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Abstract

We derive the lower bound of the penalty parameter in the C0 IPDG for the bi-harmonic equation. Based on the
bound, we propose a pre-processing algorithm. Numerical example are shown to support the theory. In addition, we
found that an optimal penalty does exist.

1 Introduction

We study the problem of optimal penalty parameter for the C0 IPDG (interior penalty discontinuous Galerkin) which
has been proposed for the bi-harmonic equation (see [4] and the references therein). It has the practical value in the
sense that the penalty parameter has an impact on the error and the linear system.

The choice of the penalty parameter for interior penalty methods has been considered by many researchers. The
idea is to sharpen the inequalities in the proof of the ellipticity of the operator and the major tool is the trace inverse
inequalities [13]. Shahbazi [12] considered the symmetric IPDG for the Poisson equation with Dirichlet boundary
conditions and derived an explicit expression for the penalty parameter. It is shown that the penalty parameter depends
on the polynomial basis and the quality of the mesh. Epshteyn and Riviére [8] performed a detailed analysis on the
symmetric IPDG and provide ample numerical examples. In particular, they showed the parameter depends on the
smallest cot θ over all angles of the triangle in 2D or over all dihedral angles in the tetrahedron in 3D. For further
study on the penalty problem, we refer the readers to [11, 2, 3, 9, 1, 6].

In this paper, we consider the estimation of the penalty parameter for the C0 IPDG for the bi-harmonic equation
following the spirit of [12, 8]. The C0 IPDG has a simpler formulation since there is no need to penalize the value
of the function across the elements. We found that the error increases as the penalty parameter passes certain optimal
value if a uniform penalty is used. To further optimize the numerical method, we propose a pre-processing algorithm
to compute the penalty parameters, in particular, when the mesh is unstructured. This is also useful for the h − p

adaptive IPDG. The rest of the paper is arranged as the following. In Section 2, we introduce the C0 IPDG for the
bi-harmonic equation [5, 4]. Analysis of the optimal parameter is contained in Section 3. We present the algorithm for
the pre-processing C0 IPDG in Section 4. In Section 5, we present numerical examples to support our analysis.

2 C0 IPDG

Let Ω denote a bounded polygonal Lipschitz domain in R2 with boundary ∂Ω, and let n denote the unit outward
normal. The appropriate solution space of the bi-harmonic equation is

H2
0 (Ω) = {u ∈ H2(Ω) | u = ∂u/∂n = 0 on ∂Ω}.
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We also need the dual space (H2
0 (Ω))′ = H−2(Ω) as well as spaces H−2+α(Ω) for α > 0. Given a function

f ∈ H−2(Ω), the bi-harmonic equation is to seek a function u ∈ H2
0 (Ω) such that

∆2u = f in Ω, (2.1a)

u =
∂u

∂n
= 0 on ∂Ω. (2.1b)

Following [4, 5], we define

(u, v) =

∫
Ω

uv dx and a(u, v) = (D2u : D2v),

where D2u : D2v =
∑2
i,j=1 uxixj

vxixj
. A weak formulation for (2.1) is: For f ∈ H−2(Ω), find u ∈ H2

0 (Ω) such
that

a(u, v) = (f, v) ∀v ∈ H2
0 (Ω). (2.2)

Now we give a brief introduction to the C0 IPDG for the biharmonic equation and refer the readers to [7, 5, 4] for
more details. Let Th be a shape-regular triangulation of Ω with mesh size h and Vh ⊂ H1

0 (Ω) be the Pk Lagrange
finite element space (k ≥ 2) associated with Th. The space Vh is a subspace of C0(Ω̄) ∩H2(Ω, Th) where

H2(Ω, Th) = {v ∈ L2(Ω) : vT = v|T ∈ H2(T ) ∀T ∈ Th}.

Let Eh be the set of edges in Th, define EBh = Eh ∩ ∂Ω and E0
h = Eh\EBh . For e ∈ E0

h, the common edge of two
adjacent triangles T± ∈ Th, and v ∈ H2(Ω, Th), we define the jump in the flux to be

J∂v/∂nK =
∂vT+

∂ne

∣∣∣
e
− ∂vT−

∂ne

∣∣∣
e
.

For simplicity, we use v± to denote vT± . Moreover, we let

∂2v

∂n2
e

= ne · (∇2v)ne,

and define the average normal-normal component to be{{
∂2v

∂n2
e

}}
=

1

2

(
∂2v+

∂n2
e

+
∂2v−

∂n2
e

)
,

where ne is the unit normal pointing from T− to T+. When e ∈ EBh , ne is the unit outward normal and we define

J∂v/∂nK = − ∂v

∂ne
and

{{
∂2v

∂n2
e

}}
=
∂2vT
∂n2

e

,

where T is the triangle with edge e.
Following [5], the discrete form for the biharmonic equation can be written as follows: For f ∈ H−2+α(Ω), for

some α > 1/2, find uh ∈ Vh such that
ah(uh, v) = (f, v) ∀v ∈ Vh, (2.3)

where

ah(w, v) = Ah(w, v) + bh(w, v) + ch(w, v), (2.4)
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and

Ah(w, v) =
∑
T∈Th

∫
T

D2w : D2v dx,

bh(w, v) =
∑
e∈Eh

∫
e

{{
∂2w

∂n2
e

}}s
∂v

∂ne

{
+

{{
∂2v

∂n2
e

}}s
∂w

∂ne

{
ds,

ch(w, v) =
∑
e∈Eh

σe
|e|

∫
e

s
∂w

∂ne

{ s
∂v

∂ne

{
ds.

