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Short additive quaternary codes
Jürgen Bierbrauer, Yves Edel, Giorgio Faina, Stefano Marcugini and Fernanda Pambianco

Abstract— The best parameters of quaternary additive codes
of small length are determined using the geometric description.
Only one open question remains for length ≤ 13. Among
the results obtained in this work are the non-existence of
[12, 7, 5]-codes and [12, 4.5, 7]-codes as well as the existence of a
[13, 7.5, 5]−code.

Index Terms— Linear codes, quaternary additive codes, binary
projective spaces.

I. INTRODUCTION

Additive codes are generalizations of linear codes, see for
example Chapter 17 of [2] for a general introduction and a
theory of cyclic additive codes. Here we concentrate on the
quaternary case.

Definition 1. Let k be such that 2k is a positive integer. An
additive quaternary [n, k]-code C (length n, dimension k) is a
2k-dimensional subspace of F2n

2 , where the coordinates come
in pairs of two. We view the codewords as n-tuples where the
coordinate entries are elements of F2

2.
A generator matrix G of C is a binary (2k, 2n)-matrix whose

rows form a basis of the binary vector space C.
Definition 2. Let C be an additive quaternary [n, k]-code. The
weight of a codeword is the number of its n coordinates where
the entry is different from 00. The minimum weight (equal to
minimum distance) d of C is the smallest weight of its nonzero
codewords. The parameters are then also written [n, k, d].

The strength of C is the largest number t such that all
(2k, 2t)-submatrices of a generator matrix whose columns
correspond to some t quaternary coordinates have full rank
2t.

Notation for length and dimension has been chosen to
facilitate comparison with quaternary linear codes. In fact it
is clear that each linear [n, k]-code is also an additive [n, k]-
code (where k of course is an integer) and the notations of
minimum distance and strength of the linear code coincide
with the additive notions introduced above.

The geometric description of an additive [n, k]-code is based
on lines in PG(2k−1, 2). In fact, consider a generator matrix
G. For each quaternary coordinate i ∈ {1, 2, . . . , n} we are
given points Pi, Qi ∈ PG(2k − 1, 2). Let Li be the line
determined by Pi, Qi. The geometric description of code C as
in Definition 2 is based on this multiset of lines (the codelines)
{L1, L2, . . . , Ln}. Code C has minimum distance ≥ d if and
only if for each hyperplane H of PG(2k−1, 2) we find at least
d codelines (in the multiset sense), which are not contained in
H. Strength t means that any set of t codelines is in general
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position. Duality is based on the Euclidean bilinear form, the
dot product for binary spaces. The dual of an additive [n, k]-
code C is an [n, n− k]-code, and C has strength t if and only
if C⊥ has minimum distance > t.

As an example consider the following analogue of the
Simplex codes:

Definition 3. Let Sl be the additive quaternary code described
by the set of all lines in PG(l − 1, 2), l ≥ 3.

As the number of lines in PG(l − 1, 2) is (2l − 1)(2l−1 −
1)/3 it follows that Sl is an additive [(2l − 1)(2l−1 −
1)/3, l/2, 2l−2(2l−1 − 1)]-code. This code is optimal. In
fact, concatenation yields a binary linear [(2l − 1)(2l−1 −
1), l, 2l−1(2l−1− 1)]2-code, which meets the Griesmer bound
with equality. The smallest codes of independent interest in
this family are the [7, 1.5, 6]-code S3 (geometrically the 7 lines
of the Fano plane) and the [155, 2.5, 120]-code S5.

Recall that the geometric description of linear codes is based
on multisets of points, whereas the geometric description of
additive quaternary codes uses lines. A codeline not contained
in hyperplane H meets it in one point. This motivates to
consider mixed quaternary-binary codes.

Definition 4. An [(l, r), k](4,2)-code is a 2k-dimensional vec-
tor space of binary (2l + r)-tuples, where the coordinates
are divided into l pairs (written on the left) and r single
coordinates. We view each codeword as an (l+r)-tuple, where
the left coordinates are quaternary, the right ones are binary.

