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Abstract

We consider an interior inverse scattering problem of retrosting the shape
of a cavity. The measurements are the scattered fields orva itiside the cavity
due to one point source. We employ the decomposition methoecbnstruct the
cavity and present some convergence result. Numerical geanare provided to
show the effectiveness of the method.

1 Introduction

Typical inverse scattering problems are considered asiexigoblems in the sense
that the scattering objects are illuminated by incidentegafrom the exterior of the
objects. The measurements are also in the exterior of tleethjpr even far way from
them (far field pattern). Examples of such inverse probleppgar in a wide range of
applications such as radar techniques, geophysical etjgas, non-destructive test-
ing, etc [2]. In this paper, we consider a different classweérse scattering problems,
i.e. theinterior inverse scattering problems of reconstructing the boundaa cav-
ity. These problems can arise from non-destructive testingdustrial applications
such as the test of the structural integrity of cavities T8je terminterior comes from
the fact that the sources (incident waves) and measureifseattered waves) are both
inside the cavity. The goal is to reconstruct the shape ostattering object. To be
precise, we consider a bounded domairc R? with the sound soft boundary condi-
tion ondD. Assuming the measurements are available on some ¢ummside D due
to one point source, the interior inverse scattering problee are interested in is to
reconstruct D (see Fig. 1).

The interior inverse scattering problem is a fairly new egeb topic. There are a
few recent works. In [8], Jakubik and Potthast use the smistof the Cauchy problem
by potential methods and the range test to study the inyegirihe boundary of some
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Figure 1: Explicative figure. The point source and receiaeeson a curvé’ insideD.

cavity by acoustic waves. Assuming the measurements are available for all point
sources on the same curve, Qin and Colton apply the lineaplsapmethod to the
above problem in 2D case in [19]. They further extend theithme to reconstruct
both the shape of the cavity and the surface impedance in [Z8hg et. al. [21]
consider the interior electromagnetic scattering probiler8D case using the linear
sampling method. Note that the above papers require natltistata, i.e., the scattered
fields onC' due to many point sources. For the case of one point sourceevadal
measurements, nonlinear integral equations have beentagsedonstruct the cavity
[18].

In this paper, we study the determination of the shape ofdligycusing the decom-
position method due to Kirsch and Kress [11] (see also Seéti of [2] and [14, 3]).
The original version of the method was for the exterior iseescattering problems us-
ing far field data. It has a close connection to the approa€totibn and Monk [4, 5].
We refer the readers to [12, 14, 3] and the references thiefarther discussion of
the method and its applications to other types of the invetag&tering problems. Our
treatment of the decomposition method for interior invescsgttering problems follows
the steps in Section 5.4 of [2].

The rest of the paper is organized as follows. In Section 2intveduce the in-
terior direct and inverse scattering problems and presam@nt results of uniqueness
theorems in [19, 20, 18]. In Section 3, we discuss the decaitipo method for the
interior inverse scattering problem which breaks into taog the first part deals with
the ill-posedness by constructing the scattered field flemmieasurement ari and the
second part deals with the nonlinearity by reconstructifigas the minimization curve
of the L2 norm of the total field. In Section 4, we present some numkgicamples.



Finally, in Section 5, we make conclusions and discuss somued works.

2 Theinterior inverse scattering problem

We first consider the interior scattering problem due to afsurce inside the cavity.
Let D C R? be a bounded simply connected domain withboundarypD. Letk > 0
be the wave number andbe a point insideé). The direct scattering problem is to find
the scattered field® such that

Au® + k*u® =0, in D, (2.1a)
u® = —®(, z), ondD. (2.1b)

Here® is the fundamental solution to the Helmholtz equation givgn
(e, z) = T H (klr = 2|) (2.2)

WhereHél) is the Hankel function of the first kind of order zero. In thetref the
paper, we assume that > 0 is not a Dirichlet eigenvalue ab. The well-posedness
of this scattering problem is well-known [2].

The inverse problem we are interested in is to determinetibpesofD from the
measurement of the scattered field on some cdhiaside D due to a point source
z € C. Note thatz € C'is not an essential requirement.

We first present a uniqueness result from [19] for multistdata. Assuming the
knowledge of the scattered field (z, z) for all z, 2 € C, Qin and Colton [19] proved
the following theorem.

Theorem 2.1. (Theorem 2.1 of [19]) I%2 is not a Dirichlet eigenvalue for the interior
of C, then the boundary D is uniquely determined froma*(z, z) for 2, z € C.

The requirement that? is not a Dirichlet eigenvalue for the interior 6f is non-
essential since we can always charige The proof of the above theorem in [19] is
based on Schiffer’'s proof in 1967. Unfortunately, Schiffgrroof cannot be general-
ized immediately to other boundary conditions. In the failog, we present a proof
which is based on the approach of Kirsch and Kress for theiexiaverse scattering
problem [10].

