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Abstract. This paper concerns numerical computation of a non-standard fourth order eigen-
value problem. For high order problems, Discontinuous Galerkin methods are competitive since
they avoid some difficulties arising from other approaches. We show the well-posedness of the
source problem. An interior penalty discontinuous Galerkin method using Lagrange elements
(C0IPG) is proposed and its convergence is studied. The method is then used to compute the
eigenvalues. We show that the method is spectrally correct and prove the optimal convergence.
Numerical examples are presented to validate the theory.
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1 Introduction

In this paper, we consider a non-standard fourth order eigenvalue problem arising in the study
of transmission eigenvalues, which have important applications in inverse scattering theory [8,
20]. There exist quite a few finite element methods in the literature including the conforming
elements, partition of unity finite element methods, non-conforming elements, and mixed methods.
Construction of high regularity conforming elements is difficult in general [2,10]. Moreover, they
usually involve a large number of degrees of freedom. Partition of unity finite element methods
[9, 21], are difficult to implement and the resulting linear systems can be severely ill-conditioned.
Non-conforming methods such as Morley method do not have a good hierarchy [19] and thus

∗Corresponding author. Email addresses: jixia@lsec.cc.ac.cn (X. Ji), ghr0313@hotmail.com (H. Gen),
jiguangs@mtu.edu (J. Sun), xuliwei95@gmail.com (L. Xu)

http://www.global-sci.com/ Global Science Preprint



2

cannot capture smooth solutions efficiently. Mixed methods may produce spurious solutions for
non-convex domains [7].

As competitive alternatives, discontinuous Galerkin method become popular for high order
elliptic problems [6,13,14]. In particular, in [6,13], the authors employ an interior penalty Galerkin
method using Lagrange elements (C0IPG) for the biharmonic equation. The method has a good
hierarchy and there is no need to enforce the jump of the solution since the finite element space is
H1 conforming. Recently, Brenner et.al. employ the C0IPG to compute biharmonic eigenvalues
[7]. Using the classical theory of Babuška and Osborn, they prove the converge of C0IPG for
biharmonic eigenvalue problems and compare it with the Argyris element, the mixed method, and
the Morley element.

In this paper, we use C0IPG to compute a non-standard fourth order problem. Due to lower
order terms, we choose to adopt the method by Antonietti et.al. [1] which in turn follows the
abstract theory by Descloux, Nassif and Rappaz [11,12]. Convergence theory of the finite element
methods for eigenvalue problem has been studied by many researchers since 1970s. We refer the
book chapter by Babuška and Osborn [3] and the references therein for studies before 1991. For
recent developments, we refer the readers to the survey paper [4].

The rest of the paper is arranged as follows. In section 2, we present a fourth order eigenvalue
problem with low order terms and show the well-posedness. Section 3 describes the C0IPG and
shows convergence of the discrete problem. We develop the convergence theory in section 4.
Numerical examples are given in section 5.

2 A non-standard fourth order eigenvalue problem

Let Ω be a bounded polygonal domain in R2 with unit outward normal n. Let m(x) be a bounded
smooth function such that m(x)>γ>0 and γ,τ be positive constants. In addition, let ‖·‖ denote
the L2 norm and C,C1,C2 denote generic constants. We consider a non-standard fourth order
eigenvalue problem of finding µ and u such that

(4+τ)m(x)(4+τ)u+τ2u=µ4u in Ω, (2.1)

with boundary conditions

u=0,
∂u
∂n

=0, on ∂Ω. (2.2)

The corresponding source problem can be stated as to find u such that

(4+τ)m(x)(4+τ)u+τ2u=4 f , (2.3)

with the same boundary conditions (2.2).
Let A : H2

0(Ω)×H2
0(Ω)→C and B : H1

0(Ω)×H1
0(Ω)→C be defined as

A(u,v)=(m(4u+τu),(4v+τv))+τ2(u,v), (2.4a)

