3 \sigma^2}{y^2 + \sigma^2}\right)$. Then

$$E f(X) \leq E f(\Gamma_{\sigma^2 - \beta/y} + y \tilde{\Pi}_{\beta/y^3}) \quad \forall f \in \mathcal{H}^3_+.$$

Sketch of proof By the “2-point zero-mean distrs. are extremal” lemma and the “monotonicity in σ and β” lemma, w.l.o.g. $X = X_{a_0, b_0}$ for some $a_0 > 0$ and $b_0 > 0$. Also, w.l.o.g. $f(x) \equiv (x - w)^3_+$. Also, by rescaling, w.l.o.g. $y = 1$.

Lemma (Main)

Let X be any r.v such that $X \leq y$ a.s., $E X \leq 0$, $E X^2 \leq \sigma^2$, and $E X_+^3 \leq \beta$, where $\beta \in \left(0, \frac{y^3 \sigma^2}{y^2 + \sigma^2}\right)$. Then

$$E f(X) \leq E f(\Gamma_{\sigma^2 - \beta/y} + y \tilde{\Pi}_{\beta/y^3}) \quad \forall f \in \mathcal{H}_+^3.$$

Sketch of proof By the “2-point zero-mean distrs. are extremal” lemma and the “monotonicity in σ and β” lemma, w.l.o.g. $X = X_{a_0, b_0}$ for some $a_0 > 0$ and $b_0 > 0$. Also, w.l.o.g. $f(x) \equiv (x - w)_+^3$. Also, by rescaling, w.l.o.g. $y = 1$.
The initial infinitesimal step:
Start with the r.v. X_{a_0,b_0}. Decrease a_0 and b_0 simultaneously by infinitesimal amounts $\Delta a > 0$ and $\Delta b > 0$ so that
\[
E(X_{a_0,b_0} - w)_+^3 \leq E(X_{a,b} + X_{\Delta_1,\Delta_1} + X_{\Delta_2,1} - w)_+^3 \quad \forall w \in \mathbb{R},
\]
where $X_{a,b}$, X_{Δ_1,Δ_1}, $X_{\Delta_2,1}$ are independent, $a = a_0 - \Delta a$ and $b = b_0 - \Delta b$, and $0 < \Delta_1 \approx 0$ and $0 < \Delta_2 \approx 0$ are chosen, together with Δa and Δb, so that to keep the balance of the total variance and that of the positive-part third moments closely enough:
\[
E X_{a,b}^2 + E X_{\Delta_1,\Delta_1}^2 + E X_{\Delta_2,1}^2 \approx E X_{a_0,b_0}^2
\]
and
\[
E(X_{a,b})_+^3 + E(X_{\Delta_1,\Delta_1})_+^3 + E(X_{\Delta_2,1})_+^3 \approx E(X_{a_0,b_0})_+^3.
\]
Refer to X_{Δ_1,Δ_1} and $X_{\Delta_2,1}$ as the symm. and highly asymm. infinitesimal spin-offs, resp.
The initial infinitesimal step:
Start with the r.v. X_{a_0,b_0}. Decrease a_0 and b_0 simultaneously by infinitesimal amounts $\Delta a > 0$ and $\Delta b > 0$ so that
$$E(X_{a_0,b_0} - w)_+^3 \leq E(X_{a,b} + X_{\Delta_1,\Delta_1} + X_{\Delta_2,1} - w)_+^3 \quad \forall w \in \mathbb{R},$$
where $X_{a,b}, X_{\Delta_1,\Delta_1}, X_{\Delta_2,1}$ are indep., $a = a_0 - \Delta a$ and $b = b_0 - \Delta b$, and $0 < \Delta_1 \approx 0$ and $0 < \Delta_2 \approx 0$ are chosen, together with Δa and Δb, so that to keep the balance of the total variance and that of the positive-part third moments closely enough:
$$E X_{a,b}^2 + E X_{\Delta_1,\Delta_1}^2 + E X_{\Delta_2,1}^2 \approx E X_{a_0,b_0}^2$$
and
$$E(X_{a,b})_+^3 + E(X_{\Delta_1,\Delta_1})_+^3 + E(X_{\Delta_2,1})_+^3 \approx E(X_{a_0,b_0})_+^3.$$
Refer to X_{Δ_1,Δ_1} and $X_{\Delta_2,1}$ as the symm. and highly asymm. infinitesimal spin-offs, resp.
The initial infinitesimal step:
Start with the r.v. X_{a_0,b_0}. Decrease a_0 and b_0 simultaneously by infinitesimal amounts $\Delta a > 0$ and $\Delta b > 0$ so that
\[E(X_{a_0,b_0} - w)_+^3 \leq E(X_{a,b} + X_{\Delta_1,\Delta_1} + X_{\Delta_2,1} - w)_+^3 \quad \forall w \in \mathbb{R}, \]
where $X_{a,b}$, X_{Δ_1,Δ_1}, $X_{\Delta_2,1}$ are indep., $a = a_0 - \Delta a$ and $b = b_0 - \Delta b$, and $0 < \Delta_1 \approx 0$ and $0 < \Delta_2 \approx 0$ are chosen, together with Δa and Δb, so that to keep the balance of the total variance and that of the positive-part third moments closely enough:
\[E X_{a,b}^2 + E X_{\Delta_1,\Delta_1}^2 + E X_{\Delta_2,1}^2 \approx E X_{a_0,b_0}^2 \]
and
\[E(X_{a,b})_+^3 + E(X_{\Delta_1,\Delta_1})_+^3 + E(X_{\Delta_2,1})_+^3 \approx E(X_{a_0,b_0})_+^3. \]
Refer to X_{Δ_1,Δ_1} and $X_{\Delta_2,1}$ as the symm. and highly asymm. infinitesimal spin-offs, resp.
The initial infinitesimal step:
Start with the r.v. X_{a_0,b_0}. Decrease a_0 and b_0 simultaneously by infinitesimal amounts $\Delta a > 0$ and $\Delta b > 0$ so that
$E(X_{a_0,b_0} - w)_+^3 \leq E(X_{a,b} + X_{\Delta_1,1} + X_{\Delta_2,1} - w)_+^3 \quad \forall w \in \mathbb{R}$,
where $X_{a,b}, X_{\Delta_1,1}, X_{\Delta_2,1}$ are indep., $a = a_0 - \Delta a$ and $b = b_0 - \Delta b$, and $0 < \Delta_1 \approx 0$ and $0 < \Delta_2 \approx 0$ are chosen, together with Δa and Δb, so that to keep the balance of the total variance and that of the positive-part third moments closely enough:
$E X_{a,b}^2 + E X_{\Delta_1,1}^2 + E X_{\Delta_2,1}^2 \approx E X_{a_0,b_0}^2$
and $E(X_{a,b})_+^3 + E(X_{\Delta_1,1})_+^3 + E(X_{\Delta_2,1})_+^3 \approx E(X_{a_0,b_0})_+^3$.
Refer to $X_{\Delta_1,1}$ and $X_{\Delta_2,1}$ as the symm. and highly asymm. infinitesimal spin-offs, resp.
The initial infinitesimal step:
Start with the r.v. X_{a_0,b_0}. Decrease a_0 and b_0 simultaneously by infinitesimal amounts $\Delta a > 0$ and $\Delta b > 0$ so that
\[
E(X_{a_0,b_0} - w)_+^3 \leq E(X_a + X_{\Delta_1,\Delta_1} + X_{\Delta_2,1} - w)_+^3 \quad \forall w \in \mathbb{R},
\]
where $X_{a,b}$, X_{Δ_1,Δ_1}, $X_{\Delta_2,1}$ are indep., $a = a_0 - \Delta a$ and $b = b_0 - \Delta b$, and $0 < \Delta_1 \approx 0$ and $0 < \Delta_2 \approx 0$ are chosen, together with Δa and Δb, so that to keep the balance of the total variance and that of the positive-part third moments closely enough:
\[
E X_{a,b}^2 + E X_{\Delta_1,\Delta_1}^2 + E X_{\Delta_2,1}^2 \approx E X_{a_0,b_0}^2
\]
and
\[
E(X_{a,b})_+^3 + E(X_{\Delta_1,\Delta_1})_+^3 + E(X_{\Delta_2,1})_+^3 \approx E(X_{a_0,b_0})_+^3.
\]
Refer to X_{Δ_1,Δ_1} and $X_{\Delta_2,1}$ as the symm. and highly asymm. infinitesimal spin-offs, resp.
The initial infinitesimal step:
Start with the r.v. X_{a_0,b_0}. Decrease a_0 and b_0 simultaneously by infinitesimal amounts $\Delta a > 0$ and $\Delta b > 0$ so that
\[
E(X_{a_0,b_0} - w)_+^3 \leq E(X_{a,b} + X_{\Delta_1,\Delta_1} + X_{\Delta_2,1} - w)_+^3 \quad \forall w \in \mathbb{R},
\]
where $X_{a,b}, X_{\Delta_1,\Delta_1}, X_{\Delta_2,1}$ are indep., $a = a_0 - \Delta a$ and $b = b_0 - \Delta b$, and $0 < \Delta_1 \approx 0$ and $0 < \Delta_2 \approx 0$ are chosen, together with Δa and Δb, so that to keep the balance of the total variance and that of the positive-part third moments closely enough:
\[
E X_{a,b}^2 + E X_{\Delta_1,\Delta_1}^2 + E X_{\Delta_2,1}^2 \approx E X_{a_0,b_0}^2
\]
and
\[
E(X_{a,b})_+^3 + E(X_{\Delta_1,\Delta_1})_+^3 + E(X_{\Delta_2,1})_+^3 \approx E(X_{a_0,b_0})_+^3.
\]
Refer to X_{Δ_1,Δ_1} and $X_{\Delta_2,1}$ as the symm. and highly asymm. infinitesimal spin-offs, resp.
Main idea of the proof of Lemma (Main): \textit{infinitesimal spin-off}

The initial infinitesimal step:
Start with the r.v. X_{a_0,b_0}. Decrease a_0 and b_0 simultaneously by infinitesimal amounts $\Delta a > 0$ and $\Delta b > 0$ so that
\[
E(X_{a_0,b_0} - w)^3_+ \leq E(X_{a,b} + X_{\Delta_1,\Delta_1} + X_{\Delta_2,1} - w)^3_+ \quad \forall w \in \mathbb{R},
\]
where $X_{a,b}, X_{\Delta_1,\Delta_1}, X_{\Delta_2,1}$ are indep., $a = a_0 - \Delta a$ and $b = b_0 - \Delta b$, and $0 < \Delta_1 \approx 0$ and $0 < \Delta_2 \approx 0$ are chosen, together with Δa and Δb, so that to keep the balance of the total variance and that of the positive-part third moments closely enough:
\[
E X_{a,b}^2 + E X_{\Delta_1,\Delta_1}^2 + E X_{\Delta_2,1}^2 \approx E X_{a_0,b_0}^2
\]
and $E(X_{a,b})^3_+ + E(X_{\Delta_1,\Delta_1})^3_+ + E(X_{\Delta_2,1})^3_+ \approx E(X_{a_0,b_0})^3_+$.
Refer to X_{Δ_1,Δ_1} and $X_{\Delta_2,1}$ as the symm. and highly asymm. infinitesimal spin-offs, resp.
The initial infinitesimal step:

Start with the r.v. X_{a_0,b_0}. Decrease a_0 and b_0 simultaneously by infinitesimal amounts $\Delta a > 0$ and $\Delta b > 0$ so that

$$E(X_{a_0,b_0} - w)_+^3 \leq E(X_{a,b} + X_{\Delta_1,\Delta_1} + X_{\Delta_2,1} - w)_+^3 \quad \forall w \in \mathbb{R},$$

where $X_{a,b}$, X_{Δ_1,Δ_1}, $X_{\Delta_2,1}$ are independent, $a = a_0 - \Delta a$ and $b = b_0 - \Delta b$, and $0 < \Delta_1 \approx 0$ and $0 < \Delta_2 \approx 0$ are chosen, together with Δa and Δb, so that to keep the balance of the total variance and that of the positive-part third moments closely enough:

$$E X_{a,b}^2 + E X_{\Delta_1,\Delta_1}^2 + E X_{\Delta_2,1}^2 \approx E X_{a_0,b_0}^2$$

and

$$E(X_{a,b})_+^3 + E(X_{\Delta_1,\Delta_1})_+^3 + E(X_{\Delta_2,1})_+^3 \approx E(X_{a_0,b_0})_+^3.$$

Refer to X_{Δ_1,Δ_1} and $X_{\Delta_2,1}$ as the symm. and highly asymm. infinitesimal spin-offs, resp.
The initial infinitesimal step:
Start with the r.v. X_{a_0,b_0}. Decrease a_0 and b_0 simultaneously by infinitesimal amounts $\Delta a > 0$ and $\Delta b > 0$ so that
\[E(X_{a_0,b_0} - w)^3_+ \leq E(X_{a,b} + X_{\Delta_1,\Delta_1} + X_{\Delta_2,1} - w)^3_+ \quad \forall w \in \mathbb{R}, \]
where $X_{a,b}$, X_{Δ_1,Δ_1}, $X_{\Delta_2,1}$ are indep., $a = a_0 - \Delta a$ and $b = b_0 - \Delta b$, and $0 < \Delta_1 \approx 0$ and $0 < \Delta_2 \approx 0$ are chosen, together with Δa and Δb, so that to keep the balance of the total variance and that of the positive-part third moments closely enough:
\[E X_{a,b}^2 + E X_{\Delta_1,\Delta_1}^2 + E X_{\Delta_2,1}^2 \approx E X_{a_0,b_0}^2 \]
and
\[E(X_{a,b})^3_+ + E(X_{\Delta_1,\Delta_1})^3_+ + E(X_{\Delta_2,1})^3_+ \approx E(X_{a_0,b_0})^3_+. \]
Refer to X_{Δ_1,Δ_1} and $X_{\Delta_2,1}$ as the symm. and highly asymm. infinitesimal spin-offs, resp.
The initial infinitesimal step:
Start with the r.v. X_{a_0,b_0}. Decrease a_0 and b_0 simultaneously by infinitesimal amounts $\Delta a > 0$ and $\Delta b > 0$ so that

$$E(X_{a_0,b_0} - w)^3_+ \leq E(X_{a,b} + X_{\Delta_1,\Delta_1} + X_{\Delta_2,1} - w)^3_+ \quad \forall w \in \mathbb{R},$$

where $X_{a,b}, X_{\Delta_1,\Delta_1}, X_{\Delta_2,1}$ are indep., $a = a_0 - \Delta a$ and $b = b_0 - \Delta b$, and $0 < \Delta_1 \approx 0$ and $0 < \Delta_2 \approx 0$ are chosen, together with Δa and Δb, so that to keep the balance of the total variance and that of the positive-part third moments closely enough:

$$EX_{a,b}^2 + EX_{\Delta_1,\Delta_1}^2 + EX_{\Delta_2,1}^2 \approx EX_{a_0,b_0}^2$$

and

$$E(X_{a,b})^3_+ + E(X_{\Delta_1,\Delta_1})^3_+ + E(X_{\Delta_2,1})^3_+ \approx E(X_{a_0,b_0})^3_+.$$

Refer to X_{Δ_1,Δ_1} and $X_{\Delta_2,1}$ as the symm. and highly asymm. infinitesimal spin-offs, resp.
The initial infinitesimal step:
Start with the r.v. X_{a_0,b_0}. Decrease a_0 and b_0 simultaneously by infinitesimal amounts $\Delta a > 0$ and $\Delta b > 0$ so that
\[
E(X_{a_0,b_0} - w)^3_+ \leq E(X_{a,b} + X_{\Delta_1,\Delta_1} + X_{\Delta_2,1} - w)^3_+ \quad \forall w \in \mathbb{R},
\]
where $X_{a,b}$, X_{Δ_1,Δ_1}, $X_{\Delta_2,1}$ are indep., $a = a_0 - \Delta a$ and $b = b_0 - \Delta b$, and $0 < \Delta_1 \approx 0$ and $0 < \Delta_2 \approx 0$ are chosen, together with Δa and Δb, so that to keep the balance of the total variance and that of the positive-part third moments closely enough:
\[
E X_{a,b}^2 + E X_{\Delta_1,\Delta_1}^2 + E X_{\Delta_2,1}^2 \approx E X_{a_0,b_0}^2
\]
and
\[
E(X_{a,b})_+^3 + E(X_{\Delta_1,\Delta_1})_+^3 + E(X_{\Delta_2,1})_+^3 \approx E(X_{a_0,b_0})_+^3.
\]
Refer to X_{Δ_1,Δ_1} and $X_{\Delta_2,1}$ as the symm. and highly asymm. infinitesimal spin-offs, resp.
Main idea of the proof of Lemma (Main): *infinitesimal spin-off*

The initial infinitesimal step:
Start with the r.v. X_{a_0,b_0}. Decrease a_0 and b_0 simultaneously by infinitesimal amounts $\Delta a > 0$ and $\Delta b > 0$ so that
\[
E(X_{a_0,b_0} - w)_+^3 \leq E(X_{a,b} + X_{\Delta_1,\Delta_1} + X_{\Delta_2,1} - w)_+^3 \quad \forall w \in \mathbb{R},
\]
where $X_{a,b}$, X_{Δ_1,Δ_1}, $X_{\Delta_2,1}$ are indep., $a = a_0 - \Delta a$ and $b = b_0 - \Delta b$, and $0 < \Delta_1 \approx 0$ and $0 < \Delta_2 \approx 0$ are chosen, together with Δa and Δb, so that to keep the balance of the total variance and that of the positive-part third moments closely enough:
\[
E X_{a,b}^2 + E X_{\Delta_1,\Delta_1}^2 + E X_{\Delta_2,1}^2 \approx E X_{a_0,b_0}^2
\]
and
\[
E(X_{a,b})_+^3 + E(X_{\Delta_1,\Delta_1})_+^3 + E(X_{\Delta_2,1})_+^3 \approx E(X_{a_0,b_0})_+^3.
\]
Refer to X_{Δ_1,Δ_1} and $X_{\Delta_2,1}$ as the symm. and highly asymm. infinitesimal spin-offs, resp.
The initial infinitesimal step:
Start with the r.v. X_{a_0, b_0}. Decrease a_0 and b_0 simultaneously by infinitesimal amounts $\Delta a > 0$ and $\Delta b > 0$ so that
\[
\mathbb{E}(X_{a_0, b_0} - w)^3_+ \leq \mathbb{E}(X_{a, b} + X_{\Delta_1, \Delta_1} + X_{\Delta_2, 1} - w)^3_+ \quad \forall w \in \mathbb{R},
\]
where $X_{a, b}, X_{\Delta_1, \Delta_1}, X_{\Delta_2, 1}$ are indep., $a = a_0 - \Delta a$ and $b = b_0 - \Delta b$, and $0 < \Delta_1 \approx 0$ and $0 < \Delta_2 \approx 0$ are chosen, together with Δa and Δb, so that to keep the balance of the total variance and that of the positive-part third moments closely enough:
\[
\mathbb{E}X_{a, b}^2 + \mathbb{E}X_{\Delta_1, \Delta_1}^2 + \mathbb{E}X_{\Delta_2, 1}^2 \approx \mathbb{E}X_{a_0, b_0}^2
\]
and $\mathbb{E}(X_{a, b})^3_+ + \mathbb{E}(X_{\Delta_1, \Delta_1})^3_+ + \mathbb{E}(X_{\Delta_2, 1})^3_+ \approx \mathbb{E}(X_{a_0, b_0})^3_+.$
Refer to X_{Δ_1, Δ_1} and $X_{\Delta_2, 1}$ as the symm. and highly asymm. infinitesimal spin-offs, resp.
Continue decreasing a and b while “spinning off” the indep. pairs of indep. infinitesimal spin-offs X_{Δ_1,Δ_1} and $X_{\Delta_2,1}$, at that keeping the balance of the total variance and that of the positive-part third moments, as described. Stop when $X_{a,b} = 0$ a.s., i.e., when a or b is decreased to 0 (if ever); such a termination point is indeed attainable. Then the sum of all the symm. indep. infinitesimal spin-offs X_{Δ_1,Δ_1} will have a centered Gaussian distr., while the sum of the highly asymmetric spin-offs $X_{\Delta_2,1}$’s will give a centered Poisson component. At that, the balances of the variances and positive-part third moments will each be kept (the infinitesimal X_{Δ_1,Δ_1}’s will provide in the limit a total zero contribution to the balance of the positive-part third moments).
Continue decreasing a and b while “spinning off” the indep. pairs of indep. infinitesimal spin-offs X_{Δ_1,Δ_1} and $X_{\Delta_2,1}$, at that keeping the balance of the total variance and that of the positive-part third moments, as described. Stop when $X_{a,b} = 0$ a.s., i.e., when a or b is decreased to 0 (if ever); such a termination point is indeed attainable. Then the sum of all the symm. indep. infinitesimal spin-offs X_{Δ_1,Δ_1} will have a centered Gaussian distr., while the sum of the highly asymmetric spin-offs $X_{\Delta_2,1}$’s will give a centered Poisson component. At that, the balances of the variances and positive-part third moments will each be kept (the infinitesimal X_{Δ_1,Δ_1}’s will provide in the limit a total zero contribution to the balance of the positive-part third moments).
Continue decreasing \(a \) and \(b \) while “spinning off” the indep. pairs of indep. infinitesimal spin-offs \(X_{\Delta_1, \Delta_1} \) and \(X_{\Delta_2, 1} \), at that keeping the balance of the total variance and that of the positive-part third moments, as described. Stop when \(X_{a, b} = 0 \) a.s., i.e., when \(a \) or \(b \) is decreased to 0 (if ever); such a termination point is indeed attainable. Then the sum of all the symm. indep. infinitesimal spin-offs \(X_{\Delta_1, \Delta_1} \) will have a centered Gaussian distr., while the sum of the highly asymmetric spin-offs \(X_{\Delta_2, 1} \)'s will give a centered Poisson component. At that, the balances of the variances and positive-part third moments will each be kept (the infinitesimal \(X_{\Delta_1, \Delta_1} \)'s will provide in the limit a total zero contribution to the balance of the positive-part third moments).
Continue decreasing a and b while “spinning off” the indep. pairs of indep. infinitesimal spin-offs X_{Δ_1,Δ_1} and $X_{\Delta_2,1}$, at that keeping the balance of the total variance and that of the positive-part third moments, as described. Stop when $X_{a,b} = 0$ a.s., i.e., when a or b is decreased to 0 (if ever); such a termination point is indeed attainable. Then the sum of all the symm. indep. infinitesimal spin-offs X_{Δ_1,Δ_1} will have a centered Gaussian distr., while the sum of the highly asymmetric spin-offs $X_{\Delta_2,1}$’s will give a centered Poisson component. At that, the balances of the variances and positive-part third moments will each be kept (the infinitesimal X_{Δ_1,Δ_1}’s will provide in the limit a total zero contribution to the balance of the positive-part third moments).
Continue decreasing a and b while “spinning off” the indep. pairs of indep. infinitesimal spin-offs X_{Δ_1,Δ_1} and $X_{\Delta_2,1}$, at that keeping the balance of the total variance and that of the positive-part third moments, as described. Stop when $X_{a,b} = 0$ a.s., i.e., when a or b is decreased to 0 (if ever); such a termination point is indeed attainable. Then the sum of all the symm. indep. infinitesimal spin-offs X_{Δ_1,Δ_1} will have a centered Gaussian distr., while the sum of the highly asymmetric spin-offs $X_{\Delta_2,1}$’s will give a centered Poisson component. At that, the balances of the variances and positive-part third moments will each be kept (the infinitesimal X_{Δ_1,Δ_1}’s will provide in the limit a total zero contribution to the balance of the positive-part third moments).
Continue decreasing a and b while “spinning off” the indep. pairs of indep. infinitesimal spin-offs X_{Δ_1, Δ_1} and $X_{\Delta_2, 1}$, at that keeping the balance of the total variance and that of the positive-part third moments, as described. Stop when $X_{a,b} = 0$ a.s., i.e., when a or b is decreased to 0 (if ever); such a termination point is indeed attainable. Then the sum of all the symm. indep. infinitesimal spin-offs X_{Δ_1, Δ_1} will have a centered Gaussian distr., while the sum of the highly asymmetric spin-offs $X_{\Delta_2, 1}$’s will give a centered Poisson component. At that, the balances of the variances and positive-part third moments will each be kept (the infinitesimal X_{Δ_1, Δ_1}’s will provide in the limit a total zero contribution to the balance of the positive-part third moments).
Continue decreasing a and b while “spinning off” the indep. pairs of indep. infinitesimal spin-offs X_{Δ_1,Δ_1} and $X_{\Delta_2,1}$, at that keeping the balance of the total variance and that of the positive-part third moments, as described. Stop when $X_{a,b} = 0$ a.s., i.e., when a or b is decreased to 0 (if ever); such a termination point is indeed attainable. Then the sum of all the symm. indep. infinitesimal spin-offs X_{Δ_1,Δ_1} will have a centered Gaussian distr., while the sum of the highly asymmetric spin-offs $X_{\Delta_2,1}$’s will give a centered Poisson component. At that, the balances of the variances and positive-part third moments will each be kept (the infinitesimal X_{Δ_1,Δ_1}’s will provide in the limit a total zero contribution to the balance of the positive-part third moments).
Continue decreasing a and b while “spinning off” the indep. pairs of indep. infinitesimal spin-offs X_{Δ_1,Δ_1} and $X_{\Delta_2,1}$, at that keeping the balance of the total variance and that of the positive-part third moments, as described. Stop when $X_{a,b} = 0$ a.s., i.e., when a or b is decreased to 0 (if ever); such a termination point is indeed attainable. Then the sum of all the symm. indep. infinitesimal spin-offs X_{Δ_1,Δ_1} will have a centered Gaussian distr., while the sum of the highly asymmetric spin-offs $X_{\Delta_2,1}$’s will give a centered Poisson component. At that, the balances of the variances and positive-part third moments will each be kept (the infinitesimal X_{Δ_1,Δ_1}’s will provide in the limit a total zero contribution to the balance of the positive-part third moments).
Continue decreasing a and b while “spinning off” the indep. pairs of indep. infinitesimal spin-offs X_{Δ_1, Δ_1} and $X_{\Delta_2, 1}$, at that keeping the balance of the total variance and that of the positive-part third moments, as described. Stop when $X_{a,b} = 0$ a.s., i.e., when a or b is decreased to 0 (if ever); such a termination point is indeed attainable. Then the sum of all the symm. indep. infinitesimal spin-offs X_{Δ_1, Δ_1} will have a centered Gaussian distr., while the sum of the highly asymmetric spin-offs $X_{\Delta_2, 1}$’s will give a centered Poisson component. At that, the balances of the variances and positive-part third moments will each be kept (the infinitesimal X_{Δ_1, Δ_1}’s will provide in the limit a total zero contribution to the balance of the positive-part third moments).
Continue decreasing a and b while “spinning off” the indep. pairs of indep. infinitesimal spin-offs X_{Δ_1,Δ_1} and $X_{\Delta_2,1}$, at that keeping the balance of the total variance and that of the positive-part third moments, as described. Stop when $X_{a,b} = 0$ a.s., i.e., when a or b is decreased to 0 (if ever); such a termination point is indeed attainable. Then the sum of all the symm. indep. infinitesimal spin-offs X_{Δ_1,Δ_1} will have a centered Gaussian distr., while the sum of the highly asymmetric spin-offs $X_{\Delta_2,1}$’s will give a centered Poisson component. At that, the balances of the variances and positive-part third moments will each be kept (the infinitesimal X_{Δ_1,Δ_1}’s will provide in the limit a total zero contribution to the balance of the positive-part third moments).
Continue decreasing a and b while “spinning off” the indep. pairs of indep. infinitesimal spin-offs $X_{\Delta_1,1}$ and $X_{\Delta_2,1}$, at that keeping the balance of the total variance and that of the positive-part third moments, as described. Stop when $X_{a,b} = 0$ a.s., i.e., when a or b is decreased to 0 (if ever); such a termination point is indeed attainable. Then the sum of all the symm. indep. infinitesimal spin-offs $X_{\Delta_1,1}$ will have a centered Gaussian distr., while the sum of the highly asymmetric spin-offs $X_{\Delta_2,1}$’s will give a centered Poisson component. At that, the balances of the variances and positive-part third moments will each be kept (the infinitesimal $X_{\Delta_1,1}$’s will provide in the limit a total zero contribution to the balance of the positive-part third moments).
Formalizing the spin-off idea, with a time-changed Lévy process

