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Abstract

We determine the parameters of the stabilizer quantum codes of
minimum distance d = 3.

The translation from quantum coding to geometric algebra was done
in [3].

Definition 1. An additive quaternary quantum stabilizer [[n, k, d]]-code C
(short: quantum code) where k > 0 is an additive code of length n with
alphabet Z2 × Z2 of binary dimension r = n − k satisfying the following
conditions:

• C ⊂ C⊥ where the dual is with respect to the symplectic form.

• Each word of weight < d in C⊥ is in C.

The code is pure if C⊥ has minimum weight ≥ d.
An [[n, 0, d]]-code C is a self-dual quaternary quantum stabilizer code of

minimum weight ≥ d.

In the present paper we determine the spectrum of quantum codes [[n, n−
r, 3]].
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Theorem 1. Let

nmax(r) = (2r − 8)/3 for odd r, nmax(r) = (2r − 1)/3 for even r.

For odd r ≥ 5 the spectrum of lengths n such that [[n, n− r, 3]] exists consists
of all integers between r and nmax(r) except for nmax(r)− 1.

For even r ≥ 6 the spectrum of lengths n such that [[n, n − r, 3]] exists
consists of all integers between r and nmax(r) except for nmax(r)− {1, 2, 3}.

There exist pure codes for all parameters with the exception of [[6, 1, 3]]
(in case r = 5) which is necessarily impure.

The remainder of the paper is dedicated to the proof of Theorem 1. It
follows rather directly from the results of [1] and [5].

The non-existence part of the proof

Consider at first pure [[n, n− r, 3]]-codes. As the geometric description is in
terms of n pairwise skew lines in PG(r−1, 2) it follows n ≤ (2r−1)/3. In [1] it
is shown that that there is no pure such code of length n = (2r−1−y)/3 where
0 < y ≤ 10, y 6= 7, 8. This shows n ≤ nmax(r). It also shows that pure codes of
length nmax(r)−1 for odd r or of length nmax(r)−1, nmax(r)−2, nmax(r)−3
for even r cannot exist.

Consider impure codes now. The geometric description of a length n
quantum code as given in [1] is based on a multiset of n codeobjects each of
which is a line or a point in PG(r − 1, 2). In case d = 3 the code is pure if
the codeobjects form a set of mutually skew lines. It has been shown in [1],
Proposition 3.1 that a quantum code with parameters [[n − 1, n − r, 3]] or
[[n− 2, n− r, 3]] can be constructed if either one of the codeobjects is not a
line or if some codeline occurs twice. This shows that we can assume that
the codeobjects form a set of lines. Assume they are not mutually skew. It
has been shown in [1] that the codelines intersecting some other codelines
come in bundles. Let P1, P2, . . . , Pk be the points of PG(r − 1, 2) which are
on more than one codeline and let ui ≥ 2 be the number of codelines through
Pi. It was shown in [1], Theorem 3.2 that

n ≤ (
∑

ui) + (2r−
P

(ui−1) − 1− k)/3.

This shows that impure codes [[n, n− r, 3]] do not exist when n ∈ nmax(r)−
{1, 2, 3} for even r or n = nmax(r)− 1 for odd r.
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The constructive part of the proof

Proceed by induction on r. We have to show that codes [[n, n− r, 3]] exist for
all r ≤ n ≤ nmax(r) with the exception of the gaps as given in Theorem 1.
Here we use the following obvious fact:

Lemma 1. The existence of a pure [[n, n− (r−1), 3]]-code for r ≤ n implies
the existence of a pure [[n, n− r, 3]]-code.

The data base [4] and the results of [1] show in fact that the claim is true
up to r = 9. The existence for length nmax(r) is particularly evident in the
geometric language. Those codes correspond to a spread of lines in PG(r, 2)
if r is even, to a partial spread covering the complement of a plane when r
is odd. The latter case arises from an iterated use of the Blokhuis-Brouwer
construction ([2], see Section 4 of [1]).

Let r = 2l ≥ 6. Because of the induction hypothesis it suffices to show the
existence of [[n, n−2l, 3]]-codes for n between nmax(2l−1)−1 = (22l−1−11)/3
and nmax(2l) − 4 = (22l − 13)/3. For r = 6 this is the interval 7 ≤ n ≤ 17
where existence follows from the data base. For r ≥ 8 existence of those codes
with redundancy r is shown in [5] with the exception of length (22l−1−8)/3.
As this length equals nmax(2l − 1) existence follows from Lemma 1.

Let r = 2l + 1 ≥ 7. Because of the induction hypothesis it suffices to
show the existence of [[n, n− (2l + 1), 3]]-codes for n between nmax(2l)− 3 =
(22l − 10)/3 and nmax(2l + 1)− 2 = (22l+1 − 14)/3. The constructions of [5]
together with Lemma 1 cover all those lengths except for n = (22l+1− 14)/3.

Use the following construction, Corollary 4.3 of [1], which is a recursive
version of the Blokhuis-Brouwer construction:

Proposition 1. If a pure [[n, n− r, 3]]-code exists then so does a pure [[2r +
n, 2r + n− (r + 2), 3]]-code.

Recursive application to the pure [[38, 31, 3]]-code constructed in [1] shows
that pure [[(22l+1−14)/3, (22l+1−14)/3−(2l+1), 3]]-codes exist for all l ≥ 3.
This completes the proof.
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