B(u,v)=(∇u,∇v). (2.4b)
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The variational formulation for the eigenvalue problem (2.1) is to find µ∈R and u∈H2
0(Ω), such

that
A(u,v)−µB(u,v)=0 for all v∈H2

0(Ω). (2.5)

The associated source problem is to find u∈H2
0(Ω) for f ∈H1

0(Ω) such that

A(u,v)=B( f ,v) for all v∈H2
0(Ω). (2.6)

It can be shown that A is a coercive sesquilinear form on H2
0(Ω)×H2

0(Ω). In fact, we have
that

A(u,u) ≥ γ‖4u+τu‖2+τ2‖u‖2

≥ γ‖4u‖2−2γτ‖4u‖‖u‖+(γ+1)τ2‖u‖2

= ε(τ‖u‖−γ/ε‖4u‖)2+γ(1−γ/ε)‖4u‖2+(1+γ−ε)τ2‖u‖2

≥ γ(1−γ/ε)‖4u‖2+(1+γ−ε)τ2‖u‖2, (2.7)

for any ε such that γ< ε<γ+1. Moreover, since u∈H2
0(Ω), using the Poincaré inequality, we

have that
‖∇u‖2≤C‖4u‖2.

Thus we obtain that
A(u,u)≥C‖u‖2

H2 ,

for some positive constant C.
For boundedness, employing the Cauchy-Schwatz inequality, we obtain that

|A(u,v)| ≤ C‖4u+τu‖‖4v+τv‖+τ2‖u‖‖v‖
≤ C(‖4u‖+τ‖u‖)(‖4v‖+τ‖v‖)+τ2‖u‖‖v‖
≤ C‖u‖H2‖v‖H2 ,

for some constant C. We have shown the well-posedness of the source problem.

Theorem 2.1. Let f ∈H1
0(Ω). There exists a unique solution u∈H2

0 to (2.6) such that

‖u‖H2≤C| f |H1 ,

for some constant C independent of u and f .

Due to the fact that (2.1) is a fourth order problem with lower order perturbations, there exists
an α>0, called the index of elliptic regularity [15] such that

‖u‖H2+α(Ω)≤C| f |H1(Ω), (2.8)

where C is a constant. The elliptic index α depends on the corner of Ω. Furthermore, α∈( 1
2 ,1] for

a polygonal domain and α=1 if Ω is convex.
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3 C0 interior penalty method (C0IPG)

In this section, we describe the C0IPG method for the source problem (2.3). Note that our for-
mulation is different than that in [6] since we need to incooperate lower order terms. Let Th be
a regular triangulation for Ω and Vh⊂H1

0(Ω) be the Pk (k≥ 2) Lagrange finite element space
associated with Th with zero boundary condition on the boundary ∂Ω.

Assuming the solution u is smooth enough, we start with the following integration by parts
formula ∫

T
4(m4u)vdx=

∫
∂T

(
∂(m4u)

∂n
v−m4u

∂v
∂n

)
ds+

∫
T

m4u4vdx. (3.1)

Summing up (3.1) over all the triangles in Th, with cancelations we have

∑
T∈Th

∫
T
4(m4u)vdx=− ∑

T∈Th

∫
∂T

m4u
∂v
∂n

ds+ ∑
T∈Th

∫
T

m4u4vdx. (3.2)

For an interior edge e shared by two triangles T± where ne points from T− to T+, we define[[
∂u
∂ne

]]
=ne ·(∇u+−∇u−), {{m4u}}= 1

2
(m−4u−+m+4u+), (3.3)

where u±=u|T± .
For a boundary edge e, we take ne to be the unit normal pointing towards the outside of Ω and

define

[[
∂u
∂ne

]]=−ne ·∇u, {{m4u}}=m4u. (3.4)

We rewrite the first term on the right-hand side of (3.2) as a sum over the edges

− ∑
T∈Th

∫
∂T

m4u
∂v
∂n

ds= ∑
e∈Eh

∫
e
m4u[[

∂v
∂ne

]]ds, (3.5)

where Eh is the set of all the edges of Th.
Replacing m4u in the above equation by {{m4u}}, introducing the symmetric term