Introduce a family of r.v.’s of the form
\[\eta_b := X_{a(b), b} + \xi_{\tau(b)} \] for \(b \in [\varepsilon, b_0] \), where

\[\varepsilon := \beta / \sigma^2 = b_0^2 / (b_0 + a_0) < b_0, \]
\[a(b) := (b/\varepsilon - 1)b, \quad \tau(b) := a_0 b_0 - a(b)b, \quad \text{(balances)} \]
\[\xi_t := W_{(1-\varepsilon)t} + \tilde{\Pi}_{\varepsilon t}, \]

\(W \) and \(\tilde{\Pi} \) are indep. standard Wiener and centered standard Poisson processes, indep. of \(X_{a(b), b} \) for each \(b \in [\varepsilon, b_0] \). Note: \(a(b_0) = a_0 \) and \(a(\varepsilon) = 0 \), \(\tau(b_0) = 0 \) and \(\tau(\varepsilon) = a_0 b_0 = \sigma^2 \), so that
\[\eta_{b_0} = X_{a_0, b_0} \quad \text{and} \quad \eta_{\varepsilon} = W_{(1-\varepsilon)\sigma^2} + \tilde{\Pi}_{\varepsilon \sigma^2}. \]

Thus, it’s enough to show that \(E(\eta_b - w)^3 \) decr. in \(b \in [\varepsilon, b_0] \), for each \(w \in \mathbb{R} \).
Introduce a family of r.v.’s of the form

\[\eta_b := X_{a(b),b} + \xi_{\tau(b)} \quad \text{for} \quad b \in [\varepsilon, b_0], \]

where

\[\varepsilon := \beta / \sigma^2 = b_0^2 / (b_0 + a_0) < b_0, \]

\[a(b) := (b / \varepsilon - 1)b, \quad \tau(b) := a_0 b_0 - a(b) b, \quad \text{(balances)} \]

\[\xi_t := W(1-\varepsilon)t + \tilde{\Pi}_{\varepsilon t}, \]

\(W \) and \(\tilde{\Pi} \) are indep. standard Wiener and centered standard Poisson processes, indep. of \(X_{a(b),b} \) for each \(b \in [\varepsilon, b_0] \). Note:

\[a(b_0) = a_0 \quad \text{and} \quad a(\varepsilon) = 0, \quad \tau(b_0) = 0 \quad \text{and} \quad \tau(\varepsilon) = a_0 b_0 = \sigma^2, \]

so that

\[\eta_{b_0} = X_{a_0,b_0} \quad \text{and} \quad \eta_{\varepsilon} = W(1-\varepsilon)\sigma^2 + \tilde{\Pi}_{\varepsilon \sigma^2}. \]

Thus, it’s enough to show that \(E(\eta_b - w)^3 \) decr. in \(b \in [\varepsilon, b_0] \), for each \(w \in \mathbb{R} \).
Formalizing the spin-off idea, with a time-changed Lévy process

Introduce a family of r.v.'s of the form

$$\eta_b := X_{a(b),b} + \xi_{\tau(b)} \quad \text{for} \quad b \in [\varepsilon, b_0],$$

where

$$\varepsilon := \beta / \sigma^2 = b_0^2 / (b_0 + a_0) < b_0, \quad a(b) := (b / \varepsilon - 1) b, \quad \tau(b) := a_0 b_0 - a(b) b,$$

(balances)

$$\xi_t := W_{(1-\varepsilon)t} + \tilde{\Pi}_{\varepsilon t},$$

W and $\tilde{\Pi}$ are indep. standard Wiener and centered standard Poisson processes, indep. of $X_{a(b),b}$ for each $b \in [\varepsilon, b_0]$. Note: $a(b_0) = a_0$ and $a(\varepsilon) = 0$, $\tau(b_0) = 0$ and $\tau(\varepsilon) = a_0 b_0 = \sigma^2$, so that

$$\eta_{b_0} = X_{a_0,b_0} \quad \text{and} \quad \eta_{\varepsilon} = W_{(1-\varepsilon)\sigma^2} + \tilde{\Pi}_{\varepsilon \sigma^2}.$$

Thus, it's enough to show that $E(\eta_b - w)^3$ decr. in $b \in [\varepsilon, b_0]$, for each $w \in \mathbb{R}$.
Introduce a family of r.v.'s of the form
\[\eta_b := X_{a(b),b} + \xi_{\tau(b)} \quad \text{for} \quad b \in [\varepsilon, b_0], \quad \text{where} \]
\[\varepsilon := \beta/\sigma^2 = b_0^2/(b_0 + a_0) < b_0, \]
\[a(b) := (b/\varepsilon - 1)b, \quad \tau(b) := a_0b_0 - a(b)b, \quad \text{(balances)} \]
\[\xi_t := W_{(1-\varepsilon)t} + \tilde{\Pi}_{\varepsilon t}, \]
where \(W \) and \(\tilde{\Pi} \) are indep. standard Wiener and centered standard Poisson processes, indep. of \(X_{a(b),b} \) for each \(b \in [\varepsilon, b_0] \). Note:
\[a(b_0) = a_0 \quad \text{and} \quad a(\varepsilon) = 0, \quad \tau(b_0) = 0 \quad \text{and} \quad \tau(\varepsilon) = a_0b_0 = \sigma^2, \]
so that
\[\eta_{b_0} = X_{a_0,b_0} \quad \text{and} \quad \eta_{\varepsilon} = W_{(1-\varepsilon)\sigma^2} + \tilde{\Pi}_{\varepsilon\sigma^2}. \]
Thus, it's enough to show that \(\text{E}(\eta_b - w)^3 \) decre. in \(b \in [\varepsilon, b_0] \),
for each \(w \in \mathbb{R} \).
Introduce a family of r.v.’s of the form
\[\eta_b := X_{a(b),b} + \xi_{\tau(b)} \quad \text{for} \quad b \in [\varepsilon, b_0], \]
where
\[\varepsilon := \beta/\sigma^2 = b_0^2/(b_0 + a_0) < b_0, \]
\[a(b) := (b/\varepsilon - 1)b, \quad \tau(b) := a_0b_0 - a(b)b, \quad \text{balances} \]
\[\xi_t := W_{(1-\varepsilon)t} + \tilde{\Pi}_{\varepsilon t}, \]

\(W \) and \(\tilde{\Pi} \) are indep. standard Wiener and centered standard Poisson processes, indep. of \(X_{a(b),b} \) for each \(b \in [\varepsilon, b_0] \). Note:
\(a(b_0) = a_0 \) and \(a(\varepsilon) = 0, \quad \tau(b_0) = 0 \) and \(\tau(\varepsilon) = a_0b_0 = \sigma^2 \), so that
\[\eta_{b_0} = X_{a_0,b_0} \quad \text{and} \quad \eta_{\varepsilon} = W_{(1-\varepsilon)\sigma^2} + \tilde{\Pi}_{\varepsilon\sigma^2}. \]
Thus, it’s enough to show that \(E(\eta_b - w)^3 \) decr. in \(b \in [\varepsilon, b_0] \), for each \(w \in \mathbb{R} \).
Introduce a family of r.v.’s of the form
\[\eta_b := X_{a(b),b} + \xi_{\tau(b)} \quad \text{for} \quad b \in [\varepsilon, b_0], \quad \text{where} \]
\[\varepsilon := \beta/\sigma^2 = b_0^2/(b_0 + a_0) < b_0, \]
\[a(b) := (b/\varepsilon - 1)b, \quad \tau(b) := a_0b_0 - a(b)b, \quad \text{(balances)} \]
\[\xi_t := W_{(1-\varepsilon)t} + \tilde{\Pi}_{\varepsilon t}, \]
\[W \text{ and } \tilde{\Pi} \text{ are indep. standard Wiener and centered standard Poisson processes, indep. of } X_{a(b),b} \text{ for each } b \in [\varepsilon, b_0]. \]
Note: \(a(b_0) = a_0 \) and \(a(\varepsilon) = 0, \tau(b_0) = 0 \) and \(\tau(\varepsilon) = a_0b_0 = \sigma^2 \), so that
\[\eta_{b_0} = X_{a_0,b_0} \quad \text{and} \quad \eta_{\varepsilon} = W_{(1-\varepsilon)\sigma^2} + \tilde{\Pi}_{\varepsilon \sigma^2}. \]
Thus, it’s enough to show that \(\mathbb{E}(\eta_b - w)^3 \) decr. in \(b \in [\varepsilon, b_0] \), for each \(w \in \mathbb{R} \).
Introduce a family of r.v.’s of the form
\[\eta_b := X_{a(b),b} + \xi_{\tau(b)} \text{ for } b \in [\varepsilon, b_0], \]
where
\[\varepsilon := \frac{\beta}{\sigma^2} = \frac{b_0^2}{(b_0 + a_0)} < b_0, \]
\[a(b) := \left(\frac{b}{\varepsilon} - 1 \right)b, \quad \tau(b) := a_0 b_0 - a(b)b, \quad (\text{balances}) \]
\[\xi_t := W_{(1-\varepsilon)t} + \tilde{\Pi}_{\varepsilon t}, \]

\(W \) and \(\tilde{\Pi} \) are indep. standard Wiener and centered standard Poisson processes, indep. of \(X_{a(b),b} \) for each \(b \in [\varepsilon, b_0] \). Note:
\(a(b_0) = a_0 \) and \(a(\varepsilon) = 0 \), \(\tau(b_0) = 0 \) and \(\tau(\varepsilon) = a_0 b_0 = \sigma^2 \), so that
\[\eta_{b_0} = X_{a_0,b_0} \text{ and } \eta_{\varepsilon} = W_{(1-\varepsilon)\sigma^2} + \tilde{\Pi}_{\varepsilon \sigma^2}. \]

Thus, it’s enough to show that \(E(\eta_b - w)^3 \) decr. in \(b \in [\varepsilon, b_0] \), for each \(w \in \mathbb{R} \).
Formalizing the spin-off idea, with a time-changed Lévy process

Introduce a family of r.v.’s of the form
\[\eta_b := X_{a(b)} + \xi_{\tau(b)} \quad \text{for} \quad b \in [\varepsilon, b_0], \]
where
\[\varepsilon := \beta / \sigma^2 = b_0^2 / (b_0 + a_0) < b_0, \]
\[a(b) := (b / \varepsilon - 1) b, \quad \tau(b) := a_0 b_0 - a(b) b, \quad \text{(balances)} \]
\[\xi_t := W_{(1-\varepsilon)t} + \tilde{\Pi}_{\varepsilon t}, \]
\[W \text{ and } \tilde{\Pi} \text{ are indep. standard Wiener and centered standard Poisson processes, indep. of } X_{a(b)}, \text{ for each } b \in [\varepsilon, b_0]. \]
Note: \[a(b_0) = a_0 \text{ and } a(\varepsilon) = 0, \quad \tau(b_0) = 0 \text{ and } \tau(\varepsilon) = a_0 b_0 = \sigma^2, \]
so that
\[\eta_{b_0} = X_{a_0, b_0} \quad \text{and} \quad \eta_{\varepsilon} = W_{(1-\varepsilon)\sigma^2} + \tilde{\Pi}_{\varepsilon \sigma^2}. \]
Thus, it’s enough to show that \(E(\eta_b - w)^3 \) decr. in \(b \in [\varepsilon, b_0], \)
for each \(w \in \mathbb{R}. \)
Formalizing the spin-off idea, with a time-changed Lévy process

Introduce a family of r.v.’s of the form
\[\eta_b := X_{a(b),b} + \xi_{\tau(b)} \quad \text{for} \quad b \in [\varepsilon, b_0], \quad \text{where} \]
\[\varepsilon := \beta/\sigma^2 = b_0^2/(b_0 + a_0) < b_0, \]
\[a(b) := (b/\varepsilon - 1)b, \quad \tau(b) := a_0 b_0 - a(b)b, \quad \text{(balances)} \]
\[\xi_t := W_{(1-\varepsilon)t} + \tilde{\Pi}_{\varepsilon t}, \]
\[W \text{ and } \tilde{\Pi} \text{ are indep. standard Wiener and centered standard Poisson processes, indep. of } X_{a(b),b} \text{ for each } b \in [\varepsilon, b_0]. \]
Note: \(a(b_0) = a_0 \) and \(a(\varepsilon) = 0 \), \(\tau(b_0) = 0 \) and \(\tau(\varepsilon) = a_0 b_0 = \sigma^2 \), so that
\[\eta_{b_0} = X_{a_0,b_0} \quad \text{and} \quad \eta_{\varepsilon} = W_{(1-\varepsilon)\sigma^2} + \tilde{\Pi}_{\varepsilon \sigma^2}. \]
Thus, it’s enough to show that \(\mathbb{E}(\eta_b - w)^3 \) decr. in \(b \in [\varepsilon, b_0] \), for each \(w \in \mathbb{R} \).
Formalizing the spin-off idea, with a time-changed Lévy process

Introduce a family of r.v.’s of the form

\[\eta_b := X_{a(b),b} + \xi_{\tau(b)} \quad \text{for} \quad b \in [\varepsilon, b_0], \]

where

\[\varepsilon := \beta / \sigma^2 = b_0^2 / (b_0 + a_0) < b_0, \]
\[a(b) := (b / \varepsilon - 1)b, \quad \tau(b) := a_0 b_0 - a(b) b, \quad (\text{balances}) \]
\[\xi_t := W_{(1-\varepsilon)t} + \tilde{\Pi}_{\varepsilon t}, \]

\(W \) and \(\tilde{\Pi} \) are indep. standard Wiener and centered standard Poisson processes, indep. of \(X_{a(b),b} \) for each \(b \in [\varepsilon, b_0] \). Note: \(a(b_0) = a_0 \) and \(a(\varepsilon) = 0 \), \(\tau(b_0) = 0 \) and \(\tau(\varepsilon) = a_0 b_0 = \sigma^2 \), so that

\[\eta_{b_0} = X_{a_0,b_0} \quad \text{and} \quad \eta_{\varepsilon} = W_{(1-\varepsilon)\sigma^2} + \tilde{\Pi}_{\varepsilon\sigma^2}. \]

Thus, it’s enough to show that \(\mathbb{E}(\eta_b - w)^3 \) decr. in \(b \in [\varepsilon, b_0] \), for each \(w \in \mathbb{R} \).
Introduce a family of r.v.’s of the form
\[\eta_b := X_{a(b),b} + \xi_{\tau(b)} \quad \text{for} \quad b \in [\varepsilon, b_0], \]
where
\[\varepsilon := \beta / \sigma^2 = b_0^2 / (b_0 + a_0) < b_0, \]
\[a(b) := (b / \varepsilon - 1)b, \quad \tau(b) := a_0 b_0 - a(b)b, \quad \text{(balances)} \]
\[\xi_t := W_{(1-\varepsilon)t} + \tilde{\Pi}_{\varepsilon t}, \]
where \(W \) and \(\tilde{\Pi} \) are indep. standard Wiener and centered standard Poisson processes, indep. of \(X_{a(b),b} \) for each \(b \in [\varepsilon, b_0] \). Note: \(a(b_0) = a_0 \) and \(a(\varepsilon) = 0 \), \(\tau(b_0) = 0 \) and \(\tau(\varepsilon) = a_0 b_0 = \sigma^2 \), so that
\[\eta_{b_0} = X_{a_0,b_0} \quad \text{and} \quad \eta_{\varepsilon} = W_{(1-\varepsilon)\sigma^2} + \tilde{\Pi}_{\varepsilon \sigma^2}. \]
Thus, it’s enough to show that \(E(\eta_b - w)^3 \) decre. in \(b \in [\varepsilon, b_0] \), for each \(w \in \mathbb{R} \).
Introduce a family of r.v.’s of the form
\[\eta_b := X_{a(b), b} + \xi_{\tau(b)} \quad \text{for} \quad b \in [\varepsilon, b_0], \quad \text{where} \]
\[\varepsilon := \beta / \sigma^2 = b_0^2 / (b_0 + a_0) < b_0, \]
\[a(b) := (b / \varepsilon - 1)b, \quad \tau(b) := a_0 b_0 - a(b) b, \quad \text{(balances)} \]
\[\xi_t := W_{(1-\varepsilon)t} + \tilde{\Pi}_{\varepsilon t}, \]
\[W \text{ and } \tilde{\Pi} \text{ are indep. standard Wiener and centered standard Poisson processes, indep. of } X_{a(b), b} \text{ for each } b \in [\varepsilon, b_0]. \]
Note: \[a(b_0) = a_0 \text{ and } a(\varepsilon) = 0, \quad \tau(b_0) = 0 \text{ and } \tau(\varepsilon) = a_0 b_0 = \sigma^2, \]
so that
\[\eta_{b_0} = X_{a_0, b_0} \quad \text{and} \quad \eta_{\varepsilon} = W_{(1-\varepsilon)\sigma^2} + \tilde{\Pi}_{\varepsilon \sigma^2}. \]

Thus, it’s enough to show that \(\mathbb{E}(\eta_b - w)^3 \) decr. in \(b \in [\varepsilon, b_0], \) for each \(w \in \mathbb{R}. \)
Introduce a family of r.v.’s of the form

\[\eta_b := X_{a(b),b} + \xi_{\tau(b)} \] \text{ for } b \in [\varepsilon, b_0], \quad \text{where}

\[\varepsilon := \beta / \sigma^2 = b_0^2 / (b_0 + a_0) < b_0, \]

\[a(b) := (b / \varepsilon - 1)b, \quad \tau(b) := a_0 b_0 - a(b)b, \quad \text{(balances)} \]

\[\xi_t := W_{(1-\varepsilon)t} + \tilde{\Pi}_{\varepsilon t}, \]

\(W \) and \(\tilde{\Pi} \) are indep. standard Wiener and centered standard Poisson processes, indep. of \(X_{a(b),b} \) for each \(b \in [\varepsilon, b_0] \). Note: \(a(b_0) = a_0 \) and \(a(\varepsilon) = 0, \quad \tau(b_0) = 0 \) and \(\tau(\varepsilon) = a_0 b_0 = \sigma^2 \), so that

\[\eta_{b_0} = X_{a_0,b_0} \quad \text{and} \quad \eta_{\varepsilon} = W_{(1-\varepsilon)\sigma^2} + \tilde{\Pi}_{\varepsilon \sigma^2}. \]

Thus, it’s enough to show that \(E(\eta_b - w)^3 \) decr. in \(b \in [\varepsilon, b_0] \), for each \(w \in \mathbb{R} \).
Introduce a family of r.v.’s of the form
\[\eta_b := X_{a(b),b} + \xi_{\tau(b)} \quad \text{for} \quad b \in [\varepsilon, b_0], \quad \text{where} \]
\[\varepsilon := \beta/\sigma^2 = b_0^2/(b_0 + a_0) < b_0, \]
\[a(b) := (b/\varepsilon - 1)b, \quad \tau(b) := a_0 b_0 - a(b) b, \quad \text{(balances)} \]
\[\xi_t := W_{(1-\varepsilon)t} + \tilde{\Pi}_{\varepsilon t}, \]
\[W \text{ and } \tilde{\Pi} \text{ are indep. standard Wiener and centered standard Poisson processes, indep. of } X_{a(b),b} \text{ for each } b \in [\varepsilon, b_0]. \]
Note: \(a(b_0) = a_0 \) and \(a(\varepsilon) = 0, \tau(b_0) = 0 \) and \(\tau(\varepsilon) = a_0 b_0 = \sigma^2, \) so that
\[\eta_{b_0} = X_{a_0,b_0} \quad \text{and} \quad \eta_{\varepsilon} = W_{(1-\varepsilon)\sigma^2} + \tilde{\Pi}_{\varepsilon\sigma^2}. \]
Thus, it’s enough to show that \(E(\eta_b - w)^3 \) decr. in \(b \in [\varepsilon, b_0], \) for each \(w \in \mathbb{R}. \)
Proposition (PU(x) computation)

For all $\sigma > 0$, $y > 0$, $\varepsilon \in (0, 1)$, and $x \geq 0$

$$PU(x) = e^{-\lambda_x x} PU_{\text{exp}}(\lambda_x)$$

$$= \exp \frac{(1 - \varepsilon)^2 (w_x + 1)^2 - (\varepsilon + xy/\sigma^2)^2 - (1 - \varepsilon^2)}{2(1 - \varepsilon)y^2/\sigma^2},$$

$$\lambda_x := \frac{1}{y} \left(\frac{\varepsilon + xy/\sigma^2}{1 - \varepsilon} - w_x \right), \quad w_x := L\left(\frac{\varepsilon}{1 - \varepsilon} \exp \frac{\varepsilon + xy/\sigma^2}{1 - \varepsilon} \right),$$

and L is the Lambert product-log funct.: $\forall z \geq 0$, $w = L(z)$ is the only real root of the equation $we^w = z$.

