1. Recall the collision we set up class while discussing momentum. Let us now analyze the momentum using the relativistic momentum formula.

(a) What are the total relativistic momentum components p_x and p_y before and after the collision in frame S? Is momentum conserved in S?

(b) What is v'_x for the Lorentz transformed velocity of the moving particle in S' before the collision? What is the total initial momentum p'_x before the collision in S'?

(c) What is v'_y for the Lorentz transformed y-component of the velocity of either particle after the collision? Use this to find the total speed of either particle v' after the collision.

(d) Show that momentum is conserved in the collision in frame S'. Note: When you compute the relativistic momentum components in S' after the collision, the factor γ has v' in it, which comes from part (c).

2. Given $p = \gamma mu$ and $E = \gamma mc^2$, show that $E^2 = (pc)^2 + (mc^2)^2$.