Here σe > 0 is the penalty parameter, which may take different values on different edges.

3 Optimizing the penalty parameter

In this section, we proceed to find optimal parameter σe, whose estimation relies on the following trace inverse in-
equalities [13]: ∫

e

v2ds ≤ (k + 1)(k + d)

d

A(e)

V(T )

∫
T

v2dx,

where A,V denote the length of e and the area of T , respectively.
We define the mesh dependent norm ‖ · ‖h on Vh as follows

‖v‖2h =
∑
T∈Th

|v|2H2(T ) +
∑
e∈Eh

σe
|e|
‖J∂v/∂nK‖2L2(e). (3.5)

The penalty needs to be large enough to guarantee the ellipticity of

ah(v, v) =
∑
T∈Th

∫
T

D2v : D2v dx+ 2
∑
e∈Eh

∫
e

{{
∂2v

∂n2
e

}}s
∂v

∂ne

{
ds+

∑
e∈Eh

σe
|e|

∫
e

∣∣∣∣s ∂v

∂ne

{∣∣∣∣2 ds. (3.6)

Let us consider the second term on the right-hand side. Note that

∂2v

∂n2
e

= ne ·

(
∂2v
∂x2

∂2v
∂x∂y

∂2v
∂x∂y

∂2v
∂y2

)
ne = n2

1

∂2v

∂x2
+ 2n1n2

∂2v

∂x∂y
+ n2

2

∂2v

∂y2
, ne = (n1, n2)T

and thus by Cauchy-Schwarz inequality(
∂2v

∂n2
e

)2

≤
(
∂2v

∂x2

)2

+ 2

(
∂2v

∂x∂y

)2

+

(
∂2v

∂y2

)2

.

As a consequence, we have for e ∈ E0
h∥∥∥∥{{ ∂2v

∂n2
e

}}∥∥∥∥
L2(e)

≤ 1

2

∥∥D2v+
∥∥
L2(e)

+
1

2

∥∥D2v−
∥∥
L2(e)

, (3.7)

and for e ∈ EBh ∥∥∥∥{{ ∂2v

∂n2
e

}}∥∥∥∥
L2(e)

≤
∥∥D2v

∥∥
L2(e)

, (3.8)

where ∥∥D2w
∥∥2

L2(e)
=

∫
e

[(
∂2w

∂x2

)2

+ 2

(
∂2w

∂x∂y

)2

+

(
∂2w

∂y2

)2
]
dxdy,
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with w = v, v+ and v−. To estimate the second normal derivative, we employ the following result (Eqn. 36 and 37
of [8]): For any v ∈ PkT (T ), and e is an edge of T ,

‖v‖L2(e) ≤

√
2(kT + 1)(kT + 2) cot θT

|e|
‖v‖L2(T ), (3.9)

where θT and kT are the smallest angle and the degree of polynomial approximation in the triangle T , respectively.
With the above result, we have for e ∈ E0

h∥∥∥∥{{ ∂2v

∂n2
e

}}∥∥∥∥
L2(e)

≤

√
CT+

2|e|
|v|2H2(T+) +

√
CT−

2|e|
|v|2H2(T−),

and e ∈ EBh ∥∥∥∥{{ ∂2v

∂n2
e

}}∥∥∥∥
L2(e)

≤

√
2CT
|e|
|v|2H2(T ),

where
CE = (kE − 1)kE cot θE , with E = T, T+ and T−.

Here we have to use the fact that ∂
2v
∂n2

e
is a polynomial of degree kE − 2 to obtain CE . Therefore, by Cauchy-Schwarz

inequality∑
e∈Eh

∫
e

{{
∂2v

∂n2
e

}}s
∂v

∂ne

{
ds

≤
∑
e∈Eh

∥∥∥∥{{ ∂2v

∂n2
e

}}∥∥∥∥
L2(e)

∥∥∥∥s ∂v

∂ne

{∥∥∥∥
L2(e)

≤
∑
e∈EBh

√
2CT
|e|
|v|2H2(T )

∥∥∥∥s ∂v

∂ne

{∥∥∥∥
L2(e)

+
∑
e∈E0h

(√
CT+

2|e|
|v|2H2(T+) +

√
CT−

2|e|
|v|2H2(T−)

)∥∥∥∥s ∂v

∂ne

{∥∥∥∥
L2(e)

≤

(
3
∑
T∈Th

ST |v|2H2(T )

) 1
2

×

∑
e∈EBh

2CT
Se

∥∥∥r ∂v
∂ne

z∥∥∥2

L2(e)

|e|
+
∑
e∈E0h

∥∥∥r ∂v
∂ne

z∥∥∥2

L2(e)