Moreover, λ_x incr. in x from 0 to ∞ as x does so.

So, PU(x) is about as easy to compute as BH(x).
Proposition (PU(x) computation)

For all $\sigma > 0$, $y > 0$, $\varepsilon \in (0, 1)$, and $x \geq 0$

\[
PU(x) = e^{-\lambda_x x} PU_{\text{exp}}(\lambda_x)
\]

\[
= \exp \left(\frac{(1 - \varepsilon)^2(w_x + 1)^2 - (\varepsilon + xy/\sigma^2)^2 - (1 - \varepsilon^2)}{2(1 - \varepsilon)y^2/\sigma^2}\right),
\]

\[
\lambda_x := \frac{1}{y}\left(\frac{\varepsilon + xy/\sigma^2}{1 - \varepsilon} - w_x\right), \quad w_x := L\left(\frac{\varepsilon}{1 - \varepsilon} \exp \frac{\varepsilon + xy/\sigma^2}{1 - \varepsilon}\right),
\]

and L is the Lambert product-log funct.: $\forall z \geq 0$, $w = L(z)$ is the only real root of the equation $we^w = z$.
Moreover, λ_x incr. in x from 0 to ∞ as x does so.

So, PU(x) is about as easy to compute as BH(x).
Proposition (PU(x) computation)

For all $\sigma > 0$, $y > 0$, $\varepsilon \in (0, 1)$, and $x \geq 0$

\[
PU(x) = e^{-\lambda_x x} \cdot PU_{\exp}(\lambda_x) = \exp \left(\frac{(1 - \varepsilon)^2(w_x + 1)^2 - (\varepsilon + xy/\sigma^2)^2 - (1 - \varepsilon^2)}{2(1 - \varepsilon)y^2/\sigma^2} \right),
\]

\[
\lambda_x := \frac{1}{y} \left(\frac{\varepsilon + xy/\sigma^2}{1 - \varepsilon} - w_x \right), \quad w_x := L \left(\frac{\varepsilon}{1 - \varepsilon} \exp \frac{\varepsilon + xy/\sigma^2}{1 - \varepsilon} \right),
\]

and L is the Lambert product-log funct.: $\forall z \geq 0$, $w = L(z)$ is the only real root of the equation $we^w = z$.

Moreover, λ_x incr. in x from 0 to ∞ as x does so.

So, PU(x) is about as easy to compute as BH(x).
Proposition (PU(x) computation)

For all \(\sigma > 0, \ y > 0, \ \varepsilon \in (0, 1), \ \text{and} \ x \geq 0 *

\[
PU(x) = e^{-\lambda_x x} \ PU_{\exp}(\lambda_x) = \exp \left(\frac{(1 - \varepsilon)^2 (w_x + 1)^2 - (\varepsilon + xy/\sigma^2)^2 - (1 - \varepsilon)^2}{2(1 - \varepsilon)y^2/\sigma^2} \right),
\]

\[
\lambda_x := \frac{1}{y} \left(\frac{\varepsilon + xy/\sigma^2}{1 - \varepsilon} - w_x \right), \quad w_x := L \left(\frac{\varepsilon}{1 - \varepsilon} \exp \frac{\varepsilon + xy/\sigma^2}{1 - \varepsilon} \right),
\]

and \(L \) is the Lambert product-log funct.: \(\forall z \geq 0, \ w = L(z) \) is the only real root of the equation \(we^w = z \). Moreover, \(\lambda_x \) incr. in \(x \) from 0 to \(\infty \) as \(x \) does so.

So, \(PU(x) \) is about as easy to compute as \(BH(x) \).
Proposition (PU(x) computation)

For all $\sigma > 0$, $y > 0$, $\varepsilon \in (0,1)$, and $x \geq 0$

$$PU(x) = e^{-\lambda_x x} \text{PU}_e^{\exp}(\lambda_x)$$

$$= \exp \left(\frac{(1 - \varepsilon)^2 (w_x + 1)^2 - (\varepsilon + xy / \sigma^2)^2 - (1 - \varepsilon^2)^2 (1 - \varepsilon) \sqrt{y^2 / \sigma^2}}{2(1 - \varepsilon) y^2 / \sigma^2} \right),$$

$$\lambda_x := \frac{1}{y} \left(\frac{\varepsilon + xy / \sigma^2}{1 - \varepsilon} - w_x \right), \quad w_x := L \left(\frac{\varepsilon}{1 - \varepsilon} \exp \frac{\varepsilon + xy / \sigma^2}{1 - \varepsilon} \right),$$

and L is the Lambert product-log funct.: $\forall z \geq 0$, $w = L(z)$ is the only real root of the equation $we^w = z$.
Moreover, λ_x incr. in x from 0 to ∞ as x does so.

So, PU(x) is about as easy to compute as BH(x).
Proposition (PU(x) computation)

For all $\sigma > 0$, $y > 0$, $\varepsilon \in (0, 1)$, and $x \geq 0$

\[
PU(x) = e^{-\lambda_x x} PU_{\exp}(\lambda_x) = \exp \left(\frac{(1 - \varepsilon)^2(w_x + 1)^2 - (\varepsilon + xy/\sigma^2)^2 - (1 - \varepsilon^2)}{2(1 - \varepsilon)y^2/\sigma^2} \right),
\]

$$\lambda_x := \frac{1}{y} \left(\frac{\varepsilon + xy/\sigma^2}{1 - \varepsilon} - w_x \right), \quad w_x := L \left(\frac{\varepsilon}{1 - \varepsilon} \exp \frac{\varepsilon + xy/\sigma^2}{1 - \varepsilon} \right),$$

and L is the Lambert product-log funct.: $\forall z \geq 0$, $w = L(z)$ is the only real root of the equation $we^w = z$. Moreover, λ_x incr. in x from 0 to ∞ as x does so.

So, $PU(x)$ is about as easy to compute as $BH(x)$.
Proposition (PU(x) computation)

For all $\sigma > 0$, $y > 0$, $\varepsilon \in (0, 1)$, and $x \geq 0$

$$PU(x) = e^{-\lambda_x x} PU_{\exp}(\lambda_x)$$

$$= \exp \left(\frac{(1 - \varepsilon)^2(w_x + 1)^2 - (\varepsilon + xy/\sigma^2)^2 - (1 - \varepsilon^2)}{2(1 - \varepsilon)y^2/\sigma^2} \right),$$

$$\lambda_x := \frac{1}{y} \left(\frac{\varepsilon + xy/\sigma^2}{1 - \varepsilon} - w_x \right), \quad w_x := L \left(\frac{\varepsilon}{1 - \varepsilon} \exp \frac{\varepsilon + xy/\sigma^2}{1 - \varepsilon} \right),$$

and L is the Lambert product-log funct.: $\forall z \geq 0, w = L(z)$ is the only real root of the equation $we^w = z$.

Moreover, λ_x incr. in x from 0 to ∞ as x does so.

So, PU(x) is about as easy to compute as BH(x).
Proposition (PU(x) computation)

For all $\sigma > 0$, $y > 0$, $\varepsilon \in (0, 1)$, and $x \geq 0$

$$PU(x) = e^{-\lambda x} PU_{\exp}(\lambda x)$$

$$= \exp \left(\frac{(1 - \varepsilon)^2 (w_x + 1)^2 - (\varepsilon + xy/\sigma^2)^2 - (1 - \varepsilon^2)}{2(1 - \varepsilon)y^2/\sigma^2} \right),$$

$$\lambda_x := \frac{1}{y} \left(\frac{\varepsilon + xy/\sigma^2}{1 - \varepsilon} - w_x \right), \quad w_x := L \left(\frac{\varepsilon}{1 - \varepsilon} \exp \frac{\varepsilon + xy/\sigma^2}{1 - \varepsilon} \right),$$

and L is the Lambert product-log funct.: $\forall z \geq 0$, $w = L(z)$ is the only real root of the equation $we^w = z$.

Moreover, λ_x incr. in x from 0 to ∞ as x does so.

So, PU(x) is about as easy to compute as BH(x).
Proposition (PU(x) computation)

For all $\sigma > 0, y > 0, \varepsilon \in (0, 1), \text{and } x \geq 0$

$$PU(x) = e^{-\lambda x} PU_{\exp}(\lambda x)$$

$$= \exp \left(\frac{(1 - \varepsilon)^2 (w_x + 1)^2 - (\varepsilon + xy/\sigma^2)^2 - (1 - \varepsilon^2)}{2(1 - \varepsilon)y^2/\sigma^2} \right),$$

$$\lambda_x := \frac{1}{y} \left(\frac{\varepsilon + xy/\sigma^2}{1 - \varepsilon} - w_x \right), \quad w_x := L \left(\frac{\varepsilon}{1 - \varepsilon} \exp \frac{\varepsilon + xy/\sigma^2}{1 - \varepsilon} \right),$$

and L is the Lambert product-log funct.: $\forall z \geq 0, w = L(z)$ is the only real root of the equation $we^w = z$.

Moreover, λ_x incr. in x from 0 to ∞ as x does so.

So, PU(x) is about as easy to compute as BH(x).
Proposition (PU(x) computation)

For all $\sigma > 0$, $y > 0$, $\varepsilon \in (0, 1)$, and $x \geq 0$

$$PU(x) = e^{-\lambda_x} \text{PU}_{\exp}(\lambda_x)$$

$$= \exp \left(\frac{(1 - \varepsilon)^2(w_x + 1)^2 - (\varepsilon + xy/\sigma^2)^2 - (1 - \varepsilon^2)}{2(1 - \varepsilon)y^2/\sigma^2} \right),$$

$$\lambda_x := \frac{1}{y} \left(\frac{\varepsilon + xy/\sigma^2}{1 - \varepsilon} - w_x \right), \quad w_x := L\left(\frac{\varepsilon}{1 - \varepsilon} \exp \frac{\varepsilon + xy/\sigma^2}{1 - \varepsilon} \right),$$

and L is the Lambert product-log funct.: $\forall z \geq 0$, $w = L(z)$ is the only real root of the equation $w^w = z$.

Moreover, λ_x incr. in x from 0 to ∞ as x does so.

So, PU(x) is about as easy to compute as BH(x).
Proposition (PU(x) computation)

For all $\sigma > 0$, $y > 0$, $\varepsilon \in (0, 1)$, and $x \geq 0$

$$PU(x) = e^{-\lambda_x x} PU_{\text{exp}}(\lambda_x)$$

$$= \exp \left(\frac{(1 - \varepsilon)^2(w_x + 1)^2 - (\varepsilon + xy/\sigma^2)^2 - (1 - \varepsilon^2)}{2(1 - \varepsilon)y^2/\sigma^2} \right),$$

$$\lambda_x := \frac{1}{y} \left(\frac{\varepsilon + xy/\sigma^2}{1 - \varepsilon} - w_x \right), \quad w_x := L \left(\frac{\varepsilon}{1 - \varepsilon} \exp \frac{\varepsilon + xy/\sigma^2}{1 - \varepsilon} \right),$$

and L is the Lambert product-log function: $\forall z \geq 0$, $w = L(z)$ is the only real root of the equation $w^w = z$.

Moreover, λ_x incr. in x from 0 to ∞ as x does so.

So, PU(x) is about as easy to compute as BH(x).
Recall:
Be(x) := \(P_2(y\tilde{\eta}\sigma^2/y^2; x) \) and
Pin(x) := \(P_3(\Gamma_{(1-\varepsilon)}\sigma^2 + y\tilde{\eta}\varepsilon\sigma^2/y^2; x) \), where

\[
P_\alpha(\eta; x) := \inf_{t \in (-\infty, x)} \frac{E(\eta - t)^\alpha}{(x - t)^\alpha}.
\]

An efficient procedure to compute \(P_\alpha(\eta; x) \) in general was given in Pinelis '98.

In the case of \(\text{Be}(x) = P_2(y\tilde{\eta}\sigma^2/y^2; x) \), this general procedure can be much simplified. Indeed, if \(\alpha \) is natural and \(\cdots < d_k < d_{k+1} < \cdots \) are the atoms of the distr. of \(\eta \), then \(E(\eta - t)^\alpha_+ \) can be easily expressed for \(t \in [d_k, d_{k+1}) \) in terms of the truncated moments \(E(\eta - d_k)^j_+ \) with \(j = 0, \ldots, \alpha \).
Recall:
Be(x) := \(P_2(y \tilde{\Pi} \sigma^2/y^2; x) \) and
Pin(x) := \(P_3(\Gamma_{(1-\varepsilon)} \sigma^2 + y \tilde{\Pi} \varepsilon \sigma^2/y^2; x) \), where
\[
P_\alpha(\eta; x) := \inf_{t \in (-\infty, x)} \frac{\mathbb{E}(\eta - t)^\alpha}{(x - t)^\alpha}.
\]

An efficient procedure to compute \(P_\alpha(\eta; x) \) in general was given in Pinelis '98.
In the case of \(\text{Be}(x) = P_2(y \tilde{\Pi} \sigma^2/y^2; x) \), this general procedure can be much simplified. Indeed, if \(\alpha \) is natural and \(\cdots < d_k < d_{k+1} < \cdots \) are the atoms of the distr. of \(\eta \), then \(\mathbb{E}(\eta - t)^\alpha_+ \) can be easily expressed for \(t \in [d_k, d_{k+1}) \) in terms of the truncated moments \(\mathbb{E}(\eta - d_k)^j_+ \) with \(j = 0, \ldots, \alpha \).
Recall:
Be(x) := \(P_2(y\tilde{\eta}\sigma^2/y^2; x) \) and
Pin(x) := \(P_3(\Gamma_{(1-\varepsilon)\sigma^2 + y\tilde{\eta}\varepsilon\sigma^2/y^2}; x) \), where

\[P_\alpha(\eta; x) := \inf_{t \in (-\infty, x)} \frac{E(\eta - t)^\alpha_+}{(x - t)^\alpha}. \]

An efficient procedure to compute \(P_\alpha(\eta; x) \) in general was given in Pinelis '98.
In the case of Be(x) = \(P_2(y\tilde{\eta}\sigma^2/y^2; x) \), this general procedure can be much simplified. Indeed, if \(\alpha \) is natural and
\(\cdots < d_k < d_{k+1} < \cdots \) are the atoms of the distr. of \(\eta \), then
\(E(\eta - t)^\alpha_+ \) can be easily expressed for \(t \in [d_k, d_{k+1}) \) in terms of the truncated moments \(E(\eta - d_k)^j_+ \) with \(j = 0, \ldots, \alpha \).
Recall:
\(\text{Be}(x) := P_2(y \tilde{\Pi} \sigma^2/y^2; x) \) and
\(\text{Pin}(x) := P_3(\Gamma(1-\varepsilon)\sigma^2 + y \tilde{\Pi} \varepsilon \sigma^2/y^2; x), \) where

\[
P_\alpha(\eta; x) := \inf_{t \in (-\infty, x)} \frac{E(\eta - t)^\alpha_+}{(x - t)^\alpha}.
\]

An efficient procedure to compute \(P_\alpha(\eta; x) \) in general was given in Pinelis '98.

In the case of \(\text{Be}(x) = P_2(y \tilde{\Pi} \sigma^2/y^2; x) \), this general procedure can be much simplified. Indeed, if \(\alpha \) is natural and \(\cdots < d_k < d_{k+1} < \cdots \) are the atoms of the distr. of \(\eta \), then \(E(\eta - t)^\alpha_+ \) can be easily expressed for \(t \in [d_k, d_{k+1}) \) in terms of the truncated moments \(E(\eta - d_k)^j_+ \) with \(j = 0, \ldots, \alpha \).
Recall:
\[\text{Be}(x) := P_2(y \tilde{\eta}_\sigma^2 / y^2; x) \] and
\[\text{Pin}(x) := P_3(\Gamma(1-\varepsilon)\sigma^2 + y \tilde{\eta}_\varepsilon \sigma^2 / y^2; x), \] where

\[P_\alpha(\eta; x) := \inf_{t \in (-\infty, x)} \frac{E(\eta - t)^\alpha_+}{(x - t)^\alpha}. \]

An efficient procedure to compute \(P_\alpha(\eta; x) \) in general was given in Pinelis ’98.
In the case of \(\text{Be}(x) = P_2(y \tilde{\eta}_\sigma^2 / y^2; x) \), this general procedure can be much simplified. Indeed, if \(\alpha \) is natural and
\[\cdots < d_k < d_{k+1} < \cdots \] are the atoms of the distr. of \(\eta \), then
\(E(\eta - t)^\alpha_+ \) can be easily expressed for \(t \in [d_k, d_{k+1}) \) in terms of the truncated moments \(E(\eta - d_k)^j_+ \) with \(j = 0, \ldots, \alpha \).
Recall:
Be(x) := \mathcal{P}_2(y\tilde{\Pi}_\sigma^2 / y^2; x) and
Pin(x) := \mathcal{P}_3(\Gamma_{(1-\varepsilon)} \sigma^2 + y\tilde{\Pi}_{\varepsilon \sigma^2 / y^2}; x),
where

\[P_\alpha(\eta; x) := \inf_{t \in (-\infty, x)} \frac{\mathbb{E}(\eta - t)_+ ^\alpha}{(x - t)^\alpha}. \]

An efficient procedure to compute \(P_\alpha(\eta; x) \) in general was given in Pinelis '98.
In the case of \(\text{Be}(x) = \mathcal{P}_2(y\tilde{\Pi}_\sigma^2 / y^2; x) \), this general procedure can be much simplified. Indeed, if \(\alpha \) is natural and \(\cdots < d_k < d_{k+1} < \cdots \) are the atoms of the distr. of \(\eta \), then \(\mathbb{E}(\eta - t)_+ ^\alpha \) can be easily expressed for \(t \in [d_k, d_{k+1}) \) in terms of the truncated moments \(\mathbb{E}(\eta - d_k)_+ ^j \) with \(j = 0, \ldots, \alpha \).
Recall:
\(\text{Be}(x) := P_2(y\tilde{\Pi}_{\sigma^2/y^2};x) \) and
\(\text{Pin}(x) := P_3(\Gamma(1-\varepsilon)\sigma^2 + y\tilde{\Pi}_\varepsilon\sigma^2/y^2;x), \) where

\[
P_\alpha(\eta; x) := \inf_{t \in (-\infty, x)} \frac{\mathbb{E}(\eta - t)^\alpha_+}{(x - t)^\alpha}.
\]

An efficient procedure to compute \(P_\alpha(\eta; x) \) in general was given in Pinelis '98.
In the case of \(\text{Be}(x) = P_2(y\tilde{\Pi}_{\sigma^2/y^2};x) \), this general procedure can be much simplified. Indeed, if \(\alpha \) is natural and \(\cdots < d_k < d_{k+1} < \cdots \) are the atoms of the distr. of \(\eta \), then \(\mathbb{E}(\eta - t)^\alpha_+ \) can be easily expressed for \(t \in [d_k, d_{k+1}) \) in terms of the truncated moments \(\mathbb{E}(\eta - d_k)^j_+ \) with \(j = 0, \ldots, \alpha \).
Recall:
Be(x) := \(P_2(y\tilde{\Pi}_\sigma^2/y^2; x) \) and
Pin(x) := \(P_3(\Gamma(1-\varepsilon)\sigma^2 + y\tilde{\Pi}_\varepsilon\sigma^2/y^2; x) \), where

\[
P_\alpha(\eta; x) := \inf_{t \in (-\infty, x)} \frac{E(\eta - t)^\alpha}{(x - t)^\alpha}.
\]

An efficient procedure to compute \(P_\alpha(\eta; x) \) in general was given in Pinelis '98.
In the case of \(\text{Be}(x) = P_2(y\tilde{\Pi}_\sigma^2/y^2; x) \), this general procedure can be much simplified. Indeed, if \(\alpha \) is natural and

\(\cdots < d_k < d_{k+1} < \cdots \)

are the atoms of the distr. of \(\eta \), then

\(E(\eta - t)^\alpha_+ \) can be easily expressed for \(t \in [d_k, d_{k+1}) \) in terms of the truncated moments \(E(\eta - d_k)^j_+ \) with \(j = 0, \ldots, \alpha \).
Recall:
Be(\(x\)) := \(P_2(y\tilde{\Pi}\sigma^2/y^2; x)\) and
Pin(\(x\)) := \(P_3(\Gamma(1-\varepsilon)\sigma^2 + y\tilde{\Pi}\varepsilon\sigma^2/y^2; x),\) where
\[
P_\alpha(\eta; x) := \inf_{t \in (-\infty, x)} \frac{E(\eta - t)\alpha_+}{(x - t)\alpha}.
\]

An efficient procedure to compute \(P_\alpha(\eta; x)\) in general was given in Pinelis '98.
In the case of \(Be(x) = P_2(y\tilde{\Pi}\sigma^2/y^2; x),\) this general procedure can be much simplified. Indeed, if \(\alpha\) is natural and \(\cdots < d_k < d_{k+1} < \cdots\) are the atoms of the distr. of \(\eta,\) then \(E(\eta - t)\alpha_+\) can be easily expressed for \(t \in [d_k, d_{k+1})\) in terms of the truncated moments \(E(\eta - d_k)^j_+\) with \(j = 0, \ldots, \alpha.\)
For $\text{Pin}(x) = P_3(\Gamma(1-\varepsilon)\sigma^2 + y\tilde{\Pi}_\varepsilon\sigma^2/y^2; x)$, there is no such nice localization property as for $\text{Be}(x) = P_2(y\tilde{\Pi}_\sigma^2/y^2; x)$, since the distr. of the r.v. $\Gamma(1-\varepsilon)\sigma^2 + y\tilde{\Pi}_\varepsilon\sigma^2/y^2$ is not discrete.

A good way to compute $\text{Pin}(x)$ turns out to be to express the positive-part moments $E(\eta - t)_+^\alpha$ for $\eta = \Gamma(1-\varepsilon)\sigma^2 + y\tilde{\Pi}_\varepsilon\sigma^2/y^2$ in terms of the Fourier or Fourier-Laplace transform of the distribution of η. Such expressions were developed in Pinelis ’09 (with this specific motivation in mind). A reason for this approach to work is that the Fourier-Laplace transform of the distribution of the r.v. $\Gamma(1-\varepsilon)\sigma^2 + y\tilde{\Pi}_\varepsilon\sigma^2/y^2$ has a simple expression.
For $\text{Pin}(x) = P_3(\Gamma_{(1-\varepsilon)\sigma^2 + y\tilde{\Pi}_{\varepsilon\sigma^2/y^2}; x})$, there is no such nice localization property as for $\text{Be}(x) = P_2(y\tilde{\Pi}_{\sigma^2/y^2}; x)$, since the distr. of the r.v. $\Gamma_{(1-\varepsilon)\sigma^2 + y\tilde{\Pi}_{\varepsilon\sigma^2/y^2}}$ is not discrete.