∫
e{{m4v}}[[ ∂w

∂ne
]]ds,

and adding the penalty term 1
|e|
∫

e[[
∂w
∂ne

]][[ ∂v
∂ne

]]ds, we obtain the following discrete problem: for

f ∈H1
0(Ω), find uh∈Vh such that

Ah(uh,v)=Bh(u,v) for all v∈Vh, (3.6)

where

Ah(w,v)= ah(w,v)+bh(w,v)+σch(w,v), (3.7)

Bh(u,v)= ∑
T∈Th

∫
T
∇u·∇vdx, (3.8)
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and

ah(w,v)= ∑
T∈Th

∫
T

m(4+τ)w(4+τ)v+τ2wvdx,

bh(w,v)= ∑
e∈Eh

∫
e
{{m4w}}[[ ∂v

∂ne
]]+{{m4v}}[[ ∂w

∂ne
]]ds,

ch(w,v)= ∑
e∈Eh

1
|e|

∫
e
[[

∂w
∂ne

]][[
∂v
∂ne

]]ds.

Here σ>0 is the penalty parameter.
Let V(h)=H2

0(Ω)+Vh. We define the mesh dependent norm ‖·‖h on V(h) as

‖v‖2
h = ∑

T∈Th

‖4v‖2
L2(T)+σ ∑

e∈Eh

1
|e|

∥∥∥∥[[ ∂v
∂ne

]]

∥∥∥∥2

L2(e)
. (3.9)

It is easy to see that we have the following Poincaré inequality.

Lemma 3.1. (Poincaré inequality) For every v∈V(h), ‖v‖≤C‖v‖h.

The bilinear form Ah(·,·) is bounded, i.e.,

|Ah(w,v)|≤C‖w‖h‖v‖h for all w,v∈Vh. (3.10)

This is the result of Lemma 3.1, standard inverse estimates and the Cauchy-Schwarz inequality
since

∑
e∈Eh

∣∣∣∣∫e
{{m4w}}[[ ∂v

∂ne
]]ds
∣∣∣∣ ≤

(
∑

e∈Eh

|e|‖{{m4w}}‖2
L2(e)

) 1
2
(

∑
e∈Eh

|e|−1
∥∥∥∥[[ ∂v

∂ne
]]

∥∥∥∥2

L2(e)

) 1
2

≤ C

(
∑

e∈Eh

∑
T∈Te

‖4w‖2
L2(T)

) 1
2
(

∑
e∈Eh

|e|−1
∥∥∥∥[[ ∂v

∂ne
]]

∥∥∥∥2

L2(e)

) 1
2

≤ C

(
∑

T∈Th

‖4w‖2
L2(T)

) 1
2
(

∑
e∈Eh

|e|−1
∥∥∥∥[[ ∂v

∂ne
]]

∥∥∥∥2

L2(e)

) 1
2

. (3.11)

Here Te is the set of the elements in Th that share the common edge e.
Next we show the coercivity of Ah. Similar to (2.7), we have∫

T
m(4+τ)v(4+τ)v+τ2vvdx≥

∫
T

C1|4v|2+C2|v|2dx,
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for some positive constants C1 and C2 depending on m(x) and τ. Using the inequality of arith-
metic and geometric means and the Cauchy-Schwarz inequality, we have that

Ah(v,v) ≥ C1 ∑
T∈Th

‖4u‖L2(T)−C

(
∑

T∈Th

‖4v‖2
L2(T)

) 1
2
(

∑
e∈Eh

|e|−1
∥∥∥∥[[ ∂v

∂ne
]]

∥∥∥∥2

L2(e)

) 1
2

+σ ∑
e∈Eh

|e|−1
∥∥∥∥[[ ∂v

∂ne
]]

∥∥∥∥2

L2(e)