A code [(l, r), k](4,2) is described geometrically by a mul-
tiset of l lines and r points (codelines and codepoints) in
PG(2k − 1, 2). The code has strength ≥ t if any set of
t objects (codepoints or codelines) are in general position.
The definition of minimum distance (equal to the minimum
weight) is obvious. A generator matrix is a binary (2k, 2l+r)-
matrix whose rows form a binary basis of the code. The dual
of an additive [(l, r), k](4,2)-code of strength t is an additive
[(l, r), l + r/2− k, t + 1](4,2)-code.

Blokhuis-Brouwer [1] determine the optimal code parame-
ters for additive quaternary codes of length ≤ 12, with two
exceptions. We fill those gaps proving the following:

Theorem 1. There is no additive [12, 7, 5]-code.
There is no additive [12, 4.5, 7]-code.

On the constructive side we produce a [13, 7.5, 5]-code. A
check matrix, described by 13 lines in PG(10, 2), of strength
4 (the convention is 1 = 10, 2 = 01, 3 = 11) is given in Figure
1.

INSERT FIGURE 1 HERE
Table I contains the list of the largest minimum distance d

for additive quaternary [n, k, d]-codes of length n ≤ 13. The
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only question remaining open is the existence of a [13, 6.5, 6]-
code.

TABLE I
LARGEST MINIMUN DISTANCE FOR

ADDITIVE QUATERNARY CODES OF LENGTH n ≤ 13

k\n 1 2 3 4 5 6 7 8 9 10 11 12 13
1 1 2 3 4 5 6 7 8 9 10 11 12 13

1.5 1 2 3 4 5 6 6 7 8 9 10 11
2 1 2 3 4 4 5 6 7 8 8 9 10

2.5 1 2 3 4 5 6 6 7 8 8 9
3 1 2 3 4 4 5 6 6 7 8 9

3.5 1 2 3 4 4 5 6 7 8 8
4 1 2 2 3 4 5 6 6 7 8

4.5 1 2 3 3 4 5 6 6 7
5 1 2 2 3 4 5 6 6 7

5.5 1 2 3 3 4 5 6 6
6 1 2 2 3 4 5 6 6

6.5 1 2 3 3 4 5 5− 6
7 1 2 2 3 4 4 5

7.5 1 2 2 3 4 5
8 1 2 2 3 4 4

8.5, 9 1 2 2 3 4
9.5, 10 1 2 2 3
10.5, 11 1 2 2

The geometric work happens in binary projective spaces. As
we find it often more convenient to work with vector space
dimensions we denote i-dimensional vector subspaces by Vi

(= PG(i− 1, 2)). The following obvious observation is often
useful:

Proposition 1. Let C be an additive [n, k, d]-code. Assume
some i codelines generate a subspace V2i−j . Then the subcode
of C consisting of the codewords with vanishing entry in those
i coordinates is an [n− i, k − i + j/2, d]-code.

The non-existence of a [12, 7, 5]-code is proved in Sec-
tion III. In Section II the non-existence proof for [12, 4.5, 7] is
outlined. A preliminary version of parts of the present paper
appeared in [3].

II. NONEXISTENCE OF AN ADDITIVE [12, 7, 5]-CODE

It is easier to consider the dual, a [12, 5]-code of strength
4. What is the maximum hyperplane intersection of this code
C? It is impossible that there are at most 5 lines on each
hyperplane as this would produce an additive [12, 5, 7]-code,
which does not exist. It follows that there must be a hyperplane
with at least 6 codelines. There can be no 8 codelines on any
hyperplane as this would yield a [8, 4.5] code of strength 4
whose dual would be a [8, 3.5, 5]-code. Such a code does not
exist.

Lemma 1. The maximum number of lines of a [12, 5]-code of
strength 4 on a hyperplane is either 6 or 7.