A good way to compute $\text{Pin}(x)$ turns out to be to express the positive-part moments $E(\eta - t)_+^\alpha$ for $\eta = \Gamma_{(1-\varepsilon)\sigma^2 + y\tilde{\Pi}_{\varepsilon\sigma^2/y^2}}$ in terms of the Fourier or Fourier-Laplace transform of the distribution of η. Such expressions were developed in Pinelis’09 (with this specific motivation in mind). A reason for this approach to work is that the Fourier-Laplace transform of the distribution of the r.v. $\Gamma_{(1-\varepsilon)\sigma^2 + y\tilde{\Pi}_{\varepsilon\sigma^2/y^2}}$ has a simple expression.
For $\text{Pin}(x) = P_3(\Gamma_{(1-\varepsilon)}\sigma^2 + y\tilde{\Pi}_{\varepsilon\sigma^2/y^2}; x)$, there is no such nice localization property as for $\text{Be}(x) = P_2(y\tilde{\Pi}^{\varepsilon\sigma^2/y^2}; x)$, since the distr. of the r.v. $\Gamma_{(1-\varepsilon)}\sigma^2 + y\tilde{\Pi}_{\varepsilon\sigma^2/y^2}$ is not discrete.

A good way to compute $\text{Pin}(x)$ turns out to be to express the positive-part moments $\mathbb{E}(\eta - t)^\alpha_+$ for $\eta = \Gamma_{(1-\varepsilon)}\sigma^2 + y\tilde{\Pi}_{\varepsilon\sigma^2/y^2}$ in terms of the Fourier or Fourier-Laplace transform of the distribution of η. Such expressions were developed in Pinelis ’09 (with this specific motivation in mind). A reason for this approach to work is that the Fourier-Laplace transform of the distribution of the r.v. $\Gamma_{(1-\varepsilon)}\sigma^2 + y\tilde{\Pi}_{\varepsilon\sigma^2/y^2}$ has a simple expression.
For $\text{Pin}(x) = P_3(\Gamma_{(1-\varepsilon)\sigma^2 + y\tilde{\Pi}_{\varepsilon\sigma^2/y^2}}; x)$, there is no such nice localization property as for $\text{Be}(x) = P_2(\gamma\tilde{\Pi}\sigma^2/y^2; x)$, since the distr. of the r.v. $\Gamma_{(1-\varepsilon)\sigma^2 + y\tilde{\Pi}_{\varepsilon\sigma^2/y^2}}$ is not discrete.

A good way to compute $\text{Pin}(x)$ turns out to be to express the positive-part moments $E(\eta - t)^\alpha_+$ for $\eta = \Gamma_{(1-\varepsilon)\sigma^2 + y\tilde{\Pi}_{\varepsilon\sigma^2/y^2}}$ in terms of the Fourier or Fourier-Laplace transform of the distribution of η. Such expressions were developed in Pinelis ’09 (with this specific motivation in mind). A reason for this approach to work is that the Fourier-Laplace transform of the distribution of the r.v. $\Gamma_{(1-\varepsilon)\sigma^2 + y\tilde{\Pi}_{\varepsilon\sigma^2/y^2}}$ has a simple expression.
For $\text{Pin}(x) = \mathcal{P}_3(\Gamma (1-\varepsilon)\sigma^2 + y\tilde{\Pi}_\varepsilon\sigma^2/y^2; x)$, there is no such nice localization property as for $\text{Be}(x) = \mathcal{P}_2(y\tilde{\Pi}\sigma^2/y^2; x)$, since the distr. of the r.v. $\Gamma (1-\varepsilon)\sigma^2 + y\tilde{\Pi}_\varepsilon\sigma^2/y^2$ is not discrete.

A good way to compute $\text{Pin}(x)$ turns out to be to express the positive-part moments $\mathbb{E}(\eta - t)_+^\alpha$ for $\eta = \Gamma (1-\varepsilon)\sigma^2 + y\tilde{\Pi}_\varepsilon\sigma^2/y^2$ in terms of the Fourier or Fourier-Laplace transform of the distribution of η. Such expressions were developed in Pinelis ’09 (with this specific motivation in mind). A reason for this approach to work is that the Fourier-Laplace transform of the distribution of the r.v. $\Gamma (1-\varepsilon)\sigma^2 + y\tilde{\Pi}_\varepsilon\sigma^2/y^2$ has a simple expression.
For $\text{Pin}(x) = P_3(\Gamma(1-\varepsilon)\sigma^2 + y\tilde{\Pi}\varepsilon\sigma^2/y^2; x)$, there is no such nice localization property as for $\text{Be}(x) = P_2(y\tilde{\Pi}\sigma^2/y^2; x)$, since the distr. of the r.v. $\Gamma(1-\varepsilon)\sigma^2 + y\tilde{\Pi}\varepsilon\sigma^2/y^2$ is not discrete.

A good way to compute $\text{Pin}(x)$ turns out to be to express the positive-part moments $E((\eta - t)^{\alpha}_+)$ for $\eta = \Gamma(1-\varepsilon)\sigma^2 + y\tilde{\Pi}\varepsilon\sigma^2/y^2$ in terms of the Fourier or Fourier-Laplace transform of the distribution of η. Such expressions were developed in Pinelis ’09 (with this specific motivation in mind). A reason for this approach to work is that the Fourier-Laplace transform of the distribution of the r.v. $\Gamma(1-\varepsilon)\sigma^2 + y\tilde{\Pi}\varepsilon\sigma^2/y^2$ has a simple expression.
For \(\text{Pin}(x) = P_3(\Gamma (1-\varepsilon)\sigma^2 + y\tilde{\Pi}_\varepsilon\sigma^2/y^2; x) \), there is no such nice localization property as for \(\text{Be}(x) = P_2(y\tilde{\Pi}_\varepsilon\sigma^2/y^2; x) \), since the distr. of the r.v. \(\Gamma (1-\varepsilon)\sigma^2 + y\tilde{\Pi}_\varepsilon\sigma^2/y^2 \) is not discrete.

A good way to compute \(\text{Pin}(x) \) turns out to be to express the positive-part moments \(\mathbb{E}(\eta - t)\alpha_+ \) for \(\eta = \Gamma (1-\varepsilon)\sigma^2 + y\tilde{\Pi}_\varepsilon\sigma^2/y^2 \) in terms of the Fourier or Fourier-Laplace transform of the distribution of \(\eta \). Such expressions were developed in Pinelis ’09 (with this specific motivation in mind). A reason for this approach to work is that the Fourier-Laplace transform of the distribution of the r.v. \(\Gamma (1-\varepsilon)\sigma^2 + y\tilde{\Pi}_\varepsilon\sigma^2/y^2 \) has a simple expression.
For $\text{Pin}(x) = P_3(\Gamma(1-\varepsilon)\sigma^2 + y\tilde{\Pi}_{\varepsilon}\sigma^2/y^2; x)$, there is no such nice localization property as for $\text{Be}(x) = P_2(y\tilde{\Pi}\sigma^2/y^2; x)$, since the distr. of the r.v. $\Gamma(1-\varepsilon)\sigma^2 + y\tilde{\Pi}_{\varepsilon}\sigma^2/y^2$ is not discrete.

A good way to compute $\text{Pin}(x)$ turns out to be to express the positive-part moments $E(\eta - t)^{\alpha}_+$ for $\eta = \Gamma(1-\varepsilon)\sigma^2 + y\tilde{\Pi}_{\varepsilon}\sigma^2/y^2$ in terms of the Fourier or Fourier-Laplace transform of the distribution of η. Such expressions were developed in Pinelis ‘09 (with this specific motivation in mind). A reason for this approach to work is that the Fourier-Laplace transform of the distribution of the r.v. $\Gamma(1-\varepsilon)\sigma^2 + y\tilde{\Pi}_{\varepsilon}\sigma^2/y^2$ has a simple expression.
For $\text{Pin}(x) = P_3(\Gamma(1-\varepsilon)\sigma^2 + y\tilde{\Pi}_\varepsilon \sigma^2/y^2; x)$, there is no such nice localization property as for $\text{Be}(x) = P_2(y\tilde{\Pi}_\sigma \sigma^2/y^2; x)$, since the distr. of the r.v. $\Gamma(1-\varepsilon)\sigma^2 + y\tilde{\Pi}_\varepsilon \sigma^2/y^2$ is not discrete.

A good way to compute $\text{Pin}(x)$ turns out to be to express the positive-part moments $E(\eta - t)_{+}^\alpha$ for $\eta = \Gamma(1-\varepsilon)\sigma^2 + y\tilde{\Pi}_\varepsilon \sigma^2/y^2$ in terms of the Fourier or Fourier-Laplace transform of the distribution of η. Such expressions were developed in Pinelis’09 (with this specific motivation in mind). A reason for this approach to work is that the Fourier-Laplace transform of the distribution of the r.v. $\Gamma(1-\varepsilon)\sigma^2 + y\tilde{\Pi}_\varepsilon \sigma^2/y^2$ has a simple expression.
Expressions for the positive-part moments in terms of the Fourier or Fourier-Laplace transform

\[E X_+^p = \frac{\Gamma(p + 1)}{\pi} \int_0^\infty \Re \frac{E e_j((s + it)X)}{(s + it)^{p+1}} \, dt, \]

where \(p \in (0, \infty), \, s \in (0, \infty), \) \(\Gamma \) is the Gamma function, \(\Re z := \) the real part of \(z, \) \(i = \sqrt{-1}, \) \(j = -1, 0, \ldots, \ell, \)
\(\ell := \lfloor p - 1 \rfloor, \)
\(e_j(u) := e^u - \sum_{m=0}^{j} \frac{u^m}{m!}, \) and \(X \) is any r.v. s.t. \(E |X|^j_+ < \infty \) and \(E e^{sX} < \infty. \)

Also,

\[E X_+^p = \frac{E X^k}{2} I\{p \in \mathbb{N}\} + \frac{\Gamma(p + 1)}{\pi} \int_0^\infty \Re \frac{E e_\ell(itX)}{(it)^{p+1}} \, dt, \]

where \(k := \lfloor p \rfloor \) and \(X \) is any r.v. such that \(E |X|^p < \infty. \) Of course, these formulas are to be applied here to \(X = \Gamma(1-\epsilon)\sigma^2 + y \tilde{\Pi}_{\epsilon\sigma^2/y^2} - w, \) \(w \in \mathbb{R}. \)
Expressions for the positive-part moments in terms of the Fourier or Fourier-Laplace transform

\[\mathbb{E} X_+^p = \frac{\Gamma(p + 1)}{\pi} \int_0^\infty \text{Re} \frac{\mathbb{E} e^{j((s + it)X)}}{(s + it)^{p+1}} \, dt, \]

where \(p \in (0, \infty), s \in (0, \infty), \Gamma \) is the Gamma function, \(\text{Re} \, z := \) the real part of \(z \), \(i = \sqrt{-1}, j = -1, 0, \ldots, \ell \), \(\ell := \lceil p - 1 \rceil, \) \(e_j(u) := e^u - \sum_{m=0}^{j} \frac{u^m}{m!} \), and \(X \) is any r.v. s.t. \(\mathbb{E} |X|^p < \infty \) and \(\mathbb{E} e^{sX} < \infty \).

Also,

\[\mathbb{E} X_+^p = \frac{\mathbb{E} X^k}{2} \mathbb{1}_{\{p \in \mathbb{N}\}} + \frac{\Gamma(p + 1)}{\pi} \int_0^\infty \text{Re} \frac{\mathbb{E} e^\ell(itX)}{(it)^{p+1}} \, dt, \]

where \(k := \lfloor p \rfloor \) and \(X \) is any r.v. such that \(\mathbb{E} |X|^p < \infty \). Of course, these formulas are to be applied here to \(X = \Gamma(1-\varepsilon)\sigma^2 + y \tilde{N}_{\varepsilon\sigma^2/y^2} - w, \) \(w \in \mathbb{R} \).
Expressions for the positive-part moments in terms of the Fourier or Fourier-Laplace transform

\[E X_+^p = \frac{\Gamma(p + 1)}{\pi} \int_0^\infty \Re \frac{E e^{j((s + it)X)}}{(s + it)^{p+1}} \, dt, \]

where \(p \in (0, \infty) \), \(s \in (0, \infty) \), \(\Gamma \) is the Gamma function, \(\Re z := \text{the real part of } z \), \(i = \sqrt{-1} \), \(j = -1, 0, \ldots, \ell \),
\(\ell := \lceil p - 1 \rceil \), \(e_j(u) := e^u - \sum_{m=0}^{j} \frac{u^m}{m!} \), and \(X \) is any r.v. s.t. \(E |X|^j + < \infty \) and \(E e^{sX} < \infty \).

Also,

\[E X_+^p = \frac{EX^k}{2} \mathbf{1}_{\{p \in \mathbb{N}\}} + \frac{\Gamma(p + 1)}{\pi} \int_0^\infty \Re \frac{E e_\ell(itX)}{(it)^{p+1}} \, dt, \]

where \(k := \lfloor p \rfloor \) and \(X \) is any r.v. such that \(E |X|^p < \infty \). Of course, these formulas are to be applied here to
\(X = \Gamma(1-\varepsilon)\sigma^2 + y \tilde{\Pi} \varepsilon \sigma^2/y^2 - w, \) \(w \in \mathbb{R} \).
Expressions for the positive-part moments in terms of the Fourier or Fourier-Laplace transform

\[E X_+^p = \frac{\Gamma(p + 1)}{\pi} \int_0^\infty \Re \frac{E e^j((s + it)X)}{(s + it)^{p+1}} \, dt, \]

where \(p \in (0, \infty), s \in (0, \infty), \) \(\Gamma \) is the Gamma function, \(\Re z := \text{the real part of } z, \) \(i = \sqrt{-1}, j = -1, 0, \ldots, \ell, \)
\(\ell := \lfloor p - 1 \rfloor, \) \(e_j(u) := e^u - \sum_{m=0}^j \frac{u^m}{m!}, \) and \(X \) is any r.v. s.t. \(E |X|^p < \infty \) and \(E e^{sX} < \infty. \)

Also,

\[E X_+^p = \frac{EX^k}{2} \mathbb{1}\{p \in \mathbb{N}\} + \frac{\Gamma(p + 1)}{\pi} \int_0^\infty \Re \frac{E e_{\ell}(itX)}{(it)^{p+1}} \, dt, \]

where \(k := \lfloor p \rfloor \) and \(X \) is any r.v. such that \(E |X|^p < \infty. \) Of course, these formulas are to be applied here to \(X = \Gamma(1-\epsilon)\sigma^2 + y\tilde{\Pi}_{\epsilon\sigma^2/y^2} - w, w \in \mathbb{R}. \)
Expressions for the positive-part moments in terms of the Fourier or Fourier-Laplace transform

\[\mathbb{E} X_+^p = \frac{\Gamma(p + 1)}{\pi} \int_0^\infty \mathcal{R} \frac{\mathbb{E} e^j((s + it)X)}{(s + it)^{p+1}} \, dt, \]

where \(p \in (0, \infty), \ s \in (0, \infty), \ \Gamma \) is the Gamma function, \(\mathcal{R} \) \(z :\) the real part of \(z, \ i = \sqrt{-1}, \ j = -1, 0, \ldots, \ell, \)
\(\ell :\) \(\lfloor p - 1 \rfloor, \ e_j(u) :\) \(e^u - \sum_{m=0}^j \frac{u^m}{m!}, \) and \(X \) is any r.v. s.t. \(\mathbb{E}|X|^j < \infty \) and \(\mathbb{E} e^{sX} < \infty. \)

Also,

\[\mathbb{E} X_+^p = \frac{\mathbb{E} X^k}{2} \mathbb{1}\{p \in \mathbb{N}\} + \frac{\Gamma(p + 1)}{\pi} \int_0^\infty \mathcal{R} \frac{\mathbb{E} e_\ell(itX)}{(it)^{p+1}} \, dt, \]

where \(k :\) \(\lfloor p \rfloor \) and \(X \) is any r.v. such that \(\mathbb{E}|X|^p < \infty. \) Of course, these formulas are to be applied here to
\(X = \Gamma(1-\varepsilon)\sigma^2 + y\tilde{\Pi}_{\varepsilon}\sigma^2/y^2 - w, \ w \in \mathbb{R}. \)
Expressions for the positive-part moments in terms of the Fourier or Fourier-Laplace transform

\[E X_+^p = \frac{\Gamma(p + 1)}{\pi} \int_0^{\infty} \Re \frac{E e^j((s + it)X)}{(s + it)^{p+1}} \, dt, \]

where \(p \in (0, \infty), \ s \in (0, \infty), \) \(\Gamma \) is the Gamma function, \(\Re z := \) the real part of \(z, \ i = \sqrt{-1}, \ j = -1, 0, \ldots, \ell, \)

\(\ell := [p - 1], \ e_j(u) := e^u - \sum_{m=0}^{j} \frac{u^m}{m!}, \) and \(X \) is any r.v. s.t. \(E |X|^p < \infty \) and \(E e^{sX} < \infty. \)

Also,

\[E X_+^p = \frac{E X^k}{2} \mathbb{1}_{\{p \in \mathbb{N}\}} + \frac{\Gamma(p + 1)}{\pi} \int_0^{\infty} \Re \frac{E e_\ell(itX)}{(it)^{p+1}} \, dt, \]

where \(k := [p] \) and \(X \) is any r.v. such that \(E |X|^p < \infty. \) Of course, these formulas are to be applied here to \(X = \Gamma_{(1-\varepsilon)}\sigma^2 + y \tilde{\Pi}_{\varepsilon\sigma^2/y^2} - w, \ w \in \mathbb{R}. \)
Expressions for the positive-part moments in terms of the Fourier or Fourier-Laplace transform

\[E X_+^p = \frac{\Gamma(p + 1)}{\pi} \int_0^\infty \Re \frac{E e^j((s + it)X)}{(s + it)^{p+1}} \, dt, \]

where \(p \in (0, \infty), \ s \in (0, \infty), \ \Gamma \) is the Gamma function, \(\Re z := \text{the real part of } z, \ i = \sqrt{-1}, \ j = -1, 0, \ldots, \ell, \)
\(\ell := \lceil p - 1 \rceil, \ e_j(u) := e^u - \sum_{m=0}^j \frac{u^m}{m!}, \) and \(X \) is any r.v. s.t. \(E |X|^j_+ < \infty \) and \(E e^{sX} < \infty. \)

Also,

\[E X_+^p = \frac{E X^k}{2} \mathbb{1}_{\{p \in \mathbb{N}\}} + \frac{\Gamma(p + 1)}{\pi} \int_0^\infty \Re \frac{E e^{\ell(itX)}}{(it)^{p+1}} \, dt, \]

where \(k := \lfloor p \rfloor \) and \(X \) is any r.v. such that \(E |X|^p < \infty. \) Of course, these formulas are to be applied here to \(X = \Gamma(1-\varepsilon)\sigma^2 + y\tilde{\Pi}_{\varepsilon}\sigma^2/y^2 - w, \ w \in \mathbb{R}. \)
Expressions for the positive-part moments in terms of the Fourier or Fourier-Laplace transform

\[E X_+^p = \frac{\Gamma(p + 1)}{\pi} \int_0^\infty \Re \frac{E e^{j((s + it)X)}}{(s + it)^{p+1}} \, dt, \]

where \(p \in (0, \infty), s \in (0, \infty), \Gamma \) is the Gamma function, \(\Re z := \text{the real part of } z, i = \sqrt{-1}, j = -1, 0, \ldots, \ell, \).

\[\ell := [p - 1], e_j(u) := e^u - \sum_{m=0}^{\ell} \frac{u^m}{m!}, \text{ and } X \text{ is any r.v. s.t. } E|X|^{j+} < \infty \text{ and } E e^{sX} < \infty. \]

Also,

\[E X_+^p = \frac{EX_+^k}{2} \text{1}_{\{p \in \mathbb{N}\}} + \frac{\Gamma(p + 1)}{\pi} \int_0^\infty \Re \frac{E e^{\ell(itX)}}{(it)^{p+1}} \, dt, \]

where \(k := [p] \) and \(X \) is any r.v. such that \(E|X|^p < \infty \). Of course, these formulas are to be applied here to \(X = \Gamma(1-\epsilon)\sigma^2 + y\tilde{\Pi}_{\epsilon}\sigma^2/y^2 - w, w \in \mathbb{R}. \)
Expressions for the positive-part moments in terms of the Fourier or Fourier-Laplace transform

\[E X_+^p = \frac{\Gamma(p + 1)}{\pi} \int_0^\infty \Re \frac{E e^{j((s + it)X)}}{(s + it)^{p+1}} \, dt, \]

where \(p \in (0, \infty), \ s \in (0, \infty), \ \Gamma \) is the Gamma function, \(\Re z := \) the real part of \(z, \ i = \sqrt{-1}, \ j = -1, 0, \ldots, \ell, \)
\(\ell := \lceil p - 1 \rceil, \ e_j(u) := e^u - \sum_{m=0}^{j} \frac{u^m}{m!}, \) and \(X \) is any r.v. s.t. \(E|X|^j < \infty \) and \(E e^{sX} < \infty. \)

Also,

\[E X_+^p = \frac{EX^k}{2} \mathbb{1}_{\{p \in \mathbb{N}\}} + \frac{\Gamma(p + 1)}{\pi} \int_0^\infty \Re \frac{E e^{\ell(itX)}}{(it)^{p+1}} \, dt, \]

where \(k := \lfloor p \rfloor \) and \(X \) is any r.v. such that \(E|X|^p < \infty. \) Of course, these formulas are to be applied here to \(X = \Gamma(1-\varepsilon)\sigma^2 + y\tilde{\Pi}_\varepsilon\sigma^2/y^2 - w, \ w \in \mathbb{R}. \)
Expressions for the positive-part moments in terms of the Fourier or Fourier-Laplace transform

\[E X_+^p = \frac{\Gamma(p + 1)}{\pi} \int_0^\infty \Re \frac{E e^{j((s + it)X)}}{(s + it)^{p+1}} \, dt, \]

where \(p \in (0, \infty), s \in (0, \infty), \Gamma \) is the Gamma function, \(\Re z := \text{the real part of } z, i = \sqrt{-1}, j = -1, 0, \ldots, \ell, \ell : = \lceil p - 1 \rceil, \ e_j(u) := e^u - \sum_{m=0}^{j} \frac{u^m}{m!}, \) and \(X \) is any r.v. s.t. \(E |X|^p < \infty \) and \(E e^{sX} < \infty. \)

Also,

\[E X_+^p = \frac{E X^k}{2} I\{p \in \mathbb{N}\} + \frac{\Gamma(p + 1)}{\pi} \int_0^\infty \Re \frac{E e_{\ell}(itX)}{(it)^{p+1}} \, dt, \]

where \(k := \lfloor p \rfloor \) and \(X \) is any r.v. such that \(E |X|^p < \infty. \) Of course, these formulas are to be applied here to \(X = \Gamma(1-\varepsilon)\sigma^2 + y \tilde{\Pi}_{\varepsilon\sigma^2/y^2} - w, \ w \in \mathbb{R}. \)
Expressions for the positive-part moments in terms of the Fourier or Fourier-Laplace transform

\[E X_p^+ = \frac{\Gamma(p + 1)}{\pi} \int_0^\infty \Re \frac{E e^j((s + it)X)}{(s + it)^{p+1}} \, dt, \]

where \(p \in (0, \infty) \), \(s \in (0, \infty) \), \(\Gamma \) is the Gamma function, \(\Re z \) := the real part of \(z \), \(i = \sqrt{-1}, j = -1, 0, \ldots, \ell \), \(\ell := \lfloor p - 1 \rfloor \), \(e_j(u) := e^u - \sum_{m=0}^j \frac{u^m}{m!} \), and \(X \) is any r.v. s.t. \(E |X|^p < \infty \) and \(E e^{sX} < \infty \).