≥ C1

2 ∑
T∈Th

‖4v‖2
L2(T)+

(
σ−C2

C1

)
∑

e∈Eh

|e|−1
∣∣∣∣[[ ∂v

∂ne
]]

∥∥∥∥2

L2(e)
. (3.12)

Provided σ is large enough, one has that

Ah(v,v)≥C‖v‖2
h for all v∈Vh. (3.13)

Then the existence and uniqueness of the discrete problem follows immediately.
Let u be the exact solution and uh be the discrete solution. We have the consistency relation

Ah(u−uh,v)=0 for all v∈Vh. (3.14)

Let v∈Vh be arbitrary, we have that

‖u−uh‖h ≤ ‖u−v‖h+‖v−vh‖h

≤ ‖u−v‖h+C max
w∈Vh\{0}

Ah(v−uh,w)

‖w‖h

≤ ‖u−v‖h+C max
w∈Vh\{0}

Ah(v−u,w)

‖w‖h

≤ C‖u−v‖h, (3.15)

and hence
‖u−uh‖h≤C inf

v∈Vh
‖u−v‖h. (3.16)

Let Πh :C0(Ω̄)→Vh be the Lagrange nodal interpolation operator. Then we have that (Section
3.4 of [5])

‖u−Πhu‖h≤Chβ‖u‖H2+β(Ω)≤Chβ| f |H1(Ω), (3.17)

where β=min{α,k−1}. Note that β is limited by the regularity of the solution and the degree of
Lagrange elements.

Let V = H2
0(Ω). Summarizing the approximation property and the error estimate, we obtain

the following lemma.

Lemma 3.2. (Quasi-optimality) We assume that

lim
h→0

inf
vh∈Vh

‖v−vh‖h =0 for all v∈V. (3.18)
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The discrete problem (3.6) has a unique solution and

‖u−uh‖h≤Chβ‖u‖H2+β(Ω)≤Chβ| f |H1(Ω), (3.19)

where C is a constant independent of the mesh size.

4 C0 IPG for the eigenvalue problem

The C0 IPG for the eigenvalue problem can be stated as follows. Find uh ∈Vh and µh ∈R such
that

Ah(uh,v)=µhBh(uh,v) for all v∈Vh. (4.1)

Following the abstract convergence theory developed in [11] and the spirit of DG method for
the Laplace eigenvalue problem [1], we would like to show that the C0IPG is "spectrally correct",
namely,

• non-pollution of the spectrum: no discrete spurious eigenvalues;

• completeness of the spectrum: all eigenvalues smaller than a fixed value are approximated
when the mesh is fine enough;

• non-pollution and completeness of the eigenspaces: there are no spurious eigenfunctions
and the eigenspace approximations have the right dimension.

To carry out subsequent discussions, we recall some results of spectral theory (see [18]). We define
two operators as follows:

T : H1(Ω)→V, A(T f ,v)=B( f ,v) for all v∈V, (4.2)

Th : H1(Ω)→Vh, Ah(Th f ,v)=Bh( f ,v) for all v∈Vh. (4.3)

Since T is symmetric, positive definite and compact due to the compact embedding of V into
H1

0(Ω), classical spectral theorem implies that T has a sequence of positive eigenvalues {λj}
with zero being the only accumulation point. The inverse of {λj}, i.e., {µj = 1/λj} are the
eigenvalues of (2.5) with ∞ being the only accumulation.

Let σ(T) and ρ(T) be the spectrum and resolvent sets of T. The resolvent operator is defined
as

Rz(T)=(z−T)−1 z∈ρ(T).

Similarly, we have σ(Th),ρ(Th), and

Rz(Th)=(z−Th)
−1 z∈ρ(Th).

In the rest of this section, we show that the C0IPG is spectrally correct and prove the convergence
rate.
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4.1 Non-pollution of the spectrum

For non-pollution of the spectrum, we can show that for any open set containing σ(T) also contains
σ(Th) for h small enough. We first show that for z away from σ(T), z−T is bounded from below.