In particular we find a hyperplane that contains 6 codelines.
This defines an additive [6, 4.5]-code. Its dual, a [6, 1.5, 5]-
code, corresponds to using all lines but one of the Fano plane
and is therefore uniquely determined. The following codelines
can be used to describe our [6, 4.5]-code of strength 4 :

L1 = 〈v1, v2〉, L2 = 〈v3, v4〉, L3 = 〈v5, v6〉, L4 = 〈v7, v8〉,
L5 = 〈v1 + v3 + v5 + v7, v9〉,

L6 = 〈v2 + v4 + v6 + v8, v9 + v1 + v4 + v5 + v6〉.

We ran a computer program that determined the points com-
pleting those lines to a (6, 1)-code of strength 4. There are 45
such points. Exactly 24 of those points are distributed on lines
that complete the [6, 4.5]-code to a [7, 4.5]-code of strength 4.
There are thus 8 such lines.

Assume at first there is a hyperplane H containing 7
codelines of C. We can choose L1, . . . , L6 above and L7 is
one of the 8 lines that our computer search produced. The
intersection with the codelines shows that this code must be
embeddable in a mixed [(7, 5), 4.5](4,2)-code of strength 4. A
computer search showed that not even a single point can be
appended:

Proposition 2. There is no [(7, 1), 4.5](4,2)4-code of strength
4.

We conclude that the maximum number of codelines on a
hyperplane is 6. Choose L1, . . . , L6 as above. The intersection
with the remaining codelines shows that this can be extended
to a [(6, 6), 4.5](4,2)-mixed code of strength 4. The points
forming the sextuple must be from the set of 45 extension
points mentioned above. A computer search showed that there
are exactly six such sextuples. In particular [(6, 6), 4.5](4,2)-
mixed codes of strength 4 and their duals, [(6, 6), 4.5, 5](4,2)-
codes do exist.

Another computer program showed that none of those six
codes can be embedded in a [12, 5]-code of strength 4.

III. NONEXISTENCE OF AN ADDITIVE [12, 4.5, 7]-CODE

The proof is geometric in nature and much more involved
than in the case of [12, 7, 5]. We work in PG(8, 2). Geometric
reasoning and information on optimal codes of shorter length
shows the following:

Lemma 2. There are no repeated codelines. Each V6 contains
at most 3 codelines and any three codelines generate V5 or
V6. Any two codelines are mutually skew.

Let M be the union of the points on the codelines. Then
M is a set of 36 points, at most 22 on each hyperplane.
This describes a binary code [36, 9, 14]2, obtained from the
hypothetical [12, 4.5, 7] by concatenation. We study the distri-
bution of the points of M (codepoints) on subspaces as well
as the structure induced on corresponding factor spaces. In
particular any hyperplane contains at most 22 codepoints and
any PG(4, 2) has at most 9 codepoints. The proof that any
three codelines must be in general position already involves a
computer search. Next we study subspaces S generated by 5
codelines. A computer-proof shows that S must be either the
ambient space or a hyperplane and that the maximum number
of codepoints on a subspace PG(4, 2) is 8. A final computer
search shows that this configuration in PG(4, 2) cannot be
completed to a [12, 4.5, 7]-code.
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L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13

1 0 0 0 0 2 0 3 3 1 2 3 1
2 0 0 0 0 0 3 1 0 3 0 3 2
0 1 0 0 0 2 2 0 1 1 2 2 0
0 2 0 0 0 0 1 1 3 2 3 3 1
0 0 1 0 0 2 2 1 2 2 0 0 0
0 0 2 0 0 0 1 2 1 0 1 2 3
0 0 0 1 0 2 1 2 0 0 0 3 1
0 0 0 2 0 0 0 1 1 1 1 3 3
0 0 0 0 1 0 2 2 0 1 1 0 1
0 0 0 0 2 0 0 0 2 0 2 1 1
0 0 0 0 0 1 0 0 0 2 2 2 2




Fig. 1. Check matrix of a [13, 7.5, 5]-code.