Also,

\[E X_p^+ = \frac{E X^k}{2} \mathbb{1}_{\{p \in \mathbb{N}\}} + \frac{\Gamma(p + 1)}{\pi} \int_0^\infty \Re \frac{E e^{\ell(itX)}}{(it)^{p+1}} \, dt, \]

where \(k := \lfloor p \rfloor \) and \(X \) is any r.v. such that \(E |X|^p < \infty \). Of course, these formulas are to be applied here to \(X = \Gamma(1-\varepsilon)\sigma^2 + y \tilde{\Pi} \varepsilon \sigma^2 / y^2 - w \), \(w \in \mathbb{R} \).
Expressions for the positive-part moments in terms of the Fourier or Fourier-Laplace transform

\[\mathbb{E} X_+^p = \frac{\Gamma(p+1)}{\pi} \int_0^\infty \Re \frac{\mathbb{E} e_j((s+it)X)}{(s+it)^{p+1}} \, dt, \]

where \(p \in (0, \infty), s \in (0, \infty), \Gamma \) is the Gamma function, \(\Re z := \) the real part of \(z \), \(i = \sqrt{-1}, j = -1, 0, \ldots, \ell \), \(\ell := \lceil p - 1 \rceil \), \(e_j(u) := e^u - \sum_{m=0}^{j} \frac{u^m}{m!} \), and \(X \) is any r.v. s.t. \(\mathbb{E} |X|^{j+} < \infty \) and \(\mathbb{E} e^{sX} < \infty \).

Also,

\[\mathbb{E} X_+^p = \frac{\mathbb{E} X^k}{2} \mathbb{I}\{p \in \mathbb{N}\} + \frac{\Gamma(p+1)}{\pi} \int_0^\infty \Re \frac{\mathbb{E} e_\ell(itX)}{(it)^{p+1}} \, dt, \]

where \(k := \lfloor p \rfloor \) and \(X \) is any r.v. such that \(\mathbb{E} |X|^p < \infty \). Of course, these formulas are to be applied here to \(X = \Gamma(1-\varepsilon)\sigma^2 + \sqrt{\bar{\Pi}}_{\varepsilon} \sigma^2 / y^2 - w, \ w \in \mathbb{R} \).
Expressions for the positive-part moments in terms of the Fourier or Fourier-Laplace transform

\[E X_+^p = \frac{\Gamma(p + 1)}{\pi} \int_0^\infty \text{Re} \frac{E e_j((s + it)X)}{(s + it)^{p+1}} \, dt, \]

where \(p \in (0, \infty), \ s \in (0, \infty), \ \Gamma \) is the Gamma function, \(\text{Re} \ z := \text{the real part of } z, \ i = \sqrt{-1}, \ j = -1, 0, \ldots, \ell, \)
\(\ell := \lceil p - 1 \rceil, \ e_j(u) := e^u - \sum_{m=0}^{j} \frac{u^m}{m!}, \) and \(X \) is any r.v. s.t. \(E |X|^+ < \infty \) and \(E e^{sX} < \infty. \)

Also,

\[E X_+^p = \frac{E X^k}{2} \mathbf{1}_{\{p \in \mathbb{N}\}} + \frac{\Gamma(p + 1)}{\pi} \int_0^\infty \text{Re} \frac{E e_\ell(itX)}{(it)^{p+1}} \, dt, \]

where \(k := \lfloor p \rfloor \) and \(X \) is any r.v. such that \(E |X|^p < \infty. \) Of course, these formulas are to be applied here to \(X = \Gamma(1-\epsilon)\sigma^2 + y \tilde{\Pi}_{\epsilon} \sigma^2/y^2 - w, \ w \in \mathbb{R}. \)
Expressions for the positive-part moments in terms of the Fourier or Fourier-Laplace transform

\[
\mathbb{E} X_+^p = \frac{\Gamma(p + 1)}{\pi} \int_0^\infty \Re \frac{\mathbb{E} e_j((s + it)X)}{(s + it)^{p+1}} \, dt,
\]

where \(p \in (0, \infty) \), \(s \in (0, \infty) \), \(\Gamma \) is the Gamma function, \(\Re z := \) the real part of \(z \), \(i = \sqrt{-1} \), \(j = -1, 0, \ldots, \ell \), \(\ell := \lceil p - 1 \rceil \), \(e_j(u) := e^u - \sum_{m=0}^j \frac{u^m}{m!} \), and \(X \) is any r.v. s.t. \(\mathbb{E} |X|^j_+ < \infty \) and \(\mathbb{E} e^{sX} < \infty \).

Also,

\[
\mathbb{E} X_+^p = \frac{\mathbb{E} X^k}{2} \mathbf{1}\{p \in \mathbb{N}\} + \frac{\Gamma(p + 1)}{\pi} \int_0^\infty \Re \frac{\mathbb{E} e_{\ell}(itX)}{(it)^{p+1}} \, dt,
\]

where \(k := \lfloor p \rfloor \) and \(X \) is any r.v. such that \(\mathbb{E} |X|^p < \infty \). Of course, these formulas are to be applied here to \(X = \Gamma(1-\varepsilon)\sigma^2 + y\tilde{\Pi}_\varepsilon\sigma^2/y^2 - w, \ w \in \mathbb{R}. \)
Expressions for the positive-part moments in terms of the Fourier or Fourier-Laplace transform

\[E X_+^p = \frac{\Gamma(p + 1)}{\pi} \int_0^{\infty} \Re e^{\ell(it)X} \frac{E e^{j((s + it)X)}}{(s + it)^{p+1}} \ dt, \]

where \(p \in (0, \infty), s \in (0, \infty), \Gamma \) is the Gamma function, \(\Re z := \text{the real part of } z, i = \sqrt{-1}, j = -1, 0, \ldots, \ell, \]
\(\ell := \lceil p - 1 \rceil, e_j(u) := e^u - \sum_{m=0}^{j} \frac{u^m}{m!}, \) and \(X \) is any r.v. s.t. \(E |X|^j+ < \infty \) and \(E e^{sX} < \infty. \)

Also,

\[E X_+^p = \frac{E X^k}{2} \mathbb{I}\{p \in \mathbb{N}\} + \frac{\Gamma(p + 1)}{\pi} \int_0^{\infty} \Re \frac{E e^{\ell(it)X}}{(it)^{p+1}} \ dt, \]

where \(k := \lfloor p \rfloor \) and \(X \) is any r.v. such that \(E |X|^p < \infty. \) Of course, these formulas are to be applied here to \(X = \Gamma(1-\varepsilon)\sigma^2 + y\tilde{\Pi}_{\varepsilon\sigma^2/y^2} - w, w \in \mathbb{R}. \)
Expressions for the positive-part moments in terms of the Fourier or Fourier-Laplace transform

\[\mathbb{E} X_+^p = \frac{\Gamma(p+1)}{\pi} \int_0^\infty \Re e \frac{\mathbb{E} e_j((s+it)X)}{(s+it)^{p+1}} \, dt, \]

where \(p \in (0, \infty) \), \(s \in (0, \infty) \), \(\Gamma \) is the Gamma function, \(\Re e z := \) the real part of \(z \), \(i = \sqrt{-1} \), \(j = -1, 0, \ldots, \ell \), \(\ell := \lceil p - 1 \rceil \), \(e_j(u) := e^u - \sum_{m=0}^j \frac{u^m}{m!} \), and \(X \) is any r.v. s.t. \(\mathbb{E} |X|^{j+} < \infty \) and \(\mathbb{E} e^{sX} < \infty \).

Also,

\[\mathbb{E} X_+^p = \frac{\mathbb{E} X^k}{2} \mathbb{I}\{p \in \mathbb{N}\} + \frac{\Gamma(p+1)}{\pi} \int_0^\infty \Re e \frac{\mathbb{E} e_\ell(itX)}{(it)^{p+1}} \, dt, \]

where \(k := \lfloor p \rfloor \) and \(X \) is any r.v. such that \(\mathbb{E} |X|^p < \infty \). Of course, these formulas are to be applied here to \(X = \Gamma(1-\varepsilon)\sigma^2 + y\tilde{\Pi}_\varepsilon\sigma^2/y^2 - w, \ w \in \mathbb{R} \).
Comparison

Compare the bounds BH, PU, Be, and Pin, and also the Cantelli bound
\[Ca(x) := Ca_{\sigma^2}(x) := \frac{\sigma^2}{\sigma^2 + x^2} \]
and the best exp. bound
\[EN(x) := EN_{\sigma^2}(x) \inf_{\lambda > 0} e^{-\lambda x} E e^{\lambda \Gamma \sigma^2} = \exp \left\{ -\frac{x^2}{2\sigma^2} \right\} \]
on the tail of \(N(0, \sigma^2) \); of course, in general \(EN(x) \) is not an upper bound on \(P(S \geq x) \).
The bound \(Ca(x) \) is optimal in its own terms.

Proposition

Take any \(x \in [0, \infty) \), \(\sigma \in (0, \infty) \), and r.v.’s \(\xi \) and \(\eta \) s.t. \(E \xi \leq 0 = E \eta \) and \(E \xi^2 \leq E \eta^2 = \sigma^2 \). Then
\[P(\xi \geq x) \leq Ca(x) = \inf_{t \in (-\infty, x)} \frac{E(\eta - t)^2}{(x - t)^2}. \]
Compare the bounds BH, PU, Be, and Pin, and also the Cantelli bound

\[Ca(x) := Ca_{\sigma^2}(x) := \frac{\sigma^2}{\sigma^2 + x^2} \]

and the best exp. bound

\[EN(x) := EN_{\sigma^2}(x) \inf_{\lambda > 0} e^{-\lambda x} E e^{\lambda \Gamma_{\sigma^2}} = \exp \left\{ - \frac{x^2}{2\sigma^2} \right\} \]

on the tail of N(0, \sigma^2); of course, in general EN(x) is not an upper bound on P(S \geq x).

The bound Ca(x) is optimal in its own terms.

Proposition

Take any \(x \in [0, \infty) \), \(\sigma \in (0, \infty) \), and r.v.'s \(\xi \) and \(\eta \) s.t. \(E \xi \leq 0 = E \eta \) and \(E \xi^2 \leq E \eta^2 = \sigma^2 \). Then

\[P(\xi \geq x) \leq Ca(x) = \inf_{t \in (-\infty, x)} \frac{E(\eta - t)^2}{(x - t)^2}. \]
Compare the bounds BH, PU, Be, and Pin, and also the Cantelli bound

$$Ca(x) := Ca_{\sigma^2}(x) := \frac{\sigma^2}{\sigma^2 + x^2}$$

and the best exp. bound

$$EN(x) := EN_{\sigma^2}(x) \inf_{\lambda > 0} e^{-\lambda x} E e^{\lambda \Gamma_{\sigma^2}} = \exp \left\{ - \frac{x^2}{2\sigma^2} \right\}$$

on the tail of $N(0, \sigma^2)$; of course, in general $EN(x)$ is not an upper bound on $P(S \geq x)$. The bound $Ca(x)$ is optimal in its own terms.

Proposition

Take any $x \in [0, \infty)$, $\sigma \in (0, \infty)$, and r.v.'s ξ and η s.t. $E \xi \leq 0 = E \eta$ and $E \xi^2 \leq E \eta^2 = \sigma^2$. Then

$$P(\xi \geq x) \leq Ca(x) = \inf_{t \in (-\infty, x)} \frac{E(\eta - t)^2}{(x - t)^2}.$$
Comparison

Compare the bounds BH, PU, Be, and Pin, and also the Cantelli bound

\[Ca(x) := Ca_\sigma^2(x) := \frac{\sigma^2}{\sigma^2 + x^2} \]

and the best exp. bound

\[EN(x) := EN_\sigma^2(x) \inf_{\lambda > 0} e^{-\lambda x} E e^{\lambda \Gamma \sigma^2} = \exp \left\{ - \frac{x^2}{2\sigma^2} \right\} \]

on the tail of \(N(0,\sigma^2) \); of course, in general \(EN(x) \) is not an upper bound on \(P(S \geq x) \).

The bound \(Ca(x) \) is optimal in its own terms.

Proposition

Take any \(x \in [0, \infty) \), \(\sigma \in (0, \infty) \), and r.v.’s \(\xi \) and \(\eta \) s.t.
\(E \xi \leq 0 = E \eta \) and \(E \xi^2 \leq E \eta^2 = \sigma^2 \). Then

\[P(\xi \geq x) \leq Ca(x) = \inf_{t \in (-\infty, x)} \frac{E(\eta - t)^2}{(x - t)^2}. \]
Comparison

Compare the bounds BH, PU, Be, and Pin, and also the Cantelli bound
\[Ca(x) := Ca_{\sigma^2}(x) := \frac{\sigma^2}{\sigma^2 + x^2} \]
and the best exp. bound
\[EN(x) := EN_{\sigma^2}(x) \inf_{\lambda > 0} e^{-\lambda x} E e^{\lambda \Gamma_{\sigma^2}} = \exp \left\{ -\frac{x^2}{2\sigma^2} \right\} \]
on the tail of \(N(0, \sigma^2)\); of course, in general \(EN(x)\) is not an upper bound on \(P(S \geq x)\).
The bound \(Ca(x)\) is optimal in its own terms.

Proposition

Take any \(x \in [0, \infty)\), \(\sigma \in (0, \infty)\), and r.v.’s \(\xi\) and \(\eta\) s.t. \(E\xi \leq 0 = E\eta\) and \(E\xi^2 \leq E\eta^2 = \sigma^2\). Then
\[P(\xi \geq x) \leq Ca(x) = \inf_{t \in (-\infty, x)} \frac{E(\eta - t)^2}{(x - t)^2}. \]
Compare the bounds BH, PU, Be, and Pin, and also the Cantelli bound
\[Ca(x) := Ca_{\sigma^2}(x) := \frac{\sigma^2}{\sigma^2 + x^2} \]
and the best exp. bound
\[EN(x) := EN_{\sigma^2}(x) \inf_{\lambda > 0} e^{-\lambda x} E e^{\lambda \Gamma_{\sigma^2}} = \exp \left\{ - \frac{x^2}{2\sigma^2} \right\} \]
on the tail of \(N(0, \sigma^2) \); of course, in general \(EN(x) \) is not an upper bound on \(P(S \geq x) \).
The bound \(Ca(x) \) is optimal in its own terms.

Proposition

Take any \(x \in [0, \infty), \sigma \in (0, \infty), \) and r.v.'s \(\xi \) and \(\eta \) s.t. \(E \xi \leq 0 = E \eta \) and \(E \xi^2 \leq E \eta^2 = \sigma^2 \). Then

\[P(\xi \geq x) \leq Ca(x) = \inf_{t \in (-\infty, x)} \frac{E(\eta - t)^2}{(x - t)^2}. \]
Compare the bounds BH, PU, Be, and Pin, and also the Cantelli bound

\[Ca(x) := Ca_{\sigma^2}(x) := \frac{\sigma^2}{\sigma^2 + x^2} \]

and the best exp. bound

\[EN(x) := EN_{\sigma^2}(x) \inf_{\lambda > 0} e^{-\lambda x} E e^{\lambda \Gamma_{\sigma^2}} = \exp \left\{ - \frac{x^2}{2\sigma^2} \right\} \]

on the tail of \(N(0, \sigma^2) \); of course, in general \(EN(x) \) is not an upper bound on \(P(S \geq x) \).

The bound \(Ca(x) \) is optimal in its own terms.

Proposition

Take any \(x \in [0, \infty) \), \(\sigma \in (0, \infty) \), and r.v.'s \(\xi \) and \(\eta \) s.t. \(E \xi \leq 0 = E \eta \) and \(E \xi^2 \leq E \eta^2 = \sigma^2 \). Then

\[P(\xi \geq x) \leq Ca(x) = \inf_{t \in (-\infty, x)} \frac{E(\eta - t)^2}{(x - t)^2}. \]
Compare the bounds BH, PU, Be, and Pin, and also the Cantelli bound
\[Ca(x) := Ca_{\sigma^2}(x) := \frac{\sigma^2}{\sigma^2 + x^2} \]
and the best exp. bound
\[EN(x) := EN_{\sigma^2}(x) \inf_{\lambda > 0} e^{-\lambda x} E e^{\lambda x_{\sigma^2}} = \exp \left\{ - \frac{x^2}{2\sigma^2} \right\} \]
on the tail of \(N(0, \sigma^2) \); of course, in general \(EN(x) \) is not an upper bound on \(P(S \geq x) \).
The bound \(Ca(x) \) is optimal in its own terms.

Proposition

Take any \(x \in [0, \infty) \), \(\sigma \in (0, \infty) \), and r.v.'s \(\xi \) and \(\eta \) s.t. \(E \xi \leq 0 = E \eta \) and \(E \xi^2 \leq E \eta^2 = \sigma^2 \). Then
\[P(\xi \geq x) \leq Ca(x) = \inf_{t \in (-\infty, x)} \frac{E(\eta - t)^2}{(x - t)^2}. \]
Compare the bounds BH, PU, Be, and Pin, and also the Cantelli bound
\[\text{Ca}(x) := \text{Ca}_{\sigma^2}(x) := \frac{\sigma^2}{\sigma^2 + x^2} \]
and the best exp. bound
\[\text{EN}(x) := \text{EN}_{\sigma^2}(x) \inf_{\lambda > 0} e^{-\lambda x} E e^{\lambda \Gamma_{\sigma^2}} = \exp \left\{ - \frac{x^2}{2\sigma^2} \right\} \]
on the tail of \(N(0, \sigma^2) \); of course, in general \(\text{EN}(x) \) is not an upper bound on \(P(S \geq x) \).
The bound \(\text{Ca}(x) \) is optimal in its own terms.

Proposition

Take any \(x \in [0, \infty) \), \(\sigma \in (0, \infty) \), *and r.v.’s \(\xi \) and \(\eta \) s.t.*
\(E \xi \leq 0 = E \eta \) and \(E \xi^2 \leq E \eta^2 = \sigma^2 \). *Then*
\[P(\xi \geq x) \leq \text{Ca}(x) = \inf_{t \in (-\infty, x)} \frac{E(\eta - t)^2}{(x - t)^2}. \]
Compare the bounds BH, PU, Be, and Pin, and also the Cantelli bound
\[Ca(x) := Ca_{\sigma^2}(x) := \frac{\sigma^2}{\sigma^2 + x^2}. \]
and the best exp. bound
\[EN(x) := EN_{\sigma^2}(x) \inf_{\lambda > 0} e^{-\lambda x} E e^{\lambda x} = \exp \left\{ -\frac{x^2}{2\sigma^2} \right\} \]
on the tail of \(N(0, \sigma^2) \); of course, in general \(EN(x) \) is not an upper bound on \(P(S \geq x) \).
The bound \(Ca(x) \) is optimal in its own terms.

Proposition

Take any \(x \in [0, \infty) \), \(\sigma \in (0, \infty) \), and r.v.'s \(\xi \) and \(\eta \) s.t.
\(E\xi \leq 0 = E\eta \) and \(E\xi^2 \leq E\eta^2 = \sigma^2 \). Then
\[
P(\xi \geq x) \leq Ca(x) = \inf_{t \in (-\infty, x)} \frac{E(\eta - t)^2}{(x - t)^2}.
\]
Proposition

For all $x > 0$, $\sigma > 0$, $y > 0$, and $\varepsilon \in (0, 1)$,

1. $\text{Pin}(x) \leq \text{PU}(x) \leq \text{BH}(x)$ and $\text{Be}(x) \leq \text{Ca}(x) \land \text{BH}(x)$;
2. $\text{Be}(x) = \text{Ca}(x)$ for all $x \in [0, y]$;
3. $\text{BH}(x)$ increases from $\text{EN}(x)$ to 1 as y increases from 0 to ∞;
4. $\exists u_{y/\sigma} \in (0, \infty)$ s.t. $\text{Ca}(x) < \text{BH}(x)$ if $x \in (0, \sigma u_{y/\sigma})$ and $\text{Ca}(x) > \text{BH}(x)$ if $x \in (\sigma u_{y/\sigma}, \infty)$; moreover, $u_{y/\sigma}$ incr. from $u_{0+} = 1.585 \ldots$ to ∞ as y/σ incr. from 0 to ∞; in particular, $\text{Ca}(x) < \text{EN}(x)$ if $x/\sigma \in (0, 1.585)$ and $\text{Ca}(x) > \text{EN}(x)$ for $x/\sigma \in (1.586, \infty)$.
5. $\text{PU}(x)$ incr. from $\text{EN}(x)$ to $\text{BH}(x)$ as ε incr. from 0 to 1.
Proposition

For all $x > 0$, $\sigma > 0$, $y > 0$, and $\varepsilon \in (0, 1)$,

(I) $\text{Pin}(x) \leq \text{PU}(x) \leq \text{BH}(x)$ and $\text{Be}(x) \leq \text{Ca}(x) \wedge \text{BH}(x)$;

(II) $\text{Be}(x) = \text{Ca}(x)$ for all $x \in [0, y]$;

(III) $\text{BH}(x)$ increases from $\text{EN}(x)$ to 1 as y increases from 0 to ∞;

(IV) $\exists u_{y/\sigma} \in (0, \infty)$ s.t. $\text{Ca}(x) < \text{BH}(x)$ if $x \in (0, \sigma u_{y/\sigma})$ and $\text{Ca}(x) > \text{BH}(x)$ if $x \in (\sigma u_{y/\sigma}, \infty)$; moreover, $u_{y/\sigma}$ incr. from $u_{0+} = 1.585 \ldots$ to ∞ as y/σ incr. from 0 to ∞; in particular, $\text{Ca}(x) < \text{EN}(x)$ if $x/\sigma \in (0, 1.585)$ and $\text{Ca}(x) > \text{EN}(x)$ for $x/\sigma \in (1.586, \infty)$.

(V) $\text{PU}(x)$ incr. from $\text{EN}(x)$ to $\text{BH}(x)$ as ε incr. from 0 to 1.
Proposition

For all $x > 0$, $\sigma > 0$, $y > 0$, and $\varepsilon \in (0, 1)$,

(I) $\text{Pin}(x) \leq \text{PU}(x) \leq \text{BH}(x)$ and $\text{Be}(x) \leq \text{Ca}(x) \land \text{BH}(x)$;

(II) $\text{Be}(x) = \text{Ca}(x)$ for all $x \in [0, y]$;

(III) $\text{BH}(x)$ increases from $\text{EN}(x)$ to 1 as y increases from 0 to ∞;

(IV) $\exists u_{y/\sigma} \in (0, \infty)$ s.t. $\text{Ca}(x) < \text{BH}(x)$ if $x \in (0, \sigma u_{y/\sigma})$ and $\text{Ca}(x) > \text{BH}(x)$ if $x \in (\sigma u_{y/\sigma}, \infty)$; moreover, $u_{y/\sigma}$ incr. from $u_{0+} = 1.585 \ldots$ to ∞ as y/σ incr. from 0 to ∞; in particular, $\text{Ca}(x) < \text{EN}(x)$ if $x/\sigma \in (0, 1.585)$ and $\text{Ca}(x) > \text{EN}(x)$ for $x/\sigma \in (1.586, \infty)$.