Lemma 4.1. Let z∈ ρ(T),z 6=0. There exists a positive constant C only depending upon Ω and
|z| such that

‖(z−T) f ‖h≥C‖ f ‖h for all f ∈V(h). (4.4)

Proof. Let z∈ ρ(T),z 6=0 be fixed and f ∈V(h). Set g=(z−T) f . Since T f ∈V, we have that
g∈V(h). Note that

T=((4+τ)m(4+τ)+τ2)−14= T̃−14 : H1
0(Ω)→V (4.5)

in the weak sense. Then z f−g=T f implies T̃(z f−g)=4 f . Hence z f−g∈V is the solution of
the problem

T̃(z f−g)− 1
z
4(z f−g) =

4g
z

in Ω,

z f−g = 0 on ∂Ω,
∂

∂n
(z f−g) = 0 on ∂Ω.

Since the above problem is a lower order perturbation of (2.3), we deduce that [15], for some C

‖z f−g‖V≤
C
|z| ‖∇g‖L2(Ω)≤

C
|z| ‖g‖h. (4.6)

Since z f−g∈V, we have that ‖z f−g‖h≤C‖z f−g‖V and

‖z f−g‖h≤
C
|z| ‖g‖h. (4.7)

Using the triangle inequality, we obtain the desired result

‖ f ‖h≤
1
z
(‖z f−g‖h+‖g‖h)≤C(|z|)‖g‖h =C(|z|)‖(z−T) f ‖h. (4.8)

Next we show that a similar property holds for Th as well.

Lemma 4.2. For z∈ ρ(T),z 6=0, there exists a positive constant C only depending on Ω and |z|
such that, for h small enough,

‖(z−Th) f ‖h≥C‖ f ‖h for all f ∈V(h). (4.9)



9

Proof. By triangle inequality, we have that

‖(z−Th) f ‖h≥‖(z−T) f ‖h−‖(T−Th) f ‖h. (4.10)

By Lemma 4.1, Lemma 3.1 and Lemma 3.2, we have

‖(z−Th) f ‖h≥C(|z|)‖ f ‖h−Chβ‖ f ‖h, (4.11)

where C(|z|) is the constant in Lemma 4.1. Since C(|z|) only depends on Ω and z, (4.9) is readily
verified for h small enough.

Lemma 4.3. Let F⊂ ρ(T) be closed. There exists a positive constant C independent of h such
that, for h small enough, we have

‖Rz(Th)‖L(V(h),V(h))≤C for all z∈F. (4.12)

Proof. Let z∈F be fixed. Since z∈ρ(T), we have that

‖Rz(Th)‖L(V(h),V(h))= sup
g∈V(h),‖g‖h=1

‖(z−Th)
−1g‖h. (4.13)

Let ‖g‖h =1 and (z−Th)
−1g= f , we have

‖(z−Th) f ‖h =‖g‖h =1. (4.14)

From Lemma 4.2, for h small enough, we get

C‖ f ‖h≤‖(z−Th) f ‖h =1. (4.15)

and the lemma follows immediately.

Lemma 4.3 claims that, for any z ∈ ρ(T) and h small enough, (z−Th) admits a bounded
inverse operator from V(h) to V(h), i.e., Rz(Th) is well defined and continuous from V(h) to
V(h). Thus we have shown the following theorem which implies non-pollution of the spectrum.

Theorem 4.1. (Non-pollution of the spectrum) Let A⊂C be an open set containing σ(T). Then,
for h small enough, σ(Th)⊂A.