2|e|

(
CT+

Se
+
CT−

Se

)
1
2

,

where Se are positive constants which depend on edge e, and

ST =

3∑
i=1

Sei
3

with ei being the edges of the triangle T . By Young’s inequality, we have that

2
∑
e∈Eh

∫
e

{{
∂2v

∂n2
e

}}s
∂v

∂ne

{
ds ≤

∑
T∈Th

ST |v|2H2(T ) +
∑
e∈EBh

6(kT − 1)kT cot θT
Se

∥∥∥r ∂v
∂ne

z∥∥∥2

L2(e)

|e|

+
∑
e∈E0h

3
∥∥∥r ∂v

∂ne

z∥∥∥2

L2(e)

2|e|

(
(kT

+ − 1)kT
+

cot θT+

Se
+

(kT
− − 1)kT

−
cot θT−

Se

)
.
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Therefore, we obtain that

ah(v, v) ≥
∑
T∈Th

(1− ST )|v|2H2(T ) +
∑
e∈Eh

σe − Ce
|e|

∥∥∥∥s ∂v

∂ne

{∥∥∥∥2

L2(e)

where

Ce =

 3(kT
+
−1)kT

+
cot θT+

2Se
+

3(kT
−
−1)kT

−
cot θT−

2Se
, e ∈ E0

h,
6(kT−1)kT cot θT

Se
, e ∈ EBh .

Thus to guarantee the coercivity of ah, ST < 1 is required. Then the penalty needs to satisfy

σe > Ce. (3.10)

We note that the above analysis can be directly applied to the three dimensional case using the three-dimensional
inverse trace inequality. For simplicity, we only consider the two dimensional case in this short paper.

4 A pre-prosessing algorithm

In this section, we illustrates a pre-processing algorithm to compute σe. For simplicity, we choose Se to be a constant
independent on the edge e. Therefore, we have Se < 1. Since the penalty parameter σe depends on the edge, we can
first sweep the mesh and compute σe by using (3.10) for each edge. The algorithm is given below.

1. For each triangle T ∈ Th, find out the smallest angle and the degree of polynomial approximation, denoted as
θT and kT , respectively.

2. For each edge e ∈ EBh , denote T as the triangle with edge e. Take

σe > 6(kT − 1)kT cot θT .

3. For each edge e ∈ E0
h, assume it is shared by two triangles T+ and T−. Take

σe >
3

2

(
(kT

+

− 1)kT
+

cot θT+ + (kT
−
− 1)kT

−
cot θT−

)
.

5 Numerical Examples

We consider a simple domain in 2D. Let Ω = [0, 1]× [0, 1] and u(x, y) = sin2(πx) sin2(πy). It is easy to check that
u solves the bi-harmonic equation with

f(x, y) = 8π4 cos2(πx) cos2(πy)− 16π4 cos2(πx) sin2(πy)− 16π4 sin2(πx) cos2(πy) + 24π4 sin2(πx) sin2(πy).

We consider three unstructured meshes and a uniform mesh for the unit square. We generate the unstructured
meshes as follows. We choose a point (0.01, 0.5) in the unit square to obtain the initial mesh with 4 triangles. One of
the triangle is given by (0, 0), (0.01, 0.5), (0, 1). Then we uniformly refine the mesh into 512 triangles. We generate
other two meshes by choosing the points at (0.02, 0.5) and (0.05, 0.5), respectively. The uniform mesh also contains
512 triangles. For the unstructured meshes, the theory predicts a larger penalty parameter due to the quality of the
triangle.

We first compare the performance of the C0IPDG using a uniform penalty on two meshes. In Fig. 1, we show the
L2 error v.s. the uniform penalty. It can be seen that for small penalty, the L2 error is unstable for the unstructured
meshes. In addition, the optimal penalty increases as the mesh quality gets worse. An interesting observation is that
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Figure 1: The L2 error v.s. the penalty parameter for an unstructured mesh with k = 2.

Table 1: The minimum and maximum of the penalty parameters. The fourth column is the error using the pre-
processing step. The fifth column is the error using a uniform penalty, i.e., the maximum value of penalty parameters.

k minσe maxσe err (LP) err(UP)
2 8.8479 1.800e+3 5.2558e-04 1.3379e-3
3 26.5491 5.400e+3 2.1591e-05 9.2242e-4

the error gets larger as penalty parameter passes the optimal value. Thus an optimal penalty seems to exist. This is
consistent with the claim by Brenner that a large penalty adversely affects the accuracy [5]. While the optimal value
can not be obtained analytically, it is always possible to test on a coarse mesh and make a good guess of it.

Secondly, we employ the pre-processing as above on the unstructured mesh with the point at (0, 01, 0.5). In
Table 1, we show the maximum and minimum of the penalty parameters. The last two columns are the error with the
pre-processing and the error with a uniform penalty parameter, respectively. Numerically, we see that it is worth doing
a pre-processing since the error is smaller and it is computationally very cheap.
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