(V) $\text{PU}(x)$ incr. from $\text{EN}(x)$ to $\text{BH}(x)$ as ε incr. from 0 to 1.
Proposition

For all $x > 0$, $\sigma > 0$, $y > 0$, and $\varepsilon \in (0, 1)$,

(I) $\text{Pin}(x) \leq \text{PU}(x) \leq \text{BH}(x)$ and $\text{Be}(x) \leq \text{Ca}(x) \land \text{BH}(x)$;

(II) $\text{Be}(x) = \text{Ca}(x)$ for all $x \in [0, y]$;

(III) $\text{BH}(x)$ increases from $\text{EN}(x)$ to 1 as y increases from 0 to ∞;

(IV) $\exists u_{y/\sigma} \in (0, \infty)$ s.t. $\text{Ca}(x) < \text{BH}(x)$ if $x \in (0, \sigma u_{y/\sigma})$ and $\text{Ca}(x) > \text{BH}(x)$ if $x \in (\sigma u_{y/\sigma}, \infty)$; moreover, $u_{y/\sigma}$ incr. from $u_{0+} = 1.585 \ldots$ to ∞ as y/σ incr. from 0 to ∞; in particular, $\text{Ca}(x) < \text{EN}(x)$ if $x/\sigma \in (0, 1.585)$ and $\text{Ca}(x) > \text{EN}(x)$ for $x/\sigma \in (1.586, \infty)$.

(V) $\text{PU}(x)$ incr. from $\text{EN}(x)$ to $\text{BH}(x)$ as ε incr. from 0 to 1.
Proposition

For all $x > 0$, $\sigma > 0$, $y > 0$, and $\varepsilon \in (0, 1)$,

(I) $\operatorname{Pin}(x) \leq \operatorname{PU}(x) \leq \operatorname{BH}(x)$ and $\operatorname{Be}(x) \leq \operatorname{Ca}(x) \wedge \operatorname{BH}(x)$;

(II) $\operatorname{Be}(x) = \operatorname{Ca}(x)$ for all $x \in [0, y]$;

(III) $\operatorname{BH}(x)$ increases from $\operatorname{EN}(x)$ to 1 as y increases from 0 to ∞;

(IV) $\exists u_{y/\sigma} \in (0, \infty)$ s.t. $\operatorname{Ca}(x) < \operatorname{BH}(x)$ if $x \in (0, \sigma u_{y/\sigma})$ and $\operatorname{Ca}(x) > \operatorname{BH}(x)$ if $x \in (\sigma u_{y/\sigma}, \infty)$; moreover, $u_{y/\sigma}$ incr. from $u_{0+} = 1.585 \ldots$ to ∞ as y/σ incr. from 0 to ∞; in particular, $\operatorname{Ca}(x) < \operatorname{EN}(x)$ if $x/\sigma \in (0, 1.585)$ and $\operatorname{Ca}(x) > \operatorname{EN}(x)$ for $x/\sigma \in (1.586, \infty)$.

(V) $\operatorname{PU}(x)$ incr. from $\operatorname{EN}(x)$ to $\operatorname{BH}(x)$ as ε incr. from 0 to 1.
Proposition

For all \(x > 0, \sigma > 0, y > 0, \text{ and } \varepsilon \in (0, 1), \)

(I) \(\text{Pin}(x) \leq \text{PU}(x) \leq \text{BH}(x) \) and
\(\text{Be}(x) \leq \text{Ca}(x) \wedge \text{BH}(x); \)

(II) \(\text{Be}(x) = \text{Ca}(x) \) for all \(x \in [0, y]; \)

(III) \(\text{BH}(x) \) increases from \(\text{EN}(x) \) to 1
as \(y \) increases from 0 to \(\infty; \)

(IV) \(\exists u_{y/\sigma} \in (0, \infty) \) s.t. \(\text{Ca}(x) < \text{BH}(x) \) if \(x \in (0, \sigma u_{y/\sigma}) \) and
\(\text{Ca}(x) > \text{BH}(x) \) if \(x \in (\sigma u_{y/\sigma}, \infty); \) moreover, \(u_{y/\sigma} \) incr.
from \(u_{0^+} = 1.585 \ldots \) to \(\infty \) as \(y/\sigma \) incr. from 0 to \(\infty; \) in
particular, \(\text{Ca}(x) < \text{EN}(x) \) if \(x/\sigma \in (0, 1.585) \) and
\(\text{Ca}(x) > \text{EN}(x) \) for \(x/\sigma \in (1.586, \infty). \)

(V) \(\text{PU}(x) \) incr. from \(\text{EN}(x) \) to \(\text{BH}(x) \) as \(\varepsilon \) incr. from 0 to 1.
Comparison: ineqs.

Proposition

For all $x > 0$, $\sigma > 0$, $y > 0$, and $\varepsilon \in (0, 1)$,

(I) $\text{Pin}(x) \leq \text{PU}(x) \leq \text{BH}(x)$ and $\text{Be}(x) \leq \text{Ca}(x) \land \text{BH}(x)$;

(II) $\text{Be}(x) = \text{Ca}(x)$ for all $x \in [0, y]$;

(III) $\text{BH}(x)$ increases from $\text{EN}(x)$ to 1 as y increases from 0 to ∞;

(IV) $\exists u_{y/\sigma} \in (0, \infty)$ s.t. $\text{Ca}(x) < \text{BH}(x)$ if $x \in (0, \sigma u_{y/\sigma})$ and $\text{Ca}(x) > \text{BH}(x)$ if $x \in (\sigma u_{y/\sigma}, \infty)$; moreover, $u_{y/\sigma}$ incr. from $u_{0+} = 1.585 \ldots$ to ∞ as y/σ incr. from 0 to ∞; in particular, $\text{Ca}(x) < \text{EN}(x)$ if $x/\sigma \in (0, 1.585)$ and $\text{Ca}(x) > \text{EN}(x)$ for $x/\sigma \in (1.586, \infty)$.

(V) $\text{PU}(x)$ incr. from $\text{EN}(x)$ to $\text{BH}(x)$ as ε incr. from 0 to 1.
Proposition

For all $x > 0$, $\sigma > 0$, $y > 0$, and $\varepsilon \in (0, 1)$,

(I) $\text{Pin}(x) \leq \text{PU}(x) \leq \text{BH}(x)$ and $\text{Be}(x) \leq \text{Ca}(x) \wedge \text{BH}(x)$;

(II) $\text{Be}(x) = \text{Ca}(x)$ for all $x \in [0, y]$;

(III) $\text{BH}(x)$ increases from $\text{EN}(x)$ to 1 as y increases from 0 to ∞;

(IV) $\exists u_{y/\sigma} \in (0, \infty)$ s.t. $\text{Ca}(x) < \text{BH}(x)$ if $x \in (0, \sigma u_{y/\sigma})$ and $\text{Ca}(x) > \text{BH}(x)$ if $x \in (\sigma u_{y/\sigma}, \infty)$; moreover, $u_{y/\sigma}$ incr. from $u_{0+} = 1.585 \ldots$ to ∞ as y/σ incr. from 0 to ∞; in particular, $\text{Ca}(x) < \text{EN}(x)$ if $x/\sigma \in (0, 1.585)$ and $\text{Ca}(x) > \text{EN}(x)$ for $x/\sigma \in (1.586, \infty)$.

(V) $\text{PU}(x)$ incr. from $\text{EN}(x)$ to $\text{BH}(x)$ as ε incr. from 0 to 1.
Proposition

For all \(x > 0, \sigma > 0, y > 0, \) and \(\varepsilon \in (0, 1) \),

(I) \(\text{Pin}(x) \leq \text{PU}(x) \leq \text{BH}(x) \) and
\(\text{Be}(x) \leq \text{Ca}(x) \land \text{BH}(x) \);

(II) \(\text{Be}(x) = \text{Ca}(x) \) for all \(x \in [0, y] \);

(III) \(\text{BH}(x) \) increases from \(\text{EN}(x) \) to 1
as \(y \) increases from 0 to \(\infty \);

(IV) \(\exists u_{y/\sigma} \in (0, \infty) \) s.t. \(\text{Ca}(x) < \text{BH}(x) \) if \(x \in (0, \sigma u_{y/\sigma}) \) and
\(\text{Ca}(x) > \text{BH}(x) \) if \(x \in (\sigma u_{y/\sigma}, \infty) \); moreover, \(u_{y/\sigma} \) incr.
from \(u_{0+} = 1.585 \ldots \) to \(\infty \) as \(y/\sigma \) incr. from 0 to \(\infty \); in
particular, \(\text{Ca}(x) < \text{EN}(x) \) if \(x/\sigma \in (0, 1.585) \) and
\(\text{Ca}(x) > \text{EN}(x) \) for \(x/\sigma \in (1.586, \infty) \).

(V) \(\text{PU}(x) \) incr. from \(\text{EN}(x) \) to \(\text{BH}(x) \) as \(\varepsilon \) incr. from 0 to 1.
Proposition

For all $x > 0$, $\sigma > 0$, $y > 0$, and $\varepsilon \in (0, 1)$,

(I) $\text{Pin}(x) \leq \text{PU}(x) \leq \text{BH}(x)$ and $\text{Be}(x) \leq \text{Ca}(x) \land \text{BH}(x)$;

(II) $\text{Be}(x) = \text{Ca}(x)$ for all $x \in [0, y]$;

(III) $\text{BH}(x)$ increases from $\text{EN}(x)$ to 1 as y increases from 0 to ∞;

(IV) $\exists u_{y/\sigma} \in (0, \infty)$ s.t. $\text{Ca}(x) < \text{BH}(x)$ if $x \in (0, \sigma u_{y/\sigma})$ and $\text{Ca}(x) > \text{BH}(x)$ if $x \in (\sigma u_{y/\sigma}, \infty)$; moreover, $u_{y/\sigma}$ incr. from $u_{0+} = 1.585 \ldots$ to ∞ as y/σ incr. from 0 to ∞; in particular, $\text{Ca}(x) < \text{EN}(x)$ if $x/\sigma \in (0, 1.585)$ and $\text{Ca}(x) > \text{EN}(x)$ for $x/\sigma \in (1.586, \infty)$.

(V) $\text{PU}(x)$ incr. from $\text{EN}(x)$ to $\text{BH}(x)$ as ε incr. from 0 to 1.
For all $x > 0$, $\sigma > 0$, $y > 0$, and $\varepsilon \in (0, 1)$,

(I) $\text{Pin}(x) \leq \text{PU}(x) \leq \text{BH}(x)$ and $\text{Be}(x) \leq \text{Ca}(x) \wedge \text{BH}(x)$;

(II) $\text{Be}(x) = \text{Ca}(x)$ for all $x \in [0, y]$;

(III) $\text{BH}(x)$ increases from $\text{EN}(x)$ to 1 as y increases from 0 to ∞;

(IV) $\exists u_{y/\sigma} \in (0, \infty)$ s.t. $\text{Ca}(x) < \text{BH}(x)$ if $x \in (0, \sigma u_{y/\sigma})$ and $\text{Ca}(x) > \text{BH}(x)$ if $x \in (\sigma u_{y/\sigma}, \infty)$; moreover, $u_{y/\sigma}$ incr. from $u_{0+} = 1.585 \ldots$ to ∞ as y/σ incr. from 0 to ∞; in particular, $\text{Ca}(x) < \text{EN}(x)$ if $x/\sigma \in (0, 1.585)$ and $\text{Ca}(x) > \text{EN}(x)$ for $x/\sigma \in (1.586, \infty)$.

(V) $\text{PU}(x)$ incr. from $\text{EN}(x)$ to $\text{BH}(x)$ as ε incr. from 0 to 1.
Proposition

For all $x > 0$, $\sigma > 0$, $y > 0$, and $\varepsilon \in (0, 1)$,

(I) $\Pin(x) \leq \PU(x) \leq \BH(x)$ and $\Be(x) \leq \Ca(x) \wedge \BH(x)$;

(II) $\Be(x) = \Ca(x)$ for all $x \in [0, y]$;

(III) $\BH(x)$ increases from $\EN(x)$ to 1 as y increases from 0 to ∞;

(IV) $\exists u_{y/\sigma} \in (0, \infty)$ s.t. $\Ca(x) < \BH(x)$ if $x \in (0, \sigma u_{y/\sigma})$ and $\Ca(x) > \BH(x)$ if $x \in (\sigma u_{y/\sigma}, \infty)$; moreover, $u_{y/\sigma}$ incr. from $u_{0+} = 1.585 \ldots$ to ∞ as y/σ incr. from 0 to ∞; in particular, $\Ca(x) < \EN(x)$ if $x/\sigma \in (0, 1.585)$ and $\Ca(x) > \EN(x)$ for $x/\sigma \in (1.586, \infty)$.

(V) $\PU(x)$ incr. from $\EN(x)$ to $\BH(x)$ as ε incr. from 0 to 1.
Comparison: ineqs.

Proposition

For all $x > 0$, $\sigma > 0$, $y > 0$, and $\varepsilon \in (0, 1)$,

(I) $\text{Pin}(x) \leq \text{PU}(x) \leq \text{BH}(x)$ and $\text{Be}(x) \leq \text{Ca}(x) \wedge \text{BH}(x)$;

(II) $\text{Be}(x) = \text{Ca}(x)$ for all $x \in [0, y]$;

(III) $\text{BH}(x)$ increases from $\text{EN}(x)$ to 1 as y increases from 0 to ∞;

(IV) $\exists u_{y/\sigma} \in (0, \infty)$ s.t. $\text{Ca}(x) < \text{BH}(x)$ if $x \in (0, \sigma u_{y/\sigma})$ and $\text{Ca}(x) > \text{BH}(x)$ if $x \in (\sigma u_{y/\sigma}, \infty)$; moreover, $u_{y/\sigma}$ incr. from $u_{0^+} = 1.585 \ldots$ to ∞ as y/σ incr. from 0 to ∞; in particular, $\text{Ca}(x) < \text{EN}(x)$ if $x/\sigma \in (0, 1.585)$ and $\text{Ca}(x) > \text{EN}(x)$ for $x/\sigma \in (1.586, \infty)$.

(V) $\text{PU}(x)$ incr. from $\text{EN}(x)$ to $\text{BH}(x)$ as ε incr. from 0 to 1.
Proposition

For all $x > 0$, $\sigma > 0$, $y > 0$, and $\varepsilon \in (0, 1)$,

(I) $\text{Pin}(x) \leq \text{PU}(x) \leq \text{BH}(x)$ and $\text{Be}(x) \leq \text{Ca}(x) \wedge \text{BH}(x)$;

(II) $\text{Be}(x) = \text{Ca}(x)$ for all $x \in [0, y]$;

(III) $\text{BH}(x)$ increases from $\text{EN}(x)$ to 1 as y increases from 0 to ∞;

(IV) $\exists u_{y/\sigma} \in (0, \infty)$ s.t. $\text{Ca}(x) < \text{BH}(x)$ if $x \in (0, \sigma u_{y/\sigma})$ and $\text{Ca}(x) > \text{BH}(x)$ if $x \in (\sigma u_{y/\sigma}, \infty)$; moreover, $u_{y/\sigma}$ incr. from $u_{0+} = 1.585 \ldots$ to ∞ as y/σ incr. from 0 to ∞; in particular, $\text{Ca}(x) < \text{EN}(x)$ if $x/\sigma \in (0, 1.585)$ and $\text{Ca}(x) > \text{EN}(x)$ for $x/\sigma \in (1.586, \infty)$.

(V) $\text{PU}(x)$ incr. from $\text{EN}(x)$ to $\text{BH}(x)$ as ε incr. from 0 to 1.
Comparison: ineqs.

Proposition

For all \(x > 0, \sigma > 0, y > 0, \) and \(\varepsilon \in (0, 1), \)

(I) \(\text{Pin}(x) \leq \text{PU}(x) \leq \text{BH}(x) \) and \(\text{Be}(x) \leq \text{Ca}(x) \land \text{BH}(x); \)

(II) \(\text{Be}(x) = \text{Ca}(x) \) for all \(x \in [0, y]; \)

(III) \(\text{BH}(x) \) increases from \(\text{EN}(x) \) to 1 as \(y \) increases from 0 to \(\infty; \)

(IV) \(\exists u_{y/\sigma} \in (0, \infty) \) s.t. \(\text{Ca}(x) < \text{BH}(x) \) if \(x \in (0, \sigma u_{y/\sigma}) \) and \(\text{Ca}(x) > \text{BH}(x) \) if \(x \in (\sigma u_{y/\sigma}, \infty); \) moreover, \(u_{y/\sigma} \) incr. from \(u_{0+} = 1.585 \ldots \) to \(\infty \) as \(y/\sigma \) incr. from 0 to \(\infty; \) in particular, \(\text{Ca}(x) < \text{EN}(x) \) if \(x/\sigma \in (0, 1.585) \) and \(\text{Ca}(x) > \text{EN}(x) \) for \(x/\sigma \in (1.586, \infty). \)

(V) \(\text{PU}(x) \) incr. from \(\text{EN}(x) \) to \(\text{BH}(x) \) as \(\varepsilon \) incr. from 0 to 1.
Proposition

For all \(x > 0, \sigma > 0, y > 0, \) and \(\varepsilon \in (0, 1) \),

(I) \(\text{Pin}(x) \leq \text{PU}(x) \leq \text{BH}(x) \) and \(\text{Be}(x) \leq \text{Ca}(x) \land \text{BH}(x) \);

(II) \(\text{Be}(x) = \text{Ca}(x) \) for all \(x \in [0, y] \);

(III) \(\text{BH}(x) \) increases from \(\text{EN}(x) \) to 1 as \(y \) increases from 0 to \(\infty \);

(IV) \(\exists u_{y/\sigma} \in (0, \infty) \) s.t. \(\text{Ca}(x) < \text{BH}(x) \) if \(x \in (0, \sigma u_{y/\sigma}) \) and \(\text{Ca}(x) > \text{BH}(x) \) if \(x \in (\sigma u_{y/\sigma}, \infty) \); moreover, \(u_{y/\sigma} \) incr. from \(u_{0+} = 1.585 \ldots \) to \(\infty \) as \(y/\sigma \) incr. from 0 to \(\infty \); in particular, \(\text{Ca}(x) < \text{EN}(x) \) if \(x/\sigma \in (0, 1.585) \) and \(\text{Ca}(x) > \text{EN}(x) \) for \(x/\sigma \in (1.586, \infty) \).

(V) \(\text{PU}(x) \) incr. from \(\text{EN}(x) \) to \(\text{BH}(x) \) as \(\varepsilon \) incr. from 0 to 1.
Proposition

For all $\sigma > 0$, $y > 0$, $\varepsilon \in (0, 1)$, and $x > 0$

$$PU(x) = \max_{\alpha \in (0, 1)} EN_{(1-\varepsilon)\sigma^2}((1 - \alpha)x) BH_{\varepsilon\sigma^2, y}(\alpha x)$$

$$= EN_{(1-\varepsilon)\sigma^2}((1 - \alpha_x)x) BH_{\varepsilon\sigma^2, y}(\alpha_x x),$$

where α_x is the only root in $(0, 1)$ of the equation

$$\frac{(1-\alpha)x^2}{(1-\varepsilon)\sigma^2} - \frac{x}{y} \ln \left(1 + \frac{\alpha xy}{\varepsilon\sigma^2}\right) = 0.$$

Moreover, α_x incr. from ε to 1 as x incr. from 0 to ∞.

So, the bound $PU(x)$ is the product of the best exp. upper bounds on the tails $P(\Gamma_{(1-\varepsilon)\sigma^2} \geq (1 - \alpha)x)$ and $P(\Pi_{\varepsilon\sigma^2} \geq \alpha x) —$ for some $\alpha \in (0, 1)$ (in fact, the $\alpha \in (\varepsilon, 1)$).

This proposition is useful in establishing asymptotics of $PU(x)$.
Proposition

For all $\sigma > 0$, $y > 0$, $\varepsilon \in (0, 1)$, and $x > 0$

\[
PU(x) = \max_{\alpha \in (0,1)} EN_{(1-\varepsilon)\sigma^2}((1 - \alpha)x) \ BH_{\varepsilon\sigma^2,y}(\alpha x)
\]

\[
= EN_{(1-\varepsilon)\sigma^2}((1 - \alpha_x)x) \ BH_{\varepsilon\sigma^2,y}(\alpha_x x),
\]

where α_x is the only root in $(0, 1)$ of the equation

\[
\frac{(1-\alpha)x^2}{(1-\varepsilon)\sigma^2} - \frac{x}{y} \ln \left(1 + \frac{\alpha xy}{\varepsilon \sigma^2} \right) = 0.
\]

Moreover, α_x incr. from ε to 1 as x incr. from 0 to ∞.

So, the bound $PU(x)$ is the product of the best exp. upper bounds on the tails $P \left(\Gamma_{(1-\varepsilon)\sigma^2} \geq (1 - \alpha)x \right)$ and $P \left(\tilde{\Pi}_{\varepsilon\sigma^2} \geq \alpha x \right)$ — for some $\alpha \in (0, 1)$ (in fact, the $\alpha \in (\varepsilon, 1)$). This proposition is useful in establishing asymptotics of $PU(x)$.
Proposition

For all $\sigma > 0$, $y > 0$, $\varepsilon \in (0, 1)$, and $x > 0$

\[
PU(x) = \max_{\alpha \in (0,1)} EN_{(1-\varepsilon)\sigma^2}((1 - \alpha)x) BH_{\varepsilon\sigma^2,y}(\alpha x)
\]

\[
= EN_{(1-\varepsilon)\sigma^2}((1 - \alpha_x)x) BH_{\varepsilon\sigma^2,y}(\alpha_x x),
\]

where α_x is the only root in $(0, 1)$ of the equation

\[
\frac{(1-\alpha)x^2}{(1-\varepsilon)\sigma^2} - \frac{x}{y} \ln \left(1 + \frac{\alpha xy}{\varepsilon\sigma^2}\right) = 0.
\]

Moreover, α_x incr. from ε to 1 as x incr. from 0 to ∞.

So, the bound $PU(x)$ is the product of the best exp. upper bounds on the tails $P\left(\Gamma_{(1-\varepsilon)\sigma^2} \geq (1 - \alpha)x\right)$ and $P\left(\tilde{\Pi}_{\varepsilon\sigma^2} \geq \alpha x\right)$ — for some $\alpha \in (0, 1)$ (in fact, the $\alpha \in (\varepsilon, 1)$).

This proposition is useful in establishing asymptotics of $PU(x)$.
Proposition

For all $\sigma > 0$, $y > 0$, $\varepsilon \in (0, 1)$, and $x > 0$

$$PU(x) = \max_{\alpha \in (0, 1)} EN_{(1-\varepsilon)\sigma^2}((1 - \alpha)x) BH_{\varepsilon\sigma^2, y}(\alpha x)$$

$$= EN_{(1-\varepsilon)\sigma^2}((1 - \alpha_x)x) BH_{\varepsilon\sigma^2, y}(\alpha_x x),$$

where α_x is the only root in $(0, 1)$ of the equation

$$\frac{(1-\alpha)x^2}{(1-\varepsilon)\sigma^2} - \frac{x}{y} \ln \left(1 + \frac{\alpha xy}{\varepsilon\sigma^2}\right) = 0.$$

Moreover, α_x incr. from ε to 1 as x incr. from 0 to ∞.

So, the bound $PU(x)$ is the product of the best exp. upper bounds on the tails $P\left(\Gamma_{(1-\varepsilon)\sigma^2} \geq (1 - \alpha)x\right)$ and $P\left(\tilde{\Pi}_{\varepsilon\sigma^2} \geq \alpha x\right)$ — for some $\alpha \in (0, 1)$ (in fact, the $\alpha \in (\varepsilon, 1)$).

This proposition is useful in establishing asymptotics of $PU(x)$.
Proposition

For all $\sigma > 0$, $y > 0$, $\varepsilon \in (0, 1)$, and $x > 0$

\[
PU(x) = \max_{\alpha \in (0,1)} EN_{(1-\varepsilon)\sigma^2}((1 - \alpha)x) BH_{\varepsilon\sigma^2,y}(\alpha x) \\
= EN_{(1-\varepsilon)\sigma^2}((1 - \alpha_x)x) BH_{\varepsilon\sigma^2,y}(\alpha_x x),
\]

where α_x is the only root in $(0, 1)$ of the equation
\[
\frac{(1-\alpha)x^2}{(1-\varepsilon)\sigma^2} - \frac{x}{y} \ln \left(1 + \frac{\alpha xy}{\varepsilon\sigma^2}\right) = 0.
\]
Moreover, α_x incr. from ε to 1 as x incr. from 0 to ∞.