For fixed z∈ρ(T) and f ∈V(h), we can write

‖z f−T f ‖h≤|z|‖ f ‖h+‖T f ‖h≤|z|‖ f ‖h+C‖ f ‖h≤C(|z|)‖ f ‖h, (4.16)

due to the stability estimate of the continuous problem and the Poincaré inequality of Lemma 3.1.
Using Lemma 4.1, for all fixed z∈ ρ(T),z−T : V(h)→V(h) is a continuous invertible operator
with continuous inverse. A direct consequence of this fact is the analogue of Lemma 4.1: let
F⊂ρ(T) be closed; then, there exists a positive constant C independent of h such that

‖Rz(T)‖L(V(h),V(h))≤C, (4.17)

for all z∈F. From continuity of T : H1(Ω)→H1(Ω), if F⊂ρ(T) is closed, there exists a positive
constant C such that

‖Rz(T)‖L(H1(Ω),H1(Ω))≤C, (4.18)

for all z∈F.
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4.2 Non-pollution and completeness of the eigenspaces

Let λ be an eigenvalue of T with algebraic multiplicity p. Denote by Γ a circle in the complex
plane centered at λ such that no other eigenvalue lies inside Γ. Define the spectral projections E
from H1(Ω) into V and Eh from H1(Ω) into Vh by (see [16])

E :=
1

2πi

∫
Γ

Rz(T)dz, Eh :=
1

2πi

∫
Γ

Rz(Th)dz. (4.19)

Let X and Y be closed subspaces of V(h). We define the "distance" between X and Y as

d(X,Y)=max{δh(X,Y),δh(Y,X)}, (4.20)

where
δh(X,Y) := sup

x∈X,‖x‖=1
inf
y∈Y
‖x−y‖. (4.21)

We first show that Eh converges to E in operator norm as h→0.

Theorem 4.2. Let E and Eh be defined as in (4.19)

lim
h→0
‖E−Eh‖L(H1(Ω),V(h))=0. (4.22)

Proof. It’s easy to see that

(z−T)−1−(z−Th)
−1=(z−Th)

−1(T−Th)(z−T)−1, (4.23)

i.e.,
Rz(T)−Rz(Th)=Rz(Th)(T−Th)Rz(T). (4.24)

Let f ∈H1
0(Ω). We have

‖Rz(Th)(T−Th)Rz(T) f ‖h

≤ ‖Rz(Th)‖L(V(h),V(h))‖T−Th‖L(H1(Ω),V(h))‖Rz(T)‖L(H1(Ω),H1(Ω))‖ f ‖H1(Ω). (4.25)

From Lemma 3.2 and Lemma 4.3 and (4.18), we obtain (4.22).

Theorem 4.3. (Non-pollution of the eigenspace).

lim
h→0

δh(Eh(Vh),E(V))=0. (4.26)

Proof. With E(H1(Ω))=E(V) and Ehyh =yh for all yh∈Eh(Vh), we have

sup
yh∈Eh(Vh),‖yh‖h=1

inf
x∈E(V)

‖yh−x‖h = sup
yh∈Eh(Vh),‖y‖h=1

inf
x∈E(H1(Ω))

‖yh−x‖h

= sup
yh∈Eh(Vh),‖y‖h=1

inf
x∈H1(Ω)

‖Ehyh−Ex‖h. (4.27)
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Letting x=yh and using the discrete Poincaré inequality, we obtain

sup
yh∈Eh(Vh),‖y‖h=1

inf
x∈H1(Ω)

‖Ehyh−Ex‖h ≤ sup
yh∈Eh(Vh),‖y‖h=1

‖Ehyh−Eyh‖h

≤ sup
yh∈Eh(Vh),‖y‖h=1

‖Eh−E‖L(H1(Ω),V(h))‖yh‖h.

(4.28)

Application of Theorem 4.2 completes the proof.

Theorem 4.4. (Completeness of the eigenspaces)

lim
h→0

δh(E(V),Eh(Vh))=0. (4.29)

Proof.
sup

x∈E(V),‖x‖h=1
inf

yh∈Eh(Vh)
‖x−yh‖h = sup

x∈E(V),‖x‖h=1
inf

yh∈Vh
‖Ex−Ehyh‖h.