So, the bound $PU(x)$ is the product of the best exp. upper bounds on the tails $P \left(\Gamma_{(1-\varepsilon)\sigma^2} \geq (1 - \alpha)x \right)$ and $P \left(\tilde{\Pi}_{\varepsilon\sigma^2} \geq \alpha x \right)$ — for some $\alpha \in (0, 1)$ (in fact, the $\alpha \in (\varepsilon, 1)$). This proposition is useful in establishing asymptotics of $PU(x)$.
Proposition

For all $\sigma > 0$, $y > 0$, $\varepsilon \in (0, 1)$, and $x > 0$

$$PU(x) = \max_{\alpha \in (0,1)} EN(1-\varepsilon)^{\sigma^2}((1-\alpha)x) BH_{\varepsilon\sigma^2,y}(\alpha x)$$

$$= EN(1-\varepsilon)^{\sigma^2}((1-\alpha_x)x) BH_{\varepsilon\sigma^2,y}(\alpha_x x),$$

where α_x is the only root in $(0, 1)$ of the equation

$$\frac{(1-\alpha)x^2}{(1-\varepsilon)^{\sigma^2}} - \frac{x}{y} \ln \left(1 + \frac{\alpha xy}{\varepsilon \sigma^2}\right) = 0.$$

Moreover, α_x incr. from ε to 1 as x incr. from 0 to ∞.

So, the bound $PU(x)$ is the product of the best exp. upper bounds on the tails $P(\Gamma_{(1-\varepsilon)^{\sigma^2}} \geq (1-\alpha)x)$ and $P(\tilde{\Pi}_{\varepsilon\sigma^2} \geq \alpha x)$ — for some $\alpha \in (0, 1)$ (in fact, the $\alpha \in (\varepsilon, 1)$). This proposition is useful in establishing asymptotics of $PU(x)$.
Proposition

For all $\sigma > 0$, $y > 0$, $\varepsilon \in (0, 1)$, and $x > 0$

\[
PU(x) = \max_{\alpha \in (0, 1)} EN_{(1-\varepsilon)\sigma^2}((1 - \alpha)x) BH_{\varepsilon\sigma^2, y}(\alpha x)
\]

\[
= EN_{(1-\varepsilon)\sigma^2}((1 - \alpha_x)x) BH_{\varepsilon\sigma^2, y}(\alpha_x x),
\]

where α_x is the only root in $(0, 1)$ of the equation

\[
\frac{(1-\alpha)x^2}{(1-\varepsilon)\sigma^2} - \frac{x}{y} \ln \left(1 + \frac{\alpha xy}{\varepsilon\sigma^2}\right) = 0.
\]

Moreover, α_x incr. from ε to 1 as x incr. from 0 to ∞.

So, the bound $PU(x)$ is the product of the best exp. upper bounds on the tails $P\left(\Gamma_{(1-\varepsilon)\sigma^2} \geq (1 - \alpha)x\right)$ and $P\left(\tilde{\Pi}_{\varepsilon\sigma^2} \geq \alpha x\right)$ — for some $\alpha \in (0, 1)$ (in fact, the $\alpha \in (\varepsilon, 1)$).

This proposition is useful in establishing asymptotics of $PU(x)$.
Proposition

For all \(\sigma > 0, \ y > 0, \ \varepsilon \in (0, 1), \) and \(x > 0 \)

\[
PU(x) = \max_{\alpha \in (0,1)} EN_{(1-\varepsilon)\sigma^2}((1 - \alpha)x) BH_{\varepsilon\sigma^2,y}(\alpha x)
\]

\[
= EN_{(1-\varepsilon)\sigma^2}((1 - \alpha_x)x) BH_{\varepsilon\sigma^2,y}(\alpha_x x),
\]

where \(\alpha_x \) is the only root in \((0, 1)\) of the equation

\[
\frac{(1-\alpha)x^2}{(1-\varepsilon)\sigma^2} - \frac{x}{y} \ln \left(1 + \frac{\alpha xy}{\varepsilon\sigma^2} \right) = 0.
\]

Moreover, \(\alpha_x \) incr. from \(\varepsilon \) to 1 as \(x \) incr. from 0 to \(\infty \).

So, the bound \(PU(x) \) is the product of the best exp. upper bounds on the tails \(P \left((1-\varepsilon)\sigma^2 \geq (1 - \alpha)x \right) \) and
\(P \left(\tilde{\Pi}_{\varepsilon\sigma^2} \geq \alpha x \right) \) — for some \(\alpha \in (0, 1) \) (in fact, the \(\alpha \in (\varepsilon, 1) \)).

This proposition is useful in establishing asymptotics of \(PU(x) \).
Proposition

For all $\sigma > 0$, $y > 0$, $\varepsilon \in (0, 1)$, and $x > 0$

\[
PU(x) = \max_{\alpha \in (0,1)} EN(1-\varepsilon)\sigma^2((1 - \alpha)x) BH_{\varepsilon\sigma^2,y}(\alpha x)
\]

\[
= EN(1-\varepsilon)\sigma^2((1 - \alpha_x)x) BH_{\varepsilon\sigma^2,y}(\alpha_x x),
\]

where α_x is the only root in $(0, 1)$ of the equation

\[
\frac{(1 - \alpha)x^2}{(1 - \varepsilon)\sigma^2} - \frac{x}{y} \ln \left(1 + \frac{\alpha xy}{\varepsilon\sigma^2}\right) = 0.
\]

Moreover, α_x incr. from ε to 1 as x incr. from 0 to ∞.

So, the bound $PU(x)$ is the product of the best exp. upper bounds on the tails $P(\Gamma_{(1-\varepsilon)\sigma^2} \geq (1 - \alpha)x)$ and $P(\tilde{\Pi}_{\varepsilon\sigma^2} \geq \alpha x)$ — for some $\alpha \in (0, 1)$ (in fact, the $\alpha \in (\varepsilon, 1)$). This proposition is useful in establishing asymptotics of $PU(x)$.
Comparison: asymptotics for large $x > 0$

Proposition

For any fixed $\sigma > 0$, $y > 0$, and $\varepsilon \in (0, 1)$, and all $x \geq 0$

\[
\text{Pin}(x) \leq \text{PU}(x) = (\varepsilon + o(1))^{x/y} \text{Be}(x) \leq (\varepsilon + o(1))^{x/y} \text{BH}(x)
\]

as $x \to \infty$.

That is, for large x, the bound $\text{PU}(x)$ and, hence, the better bound $\text{Pin}(x)$ are each exponentially better than $\text{Be}(x)$ and hence than $\text{BH}(x)$ — especially when $\varepsilon \ll 1$.
Comparison: asymptotics for large $x > 0$

Proposition

For any fixed $\sigma > 0$, $y > 0$, and $\varepsilon \in (0, 1)$, and all $x \geq 0$

\[
\text{Pin}(x) \leq \text{PU}(x) = (\varepsilon + o(1))^{x/y} \text{Be}(x) \leq (\varepsilon + o(1))^{x/y} \text{BH}(x)
\]

as $x \to \infty$.

That is, for large x, the bound $\text{PU}(x)$ and, hence, the better bound $\text{Pin}(x)$ are each exponentially better than $\text{Be}(x)$ and hence than $\text{BH}(x)$ — especially when $\varepsilon \ll 1$.
Comparison: asymptotics for large $x > 0$

Proposition

For any fixed $\sigma > 0$, $y > 0$, and $\varepsilon \in (0, 1)$, and all $x \geq 0$

$$\text{Pin}(x) \leq \text{PU}(x) = \left(\varepsilon + o(1)\right)^{x/y} \text{Be}(x) \leq \left(\varepsilon + o(1)\right)^{x/y} \text{BH}(x)$$

as $x \to \infty$.

That is, for large x, the bound $\text{PU}(x)$ and, hence, the better bound $\text{Pin}(x)$ are each exponentially better than $\text{Be}(x)$ and hence than $\text{BH}(x)$ — especially when $\varepsilon \ll 1$.

On the BH ineq.
Pinelis
Outline
Introduction
Main results
Sketch of proof
Computation of bounds
Comparison of bounds
Comparison: asymptotics for large $x > 0$

Proposition

For any fixed $\sigma > 0$, $y > 0$, and $\varepsilon \in (0, 1)$, and all $x \geq 0$

$$\text{Pin}(x) \leq \text{PU}(x) = (\varepsilon + o(1))^{x/y} \text{Be}(x) \leq (\varepsilon + o(1))^{x/y} \text{BH}(x)$$

as $x \to \infty$.

That is, for large x, the bound $\text{PU}(x)$ and, hence, the better bound $\text{Pin}(x)$ are each exponentially better than $\text{Be}(x)$ and hence than $\text{BH}(x)$ — especially when $\varepsilon << 1$.
Comparison: asymptotics for large $x > 0$

Proposition

For any fixed $\sigma > 0$, $y > 0$, and $\varepsilon \in (0, 1)$, and all $x \geq 0$

$$Pin(x) \leq PU(x) = (\varepsilon + o(1))^{x/y} Be(x) \leq (\varepsilon + o(1))^{x/y} BH(x)$$

as $x \to \infty$.

That is, for large x, the bound $PU(x)$ and, hence, the better bound $Pin(x)$ are each exponentially better than $Be(x)$ and hence than $BH(x)$ — especially when $\varepsilon << 1$.
Comparison: asymptotics for large $x > 0$

Proposition

For any fixed $\sigma > 0$, $y > 0$, and $\varepsilon \in (0, 1)$, and all $x \geq 0$

$$
\text{Pin}(x) \leq \text{PU}(x) = (\varepsilon + o(1))^{x/y} \text{Be}(x) \leq (\varepsilon + o(1))^{x/y} \text{BH}(x)
$$

as $x \to \infty$.

That is, for large x, the bound $\text{PU}(x)$ and, hence, the better bound $\text{Pin}(x)$ are each exponentially better than $\text{Be}(x)$ and hence than $\text{BH}(x)$ — especially when $\varepsilon \ll 1$.
Comparison: asymptotics for large $x > 0$

Proposition

For any fixed $\sigma > 0$, $y > 0$, and $\varepsilon \in (0, 1)$, and all $x \geq 0$

$$\text{Pin}(x) \leq \text{PU}(x) = (\varepsilon + o(1))^{x/y} \text{Be}(x) \leq (\varepsilon + o(1))^{x/y} \text{BH}(x)$$

as $x \to \infty$.

That is, for large x, the bound $\text{PU}(x)$ and, hence, the better bound $\text{Pin}(x)$ are each exponentially better than $\text{Be}(x)$ and hence than $\text{BH}(x)$ — especially when $\varepsilon << 1$.
Proposition

For any fixed $\sigma > 0$, $y > 0$, and $\varepsilon \in (0, 1)$, and all $x \geq 0$

$$\begin{align*}
\operatorname{Pin}(x) &\leq \operatorname{PU}(x) = (\varepsilon + o(1))^{x/y} \operatorname{Be}(x) \\
&\leq (\varepsilon + o(1))^{x/y} \operatorname{BH}(x)
\end{align*}$$

as $x \to \infty$.

That is, for large x, the bound $\operatorname{PU}(x)$ and, hence, the better bound $\operatorname{Pin}(x)$ are each exponentially better than $\operatorname{Be}(x)$ and hence than $\operatorname{BH}(x)$ — especially when $\varepsilon << 1$.
Proposition

For any fixed $\sigma > 0$, $y > 0$, and $\varepsilon \in (0, 1)$, and all $x \geq 0$

$$\text{Pin}(x) \leq \text{PU}(x) = (\varepsilon + o(1))^{x/y} \text{Be}(x) \leq (\varepsilon + o(1))^{x/y} \text{BH}(x)$$

as $x \to \infty$.

That is, for large x, the bound $\text{PU}(x)$ and, hence, the better bound $\text{Pin}(x)$ are each exponentially better than $\text{Be}(x)$ and hence than $\text{BH}(x)$ — especially when $\varepsilon \ll 1$.
Proposition

For any fixed $\sigma > 0$, $y > 0$, and $\varepsilon \in (0, 1)$, and all $x \geq 0$

$$\begin{align*}
\text{Pin}(x) &\leq \text{PU}(x) = (\varepsilon + o(1))^{x/y} \text{Be}(x) \\
&\leq (\varepsilon + o(1))^{x/y} \text{BH}(x)
\end{align*}$$

as $x \to \infty$.

That is, for large x, the bound $\text{PU}(x)$ and, hence, the better bound $\text{Pin}(x)$ are each exponentially better than $\text{Be}(x)$ and hence than $\text{BH}(x)$ — especially when $\varepsilon << 1$.
Proposition

For any fixed $\sigma > 0$, $y > 0$, and $\varepsilon \in (0, 1)$, and all $x \geq 0$

$$
\text{Pin}(x) \leq \text{PU}(x) = (\varepsilon + o(1))^{x/y} \text{Be}(x) \leq (\varepsilon + o(1))^{x/y} \text{BH}(x)
$$

as $x \to \infty$.

That is, for large x, the bound $\text{PU}(x)$ and, hence, the better bound $\text{Pin}(x)$ are each exponentially better than $\text{Be}(x)$ and hence than $\text{BH}(x)$ — especially when $\varepsilon \ll 1$.
Comparison: asymptotics for large $x > 0$

Proposition

For any fixed $\sigma > 0$, $y > 0$, and $\epsilon \in (0, 1)$, and all $x \geq 0$

\[
\text{Pin}(x) \leq \text{PU}(x) = (\epsilon + o(1))^{x/y} \text{Be}(x) \leq (\epsilon + o(1))^{x/y} \text{BH}(x)
\]

as $x \to \infty$.

That is, for large x, the bound $\text{PU}(x)$ and, hence, the better bound $\text{Pin}(x)$ are each exponentially better than $\text{Be}(x)$ and hence than $\text{BH}(x)$ — especially when $\epsilon \ll 1$.
Here, σ is normalized to be 1. In the next 4 frames, the graphs $G(P) := \{(x, \log_{10} \frac{P(x)}{BH(x)}) : 0 < x \leq x_{\text{max}}\}$ for $P = \text{Ca, PU, Be, Pin}$, with the benchmark BH, will be shown, for $\varepsilon \in \{0.1, 0.9\}$, $y \in \{0.1, 1\}$, and $x_{\text{max}} = 3$ or 4, depending on whether $y = 0.1$ (little skewed-to-the-right X_i's) or $y = 1$ (much skewed-to-the-right X_i's).

¶ For such choices of x_{max}, the values of $BH(x_{\text{max}}) \approx 0.016$ or 0.017, whether $y = 0.1$ or $y = 1$.

¶ $G(\text{Ca})$ is shown only on the interval $(0, u_y)$, on which $\text{Ca} < BH$, i.e., $\log_{10} \frac{\text{Ca}}{BH} < 0$.

¶ For $y = 1$, $\text{Ca}(x) < BH(x)$ for all $x \in (0, 2.66)$.

¶ For Pin, actually two approx. graphs are shown: the dashed and thin solid lines – produced using the Fourier-Laplace and Fourier formulas.
Here, σ is normalized to be 1. In the next 4 frames, the graphs $G(P) := \{(x, \log_{10} \frac{P(x)}{BH(x)}) : 0 < x \leq x_{\text{max}}\}$ for $P = \text{Ca}, \text{PU}, \text{Be}, \text{Pin}$, with the benchmark BH, will be shown, for $\varepsilon \in \{0.1, 0.9\}$, $y \in \{0.1, 1\}$, and $x_{\text{max}} = 3$ or 4, depending on whether $y = 0.1$ (little skewed-to-the-right X_i's) or $y = 1$ (much skewed-to-the-right X_i's).

¶ For such choices of x_{max}, the values of $BH(x_{\text{max}}) \approx 0.016$ or 0.017, whether $y = 0.1$ or $y = 1$.

¶ $G(\text{Ca})$ is shown only on the interval $(0, u_y)$, on which $\text{Ca} < BH$, i.e., $\log_{10} \frac{\text{Ca}}{BH} < 0$.

¶ For $y = 1$, $\text{Ca}(x) < BH(x)$ for all $x \in (0, 2.66)$.

¶ For Pin, actually two approx. graphs are shown: the dashed and thin solid lines – produced using the Fourier-Laplace and Fourier formulas.
Here, σ is normalized to be 1. In the next 4 frames, the graphs $G(P) := \{(x, \log_{10} \frac{P(x)}{BH(x)}) : 0 < x \leq x_{\text{max}}\}$ for $P = \text{Ca}, \text{PU}, \text{Be}, \text{Pin}$, with the benchmark BH, will be shown, for $\varepsilon \in \{0.1, 0.9\}$, $y \in \{0.1, 1\}$, and $x_{\text{max}} = 3$ or 4, depending on whether $y = 0.1$ (little skewed-to-the-right X_i's) or $y = 1$ (much skewed-to-the-right X_i's).

For such choices of x_{max}, the values of $BH(x_{\text{max}}) \approx 0.016$ or 0.017, whether $y = 0.1$ or $y = 1$.

$G(\text{Ca})$ is shown only on the interval $(0, u_y)$, on which $\text{Ca} < BH$, i.e., $\log_{10} \frac{\text{Ca}}{BH} < 0$.

For $y = 1$, $\text{Ca}(x) < BH(x)$ for all $x \in (0, 2.66)$.

For Pin, actually two approx. graphs are shown: the dashed and thin solid lines – produced using the Fourier-Laplace and Fourier formulas.
Here, σ is normalized to be 1. In the next 4 frames, the graphs $G(P) := \{(x, \log_{10} \frac{P(x)}{BH(x)}): 0 < x \leq x_{max}\}$ for $P = \text{Ca, PU, Be, Pin}$, with the benchmark BH, will be shown, for $\varepsilon \in \{0.1, 0.9\}$, $y \in \{0.1, 1\}$, and $x_{max} = 3$ or 4, depending on whether $y = 0.1$ (little skewed-to-the-right X_i’s) or $y = 1$ (much skewed-to-the-right X_i’s).

¶ for such choices of x_{max}, the values of $BH(x_{max}) \approx 0.016$ or 0.017, whether $y = 0.1$ or $y = 1$.

¶ $G(\text{Ca})$ is shown only on the interval $(0, u_y)$, on which $\text{Ca} < BH$, i.e., $\log_{10} \frac{\text{Ca}}{BH} < 0$.

¶ for $y = 1$, $\text{Ca}(x) < BH(x)$ for all $x \in (0, 2.66)$.

¶ For Pin, actually two approx. graphs are shown: the dashed and thin solid lines – produced using the Fourier-Laplace and Fourier formulas.
Here, σ is normalized to be 1. In the next 4 frames, the graphs $G(P) := \{(x, \log_{10} \frac{P(x)}{BH(x)}) : 0 < x \leq x_{\text{max}}\}$ for $P = \text{Ca, PU, Be, Pin}$, with the benchmark BH, will be shown, for $\varepsilon \in \{0.1, 0.9\}$, $y \in \{0.1, 1\}$, and $x_{\text{max}} = 3$ or 4, depending on whether $y = 0.1$ (little skewed-to-the-right X_i's) or $y = 1$ (much skewed-to-the-right X_i's).

¶ for such choices of x_{max}, the values of $BH(x_{\text{max}}) \approx 0.016$ or 0.017, whether $y = 0.1$ or $y = 1$.

¶ $G(\text{Ca})$ is shown only on the interval $(0, u_y)$, on which $\text{Ca} < BH$, i.e., $\log_{10} \frac{\text{Ca}}{BH} < 0$.

¶ for $y = 1$, $\text{Ca}(x) < BH(x)$ for all $x \in (0, 2.66)$.

¶ For Pin, actually two approx. graphs are shown: the dashed and thin solid lines – produced using the Fourier-Laplace and Fourier formulas.
Here, σ is normalized to be 1. In the next 4 frames, the graphs $G(P) := \{(x, \log_{10} \frac{P(x)}{BH(x)}): 0 < x \leq x_{\text{max}}\}$ for $P = \text{Ca}, \text{PU}, \text{Be}, \text{Pin}$, with the benchmark BH, will be shown, for $\epsilon \in \{0.1, 0.9\}$, $y \in \{0.1, 1\}$, and $x_{\text{max}} = 3$ or 4, depending on whether $y = 0.1$ (little skewed-to-the-right X_i’s) or $y = 1$ (much skewed-to-the-right X_i’s).

For such choices of x_{max}, the values of $BH(x_{\text{max}}) \approx 0.016$ or 0.017, whether $y = 0.1$ or $y = 1$.

$G(\text{Ca})$ is shown only on the interval $(0, u_y)$, on which $\text{Ca} < BH$, i.e., $\log_{10} \frac{\text{Ca}}{BH} < 0$.

For $y = 1$, $\text{Ca}(x) < BH(x)$ for all $x \in (0, 2.66)$.

For Pin, actually two approx. graphs are shown: the dashed and thin solid lines – produced using the Fourier-Laplace and Fourier formulas.
Graphic comparison for moderate deviations: $x \in [0, 3]$ or $x \in [0, 4]$

Here, σ is normalized to be 1. In the next 4 frames, the graphs $G(P) := \{(x, \log_{10} \frac{P(x)}{BH(x)}): 0 < x \leq x_{\max}\}$ for $P = Ca, PU, Be, Pin$, with the benchmark BH, will be shown, for $\varepsilon \in \{0.1, 0.9\}$, $y \in \{0.1, 1\}$, and $x_{\max} = 3$ or 4, depending on whether $y = 0.1$ (little skewed-to-the-right X_i’s) or $y = 1$ (much skewed-to-the-right X_i’s).

¶ For such choices of x_{\max}, the values of $BH(x_{\max}) \approx 0.016$ or 0.017, whether $y = 0.1$ or $y = 1$.

¶ $G(Ca)$ is shown only on the interval $(0, u_y)$, on which $Ca < BH$, i.e., $\log_{10} \frac{Ca}{BH} < 0$.

¶ For $y = 1$, $Ca(x) < BH(x)$ for all $x \in (0, 2.66)$.

¶ For Pin, actually two approx. graphs are shown: the dashed and thin solid lines – produced using the Fourier-Laplace and Fourier formulas.
Graphic comparison for moderate deviations: $x \in [0, 3]$ or $x \in [0, 4]$

Here, σ is normalized to be 1. In the next 4 frames, the graphs $G(P) := \{(x, \log_{10} \frac{P(x)}{BH(x)}) : 0 < x \leq x_{\text{max}}\}$ for $P = Ca, PU, Be, Pin$, with the benchmark BH, will be shown, for $\varepsilon \in \{0.1, 0.9\}$, $y \in \{0.1, 1\}$, and $x_{\text{max}} = 3$ or 4, depending on whether $y = 0.1$ (little skewed-to-the-right X_i’s) or $y = 1$ (much skewed-to-the-right X_i’s).

¶ for such choices of x_{max}, the values of $BH(x_{\text{max}}) \approx 0.016$ or 0.017, whether $y = 0.1$ or $y = 1$.

¶ $G(Ca)$ is shown only on the interval $(0, u_y)$, on which $Ca < BH$, i.e., $\log_{10} \frac{Ca}{BH} < 0$.

¶ for $y = 1$, $Ca(x) < BH(x)$ for all $x \in (0, 2.66)$.

¶ For Pin, actually two approx. graphs are shown: the dashed and thin solid lines – produced using the Fourier-Laplace and Fourier formulas.
On the BH ineq.