From quasi-optimality of Vh, there exists xh∈Vh such that

lim
h→0
‖x−xh‖h =0. (4.30)

So we have

inf
yh∈Vh

‖Ex−Ehyh‖h ≤ ‖Ex−Ehxh‖h

≤ ‖E(x−xh)‖h+‖(E−Eh)xh‖h

≤ C‖E‖L(V(h),V(h))‖x−xh‖h+‖E−Eh‖L(V(h),V(h))‖xh‖h. (4.31)

Since E is a projection, the first term goes to 0 as h→0. Using the fact that

‖E−Eh‖L(V(h),V(h))≤‖E−Eh‖L(H1(Ω),V(h)),

and Theorem 4.2, we have that

‖E−Eh‖L(V(h),V(h))→0 as h→0.

Note that E(V) is finite dimensional, point-wise convergences implies uniform convergence,
which completes the proof.

4.3 Completeness of the spectrum

Completeness of the spectrum is readily verified once we have completeness of the eigenspaces.

Theorem 4.5. (Completeness of the spectrum). For all z∈σ(T), there exists a family of {zh},zh∈
σ(Th) such that

lim
h→0

zh = z. (4.32)
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Proof. Theorem 4.3 and Theorem 4.4 imply that d(E(V),Eh(Vh))→ 0 as h→ 0. Hence for h
small enough, E(V) and Eh(Vh) have the same dimension. Let DΓ be the domain bounded by Γ.
If DΓ∩σ(T) 6=∅, then, for h small enough, DΓ∩σ(Th) 6=∅. Since T only has a point spectrum,
without loss of generality, one can choose DΓ a disk with radius ε> 0 centered at z. Hence for
h small enough, there must be an element in σ(Th) which is close enough to z (less than ε). The
theorem follows consequently.

4.4 Convergence Analysis

Let s=dimE. It has been shown that, for h small enough, there are s eigenvalues of Th such that

lim
h→0

sup
1≤i≤s

|λ−λi,h|=0. (4.33)

Due to the approximation property of Vh (3.17), we have that

δ(E(V),Vh)≤Chβ. (4.34)

Theorem 4.6. For h small enough, we have that

sup
1≤i≤n

|λ−λi,h|≤Ch2β. (4.35)

Proof. By (3.17), we have that

‖E−Eh‖L(E(V),V(h)) ≤ C‖T−Th‖L(E(V),V(h))

≤ C sup
x∈E(V),‖x‖h=1

‖Tx−Thx‖h

≤ Chβ.

Since E is a projection, for h small enough, Eh|E(V) :E(V)→Eh(Vh) is an invertible mapping that
we denote by Fh =Eh|E(V). Its inverse is uniformly bounded with respect to h.

Let T̃=T|E(V) and T̃h =F−1
h ThFh : E(V)→E(V). We have then [1]

sup
1≤i≤n

|λ−λi,h|≤C‖T̃− T̃h‖L(E(V),V(h)). (4.36)

Let Sh = F−1
h Eh : H1(Ω)→V(h), which is a continuous operator. For all x∈E(V), ShTx= T̃x

and ShThx= T̃hx. So we have

(T̃− T̃h)x=Sh(T−Th)x for all x∈E(V), (4.37)

and

‖T̃− T̃h‖L(E(V),V(h)) = sup
x∈E(V),‖x‖h=1

‖T̃x− T̃hx‖h

≤ C sup
x∈E(V),‖x‖h=1

‖Tx−Thx‖h

≤ Chβ.
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It is clear that the problem considered is self-adjoint. Since the C0 IPG is symmetric, following
the reasoning used in [12], one actually has that

sup
1≤i≤n

|λ−λi,h|≤Ch2β. (4.38)

5 Numerical examples

In this section, we present some preliminary examples using Lagrange elements. We choose two
polygon domains: the unit square given by

(−1/2,1/2)×(−1/2,1/2),

and an L-shaped domain given by

(−1/2,1/2)×(−1/2,1/2)\[0,1/2]×[−1/2,0].