Outline

Introduction

Main results

Sketch of proof

Computation of bounds

Comparison of bounds

Graphic comparison for moderate deviations: $x \in [0, 3]$ or $x \in [0, 4]$

Here, σ is normalized to be 1. In the next 4 frames, the graphs $G(P) := \{(x, \log_{10} \frac{P(x)}{BH(x)}) : 0 < x \leq x_{\text{max}}\}$ for $P = \text{Ca}, \text{PU}, \text{Be}, \text{Pin}$, with the benchmark BH, will be shown, for $\varepsilon \in \{0.1, 0.9\}$, $y \in \{0.1, 1\}$, and $x_{\text{max}} = 3$ or 4, depending on whether $y = 0.1$ (little skewed-to-the-right X_i’s) or $y = 1$ (much skewed-to-the-right X_i’s).

¶ for such choices of x_{max}, the values of $BH(x_{\text{max}}) \approx 0.016$ or 0.017, whether $y = 0.1$ or $y = 1$.

¶ $G(\text{Ca})$ is shown only on the interval $(0, u_y)$, on which $\text{Ca} < BH$, i.e., $\log_{10} \frac{\text{Ca}}{BH} < 0$.

¶ for $y = 1$, $\text{Ca}(x) < BH(x)$ for all $x \in (0, 2.66)$.

¶ For Pin, actually two approx. graphs are shown: the dashed and thin solid lines – produced using the Fourier-Laplace and Fourier formulas.
Here, σ is normalized to be 1. In the next 4 frames, the graphs $G(P) := \{(x, \log_{10} \frac{P(x)}{BH(x)}): 0 < x \leq x_{\text{max}}\}$ for $P = \text{Ca}, \text{PU}, \text{Be}, \text{Pin}$, with the benchmark BH, will be shown, for $\varepsilon \in \{0.1, 0.9\}$, $y \in \{0.1, 1\}$, and $x_{\text{max}} = 3$ or 4, depending on whether $y = 0.1$ (little skewed-to-the-right X_i’s) or $y = 1$ (much skewed-to-the-right X_i’s).

¶ for such choices of x_{max}, the values of $BH(x_{\text{max}}) \approx 0.016$ or 0.017, whether $y = 0.1$ or $y = 1$.

¶ $G(\text{Ca})$ is shown only on the interval $(0, u_y)$, on which $\text{Ca} < BH$, i.e., $\log_{10} \frac{\text{Ca}}{BH} < 0$.

¶ for $y = 1$, $\text{Ca}(x) < BH(x)$ for all $x \in (0, 2.66)$.

¶ For Pin, actually two approx. graphs are shown: the dashed and thin solid lines – produced using the Fourier-Laplace and Fourier formulas.
Here, σ is normalized to be 1. In the next 4 frames, the graphs $G(P) := \{(x, \log_{10} \frac{P(x)}{BH(x)}): 0 < x \leq x_{\text{max}}\}$ for $P = \text{Ca, PU, Be, Pin}$, with the benchmark BH, will be shown, for $\varepsilon \in \{0.1, 0.9\}$, $y \in \{0.1, 1\}$, and $x_{\text{max}} = 3$ or 4, depending on whether $y = 0.1$ (little skewed-to-the-right X_i’s) or $y = 1$ (much skewed-to-the-right X_i’s).

¶ for such choices of x_{max}, the values of $BH(x_{\text{max}}) \approx 0.016$ or 0.017, whether $y = 0.1$ or $y = 1$.

¶ $G(\text{Ca})$ is shown only on the interval $(0, u_y)$, on which $\text{Ca} < BH$, i.e., $\log_{10} \frac{\text{Ca}}{BH} < 0$.

¶ for $y = 1$, $\text{Ca}(x) < BH(x)$ for all $x \in (0, 2.66)$.

¶ For Pin, actually two approx. graphs are shown: the dashed and thin solid lines – produced using the Fourier-Laplace and Fourier formulas.
Graphic comparison for moderate deviations: $x \in [0, 3]$ or $x \in [0, 4]$

Here, σ is normalized to be 1. In the next 4 frames, the graphs $G(P) := \{(x, \log_{10} \frac{P(x)}{BH(x)}): 0 < x \leq x_{\text{max}}\}$ for $P = \text{Ca}, \text{PU}, \text{Be}, \text{Pin}$, with the benchmark BH, will be shown, for $\varepsilon \in \{0.1, 0.9\}$, $y \in \{0.1, 1\}$, and $x_{\text{max}} = 3$ or 4, depending on whether $y = 0.1$ (little skewed-to-the-right X_i’s) or $y = 1$ (much skewed-to-the-right X_i’s).

¶ for such choices of x_{max}, the values of $BH(x_{\text{max}}) \approx 0.016$ or 0.017, whether $y = 0.1$ or $y = 1$.

¶ $G(\text{Ca})$ is shown only on the interval $(0, u_y)$, on which $\text{Ca} < BH$, i.e., $\log_{10} \frac{\text{Ca}}{BH} < 0$.

¶ for $y = 1$, $\text{Ca}(x) < BH(x)$ for all $x \in (0, 2.66)$.

¶ For Pin, actually two approx. graphs are shown: the dashed and thin solid lines – produced using the Fourier-Laplace and Fourier formulas.
Here, σ is normalized to be 1. In the next 4 frames, the graphs $G(P) := \{(x, \log_{10} \frac{P(x)}{\text{BH}(x)}): 0 < x \leq x_{\text{max}}\}$ for $P = Ca, PU, Be, Pin$, with the benchmark BH, will be shown, for $\varepsilon \in \{0.1, 0.9\}$, $y \in \{0.1, 1\}$, and $x_{\text{max}} = 3$ or 4, depending on whether $y = 0.1$ (little skewed-to-the-right X_i’s) or $y = 1$ (much skewed-to-the-right X_i’s).

For such choices of x_{max}, the values of $\text{BH}(x_{\text{max}}) \approx 0.016$ or 0.017, whether $y = 0.1$ or $y = 1$.

$G(Ca)$ is shown only on the interval $(0, u_y)$, on which $Ca < \text{BH}$, i.e., $\log_{10} \frac{Ca}{\text{BH}} < 0$.

For $y = 1$, $Ca(x) < \text{BH}(x)$ for all $x \in (0, 2.66)$.

For Pin, actually two approx. graphs are shown: the dashed and thin solid lines – produced using the Fourier-Laplace and Fourier formulas.
Graphic comparison for moderate deviations: $x \in [0, 3]$ or $x \in [0, 4]$

Here, σ is normalized to be 1. In the next 4 frames, the graphs $G(P) := \{(x, \log_{10} \frac{P(x)}{BH(x)}) : 0 < x \leq x_{\text{max}}\}$ for $P = \text{Ca, PU, Be, Pin}$, with the benchmark BH, will be shown, for $\varepsilon \in \{0.1, 0.9\}$, $y \in \{0.1, 1\}$, and $x_{\text{max}} = 3$ or 4, depending on whether $y = 0.1$ (little skewed-to-the-right X_i’s) or $y = 1$ (much skewed-to-the-right X_i’s).

¶ for such choices of x_{max}, the values of $BH(x_{\text{max}}) \approx 0.016$ or 0.017, whether $y = 0.1$ or $y = 1$.

¶ $G(\text{Ca})$ is shown only on the interval $(0, u_y)$, on which $\text{Ca} < BH$, i.e., $\log_{10} \frac{\text{Ca}}{BH} < 0$.

¶ for $y = 1$, $\text{Ca}(x) < BH(x)$ for all $x \in (0, 2.66)$.

¶ For Pin, actually two approx. graphs are shown: the dashed and thin solid lines – produced using the Fourier-Laplace and Fourier formulas.
Here, σ is normalized to be 1. In the next 4 frames, the graphs
$$G(P) := \{(x, \log_{10} \frac{P(x)}{\text{BH}(x)}): 0 < x \leq x_{\text{max}}\}$$
for $P = \text{Ca, PU, Be, Pin}$, with the benchmark BH, will be shown, for $\varepsilon \in \{0.1, 0.9\}$, $y \in \{0.1, 1\}$, and $x_{\text{max}} = 3$ or 4, depending on whether $y = 0.1$ (little skewed-to-the-right X_i’s) or $y = 1$ (much skewed-to-the-right X_i’s).

¶ for such choices of x_{max}, the values of $\text{BH}(x_{\text{max}}) \approx 0.016$ or 0.017, whether $y = 0.1$ or $y = 1$.

¶ $G(\text{Ca})$ is shown only on the interval $(0, u_y)$, on which $\text{Ca} < \text{BH}$, i.e., $\log_{10} \frac{\text{Ca}}{\text{BH}} < 0$.

¶ for $y = 1$, $\text{Ca}(x) < \text{BH}(x)$ for all $x \in (0, 2.66)$.

¶ For Pin, actually two approx. graphs are shown: the dashed and thin solid lines – produced using the Fourier-Laplace and Fourier formulas.
Comparison: $x \in [0, 4], \varepsilon = 0.1, y = 1$

If the weight of the Poisson component is small ($\varepsilon = 0.1$) and the Poisson component is quite distinct from the Gaussian component ($y = 1$), then $\text{Be}(x)$ is about 9.93 times worse (i.e., greater) than $\text{Pin}(x)$ at $x = 4$. Moreover, for these values of ε and y, even the bound $\text{PU}(x)$ is better than $\text{Be}(x)$ already at about $x = 2.5$.

$\text{BH} \sim 0$

$(\text{BH}(4) \approx 0.017)$

Ca

Be

PU

Pin
Comparison: \(x \in [0, 4], \varepsilon = 0.1, y = 1 \)

If the weight of the Poisson component is small (\(\varepsilon = 0.1 \)) and the Poisson component is quite distinct from the Gaussian component (\(y = 1 \)), then \(\text{Be}(x) \) is about 9.93 times worse (i.e., greater) than \(\text{Pin}(x) \) at \(x = 4 \). Moreover, for these values of \(\varepsilon \) and \(y \), even the bound \(\text{PU}(x) \) is better than \(\text{Be}(x) \) already at about \(x = 2.5 \).
Comparison: $x \in [0, 4]$, $\varepsilon = 0.1$, $y = 1$

If the weight of the Poisson component is small ($\varepsilon = 0.1$) and the Poisson component is quite distinct from the Gaussian component ($y = 1$), then $\text{Be}(x)$ is about 9.93 times worse (i.e., greater) than $\text{Pin}(x)$ at $x = 4$. Moreover, for these values of ε and y, even the bound $\text{PU}(x)$ is better than $\text{Be}(x)$ already at about $x = 2.5$.

$\text{BH} \sim 0$

$(\text{BH}(4) \approx 0.017)$

Be

PU

Pin
Comparison: $x \in [0, 4]$, $\varepsilon = 0.1$, $y = 1$

If the weight of the Poisson component is small ($\varepsilon = 0.1$) and the Poisson component is quite distinct from the Gaussian component ($y = 1$), then $\text{Be}(x)$ is about 9.93 times worse (i.e., greater) than $\text{Pin}(x)$ at $x = 4$. Moreover, for these values of ε and y, even the bound $\text{PU}(x)$ is better than $\text{Be}(x)$ already at about $x = 2.5$.

$\text{BH} \sim 0$

$(\text{BH}(4) \approx 0.017)$

Pu

Be

Pu

Pin
Comparison: $x \in [0, 4], \varepsilon = 0.1, y = 1$

If the weight of the Poisson component is small ($\varepsilon = 0.1$) and the Poisson component is quite distinct from the Gaussian component ($y = 1$), then $\text{Be}(x)$ is about 9.93 times worse (i.e., greater) than $\text{Pin}(x)$ at $x = 4$. Moreover, for these values of ε and y, even the bound $\text{PU}(x)$ is better than $\text{Be}(x)$ already at about $x = 2.5$.

$\text{BH} \sim 0$

$(\text{BH}(4) \approx 0.017)$

Ca

Be

PU

Pin
Comparison: $x \in [0, 4]$, $\varepsilon = 0.1$, $y = 1$

If the weight of the Poisson component is small ($\varepsilon = 0.1$) and the Poisson component is quite distinct from the Gaussian component ($y = 1$), then $\text{Be}(x)$ is about 9.93 times worse (i.e., greater) than $\text{Pin}(x)$ at $x = 4$. Moreover, for these values of ε and y, even the bound $\text{PU}(x)$ is better than $\text{Be}(x)$ already at about $x = 2.5$.

$\text{BH} \sim 0$

$(\text{BH}(4) \approx 0.017)$

Ca

Be

PU

Pin
Comparison: $x \in [0, 3]$, $\varepsilon = 0.1$, $y = 0.1$

If the weight of the Poisson component is small ($\varepsilon = 0.1$) and the Poisson component is close to the Gaussian component ($y = 0.1$), then $Be(x)$ is still about 20% greater than $Pin(x)$ at $x = 3$.

\begin{align*}
BH & \sim 0 \\
(BH(4) & \approx 0.016) \\
Ca & \\
Be & \\
PU & \\
Pin &
\end{align*}
If the weight of the Poisson component is small ($\varepsilon = 0.1$) and the Poisson component is close to the Gaussian component ($y = 0.1$), then $\text{Be}(x)$ is still about 20% greater than $\text{Pin}(x)$ at $x = 3$.

If the weight of the Poisson component is small ($\varepsilon = 0.1$) and the Poisson component is close to the Gaussian component ($y = 0.1$), then $\text{Be}(x)$ is still about 20% greater than $\text{Pin}(x)$ at $x = 3$.

Comparison: $x \in [0, 3]$, $\varepsilon = 0.1$, $y = 0.1$
Comparison: \(x \in [0, 3], \varepsilon = 0.1, y = 0.1 \)

If the weight of the Poisson component is small \((\varepsilon = 0.1) \) and the Poisson component is close to the Gaussian component \((y = 0.1) \), then \(\text{Be}(x) \) is still about 20% greater than \(\text{Pin}(x) \) at \(x = 3 \).
Comparison: $x \in [0, 3]$, $\varepsilon = 0.1$, $y = 0.1$

If the weight of the Poisson component is small ($\varepsilon = 0.1$) and the Poisson component is close to the Gaussian component ($y = 0.1$), then $\text{Be}(x)$ is still about 20% greater than $\text{Pin}(x)$ at $x = 3$.

$\text{BH} \sim 0$

($\text{BH}(4) \approx 0.016$)

Ca

Be

PU

Pin
Comparison: $x \in [0, 3]$, $\varepsilon = 0.1$, $y = 0.1$

If the weight of the Poisson component is small ($\varepsilon = 0.1$) and the Poisson component is close to the Gaussian component ($y = 0.1$), then $\text{Be}(x)$ is still about 20% greater than $\text{Pin}(x)$ at $x = 3$.

$\text{BH} \sim 0$

$\text{BH}(4) \approx 0.016$
Comparison: \(x \in [0, 4], \varepsilon = 0.9, y = 1 \)

If the weight of the Poisson component is large \((\varepsilon = 0.9)\) and the Poisson component is quite distinct from the Gaussian component \((y = 1)\), then Be\((x)\) is about 8\% better than Pin\((x)\) at \(x = 4\). For \(x \in [0, 4]\), Pin\((x)\) and Be\((x)\) are close to each other and both are significantly better than either BH\((x)\) or PU\((x)\) (which latter are also close to each other).
Comparison: $x \in [0, 4]$, $\varepsilon = 0.9$, $y = 1$

If the weight of the Poisson component is large ($\varepsilon = 0.9$) and the Poisson component is quite distinct from the Gaussian component ($y = 1$), then $Be(x)$ is about 8% better than $Pin(x)$ at $x = 4$. For $x \in [0, 4]$, $Pin(x)$ and $Be(x)$ are close to each other and both are significantly better than either $BH(x)$ or $PU(x)$ (which latter are also close to each other).
Comparison: \(x \in [0, 4], \varepsilon = 0.9, y = 1 \)

If the weight of the Poisson component is large (\(\varepsilon = 0.9 \)) and the Poisson component is quite distinct from the Gaussian component (\(y = 1 \)), then \(\text{Be}(x) \) is about 8% better than \(\text{Pin}(x) \) at \(x = 4 \). For \(x \in [0, 4] \), \(\text{Pin}(x) \) and \(\text{Be}(x) \) are close to each other and both are significantly better than either \(\text{BH}(x) \) or \(\text{PU}(x) \) (which latter are also close to each other).
Comparison: $x \in [0, 4]$, $\varepsilon = 0.9$, $y = 1$

If the weight of the Poisson component is large ($\varepsilon = 0.9$) and the Poisson component is quite distinct from the Gaussian component ($y = 1$), then $\text{Be}(x)$ is about 8% better than $\text{Pin}(x)$ at $x = 4$. For $x \in [0, 4]$, $\text{Pin}(x)$ and $\text{Be}(x)$ are close to each other and both are significantly better than either $\text{BH}(x)$ or $\text{PU}(x)$ (which latter are also close to each other).
Comparison: $x \in [0, 4], \varepsilon = 0.9, y = 1$

If the weight of the Poisson component is large ($\varepsilon = 0.9$) and the Poisson component is quite distinct from the Gaussian component ($y = 1$), then $\text{Be}(x)$ is about 8% better than $\text{Pin}(x)$ at $x = 4$. For $x \in [0, 4]$, $\text{Pin}(x)$ and $\text{Be}(x)$ are close to each other and both are significantly better than either $\text{BH}(x)$ or $\text{PU}(x)$ (which latter are also close to each other).
Comparison: $x \in [0, 4], \varepsilon = 0.9, y = 1$

If the weight of the Poisson component is large ($\varepsilon = 0.9$) and the Poisson component is quite distinct from the Gaussian component ($y = 1$), then $\text{Be}(x)$ is about 8% better than $\text{Pin}(x)$ at $x = 4$. For $x \in [0, 4]$, $\text{Pin}(x)$ and $\text{Be}(x)$ are close to each other and both are significantly better than either $\text{BH}(x)$ or $\text{PU}(x)$ (which latter are also close to each other).
Comparison: $x \in [0, 4]$, $\varepsilon = 0.9$, $y = 1$

If the weight of the Poisson component is large ($\varepsilon = 0.9$) and the Poisson component is quite distinct from the Gaussian component ($y = 1$), then $\text{Be}(x)$ is about 8% better than $\text{Pin}(x)$ at $x = 4$. For $x \in [0, 4]$, $\text{Pin}(x)$ and $\text{Be}(x)$ are close to each other and both are significantly better than either $\text{BH}(x)$ or $\text{PU}(x)$ (which latter are also close to each other).
Comparison: $x \in [0, 4], \varepsilon = 0.9, y = 0.1$

If the weight of the Poisson component is large ($\varepsilon = 0.9$) and the Poisson component is close to the Gaussian component ($y = 0.1$), then $\text{Be}(x)$ is about 12% better than $\text{Pin}(x)$ at $x = 3$. For $x \in [0, 3]$, $\text{Pin}(x)$ and $\text{Be}(x)$ are close to each other and both are significantly better than either $\text{BH}(x)$ or $\text{PU}(x)$ (which latter are very close to each other).
Comparison: $x \in [0, 4], \varepsilon = 0.9, y = 0.1$

If the weight of the Poisson component is large ($\varepsilon = 0.9$) and the Poisson component is close to the Gaussian component ($y = 0.1$), then $Be(x)$ is about 12% better than $Pin(x)$ at $x = 3$. For $x \in [0, 3]$, $Pin(x)$ and $Be(x)$ are close to each other and both are significantly better than either $BH(x)$ or $PU(x)$ (which latter are very close to each other).
Comparison: $x \in [0, 4]$, $\varepsilon = 0.9$, $y = 0.1$

If the weight of the Poisson component is large ($\varepsilon = 0.9$) and the Poisson component is close to the Gaussian component ($y = 0.1$), then $\text{Be}(x)$ is about 12% better than $\text{Pin}(x)$ at $x = 3$. For $x \in [0, 3]$, $\text{Pin}(x)$ and $\text{Be}(x)$ are close to each other and both are significantly better than either $\text{BH}(x)$ or $\text{PU}(x)$ (which latter are very close to each other).
If the weight of the Poisson component is large ($\varepsilon = 0.9$) and the Poisson component is close to the Gaussian component ($y = 0.1$), then $\text{Be}(x)$ is about 12% better than $\text{Pin}(x)$ at $x = 3$. For $x \in [0, 3]$, $\text{Pin}(x)$ and $\text{Be}(x)$ are close to each other and both are significantly better than either $\text{BH}(x)$ or $\text{PU}(x)$ (which latter are very close to each other).
Comparison: $x \in [0, 4], \varepsilon = 0.9, y = 0.1$

If the weight of the Poisson component is large ($\varepsilon = 0.9$) and the Poisson component is close to the Gaussian component ($y = 0.1$), then $\text{Be}(x)$ is about 12% better than $\text{Pin}(x)$ at $x = 3$. For $x \in [0, 3]$, $\text{Pin}(x)$ and $\text{Be}(x)$ are close to each other and both are significantly better than either $\text{BH}(x)$ or $\text{PU}(x)$ (which latter are very close to each other).
Comparison: \(x \in [0, 4], \varepsilon = 0.9, y = 0.1 \)

If the weight of the Poisson component is large (\(\varepsilon = 0.9 \)) and the Poisson component is close to the Gaussian component (\(y = 0.1 \)), then \(\text{Be}(x) \) is about 12% better than \(\text{Pin}(x) \) at \(x = 3 \). For \(x \in [0, 3] \), \(\text{Pin}(x) \) and \(\text{Be}(x) \) are close to each other and both are significantly better than either \(\text{BH}(x) \) or \(\text{PU}(x) \) (which latter are very close to each other).
30/32 Comparison: $x \in [0, 4], \varepsilon = 0.9, y = 0.1$

If the weight of the Poisson component is large ($\varepsilon = 0.9$) and the Poisson component is close to the Gaussian component ($y = 0.1$), then $\text{Be}(x)$ is about 12% better than $\text{Pin}(x)$ at $x = 3$. For $x \in [0, 3]$, $\text{Pin}(x)$ and $\text{Be}(x)$ are close to each other and both are significantly better than either $\text{BH}(x)$ or $\text{PU}(x)$ (which latter are very close to each other).
Row 1: \(\varepsilon = 0.1 \): heavy-tail Poisson component of little weight
Row 2: \(\varepsilon = 0.9 \): heavy-tail Poisson component of large weight
Column 1: \(y = 1 \): distrs. of the \(X_i \)'s may be much skewed to the right
Column 2: \(y = 0.1 \): distrs. of the \(X_i \)'s may be only a little skewed to the right.
Row 1: $\varepsilon = 0.1$: heavy-tail Poisson component of little weight
Row 2: $\varepsilon = 0.9$: heavy-tail Poisson component of large weight
Column 1: $y = 1$: distr. of the X_i's may be much skewed to the right
Column 2: $y = 0.1$: distr. of the X_i's may be only a little skewed to the right.
Row 1: $\varepsilon = 0.1$: heavy-tail Poisson component of little weight
Row 2: $\varepsilon = 0.9$: heavy-tail Poisson component of large weight
Column 1: $y = 1$: distrs. of the X_i’s may be much skewed to the right
Column 2: $y = 0.1$: distrs. of the X_i’s may be only a little skewed to the right.
Row 1: $\varepsilon = 0.1$: heavy-tail Poisson component of little weight
Row 2: $\varepsilon = 0.9$: heavy-tail Poisson component of large weight
Column 1: $y = 1$: distrs. of the X_i’s may be much skewed to the right
Column 2: $y = 0.1$: distrs. of the X_i’s may be only a little skewed to the right.
Row 1: $\varepsilon = 0.1$: heavy-tail Poisson component of little weight
Row 2: $\varepsilon = 0.9$: heavy-tail Poisson component of large weight
Column 1: $y = 1$: distrs. of the X_i’s may be much skewed to the right
Column 2: $y = 0.1$: distrs. of the X_i’s may be only a little skewed to the right.
Comparison: Graphics grid

Row 1: $\varepsilon = 0.1$: heavy-tail Poisson component of little weight
Row 2: $\varepsilon = 0.9$: heavy-tail Poisson component of large weight
Column 1: $y = 1$: distrs. of the X_i’s may be much skewed to the right
Column 2: $y = 0.1$: distrs. of the X_i’s may be only a little skewed to the right.
Thank you!