We generate initial quasi-uniform meshes with h≈0.1 for the two domains and uniformly refine
them three times. Since there are no exact eigenvalues available, we define the relative error as

Ri =
|λhi−λhi+1 |

λhi+1

,

where λhi is the computed smallest eigenvalue on the mesh with size hi. We set the penalty
parameter σ=20 for all numerical examples according to the criteria in [17].

We set the function m to be 1/15 and τ = 4. We first let k = 2 and compute the smallest 6
eigenvalues for the two domains. In Table. 1, we show the smallest 6 eigenvalues for the unitsquare
on a series of uniformly refined meshes. It is clear that all eigenvalues converge as the mesh size
decreases. Similar behavior can be observed for the L-shaped domain (Table.2).

Table 1: The first 6 eigenvalues of the unit square (m=1/15,k=2)).
h 1/10 1/20 1/40 1/80
1st 3.81446397 3.67056460 3.62927378 3.61803042
2nd 6.46307953 6.05671782 5.93584577 5.90269901
3rd 6.47497291 6.05159762 5.93417395 5.90222194
4th 9.35899087 8.53033433 8.28667698 8.21942966
5th 11.38590197 10.30345017 10.00079742 9.91882214
6th 12.27331821 11.23008634 10.93236472 10.85063178
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Table 2: The first 6 eigenvalues of the L-shaped domain (m=1/15,k=2).
h 1/10 1/20 1/40 1/80
1st 9.58933965 8.74791493 8.46921155 8.37478038
2nd 10.85920836 9.93745334 9.66267690 9.58390396
3rd 12.48756982 11.35129126 11.007555827 10.90958476
4th 15.17664789 13.39106860 12.86133934 12.71309166
5th 17.73632960 15.34549516 14.63833455 14.43565437
6th 22.60252968 19.43188655 18.49425640 18.21451526

In Fig. 1, we show the first and second eigenfunctions for the two domains. In Fig. 2, we plot
relative errors for the first and the second eigenvalues against mesh sizes in log scale. For the
unit square, we can see roughly the second order convergence is achieved for both eigenvalues.
For the L-shaped domain, the convergence rate of the first eigenvalue is less than 2 due to the
reentrant angle which leads to low regularity. The convergence rate of the second eigenvalue is
higher indicating the second eigenfunction is smoother than the first one.

In Fig. 3, we repeat the plot for k = 3. For the unit square, we see that the relative error is
roughly of O(h4) for both eigenvalues. For the L-shaped domain, the convergence rate is less
than O(h4) for both eigenvalues. However, the second eigenfunction has more regularity than the
first eigenfunction which ends up with higher convergence rate. We note that, for compact self-
adjoint operators, the order of convergence is related to the regularities of the eigenfunctions. If
the eigenvalue of the multiplicity is more than one, the convergence is related to the approximation
properties of the eigenspace [3].

Next we set m=1/(7+x+y) and τ=4. We let k=2 and show the first 6 eigenvalues for the
unit square in Table. 3. For the values we have, the second and third values are the approximation
of an exact eigenvalue with multiplicity 2. The plot of these two eigenvalues also supports our
argument (see Fig. refeigfs2and3square).

Table 3: The first 6 eigenvalues of the unit square (m=1/(7+x+y),k=2).
h 1/10 1/20 1/40 1/80
1st 7.47404958 7.16350861 7.07416012 7.04980287
2nd 13.53510833 12.65674643 12.40540951 12.33699851
3rd 13.56136527 12.66649644 12.40864636 12.33801199
4th 19.87793508 18.09893827 17.57438280 17.42945049
5th 24.20522590 21.88523609 21.23824277 21.06329278
6th 25.98991545 23.76950307 23.13193451 22.95622682

Similar to the unit square, we show the results for the L-shaped domain in Table. 4.
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Figure 1: The first row: the first and the second eigenfunctions for the unit square. The second row: the first
and the second eigenfunctions for the L-shaped domain.
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Figure 4: The second and third eigenfunctions of the unit square.