Proof. Assume thatD; # D, are two bounded domains amg andu$ satisfy the
scattering problem (2.1), respectively. Suppose #jat, z) = u5(z, z) on C for all
z € C. Letw = uj — u5. We have that
Aw + k*w =0, inC, (2.3a)
w =0, onC, (2.3b)

whereC denotes the interior of’. Sincek? is not a Dirichlet eigenvalue faf!, we
have thatv =0in C U C.



Let Dy be the connected component Bfi N Do containingC. By analyticity,
w = 0in Dy, i.e.
ui(x, z) = us(zx, z)

forall z € Dy andz € C. By the reciprocity relation, we have that
uf(z,z) = u3(z, x)

forall z € Dy andz € C. Using the same argument as above, we have that
ui(x, z) = us(zx, z)

forall z, z € Dy.
Without loss of generality, there exist§ € 0D, such that:* € 0D, andz* ¢
0Ds. In particular, we set

1
zn i=a" — —v(z*) € Dy
n
for sufficiently largen. Herev(z*) denotes the unit outward normal @D, atz*. In
view of the well-posedness of the cavity problem for scattér,, on one hand, we
have that
lim w3 (z™, z,) = ug(z™, ).
n—oo
On the other hand, we have that
77,11—{20 uf(x*, z,) = 00
because of the boundary condition igyin terms of the point source locatedzzt —
z* asn — oo. This is a contradiction and thu3; = D-. O

In case of only finitely many incident wave, i.@%(z, z) is known for finitely many
point sourceg € C, a general uniqueness theorem for the interior scatteriolglem
is an open problem. However, if some a priori informationtomgize ofD is available,
the shape of) can be uniquely determined following the idea of Colton ale®an
[6] for the exterior problems.

Theorem 2.2. (Theorem 2.1 of [18]) Assume thaY, and D- are two bounded simply
connected regions containirtg and contained in a disk of radiug, and let

Ne= Y 14+ Y 2 (2.4)

tor<kR tni <kR,n#0

wheret,,; (I =0,1,...;n =0,1,...) denote the positive zeros of the Bessel functions
I, i.e., Jn(tnr) = 0. Denote byu$ (-, z) andus(-, z) the scattered field corresponding
to D; and D5, respectively, due to the point sour@-, z). If uj(-,z) andu3(-, 2)
coincide onC' for N + 1 distinct locations: € C' and one fixed wave numbkythen

Dy = Ds.

As a consequence of the above theorem, Qin and Cakoni [18patsre the fol-
lowing uniqueness result.



Corollary 2.3. (Corollary 2.2 of [18]) Assume thdD, and D5 are two bounded simply
connected regions containiigand contained in a disk of radiu8 such thatc R < ¢,
wheret, (=~ 2.40483) is the smallest positive zero of the Bessel functign If the
measured data.®(-, z) on C coincide for one locatiorr € C and one fixed wave
numberk, thenD; = D-.

3 Thedecomposition method

In this section, we present the decomposition method td tineainterior inverse scat-
tering problem. In general, the decomposition method cadilided into two steps:
at the first step, the scattered fiellis constructed from the measurememtson the
curve(C; at the second step, the unknown boundaby of the cavity is determined by
finding the location where the boundary condition for thaltéield u* + «* is satisfied
in a least-squares sense. The first step mainly deals with+-ffessedness of the inverse
problem, and the second step deals with the nonlinearityeoptoblem [3, 11].
Suppose that the scattered fieltiz, z) is known for allz € C due to a point
sourcez € C, denoted byuZ.. Assume thaf is a curve outsideD, i.e., a prior
information on the rough size d@ is known. We define the single layer potential by

/(b (x,y)ds(y) = ¢T. (3.5)

Theorem 3.1. Assumek? is not a Dirichlet eigenvalue for the negative Laplacian in
the interior ofI" or in the interior of C. Then the operato8 : L*(T') — L2(C) is
compact, injective and has a dense range.

Proof. The compactness is obvious.
To show thatS is injective, we set

(Sg)(x) = / 9(2)B(x, 2)ds(z) =0, z€C,

and define

Thenw(z) is the solution of
Aw + k*w =0, inC, (3.6a)
w =0, onC. (3.6b)
Sincek? is not a Dirichlet eigenvalue for the negative Laplamarﬂnwe conclude
thatw = 0 in C. In addition,Aw + k%w = 0 in T implies thatw = 0 in I' UT due

to analyticity. Using the property of the single layer pdielh we see thatv(z) also
satisfy

Aw + k*w = 0, inR2\ (T'UT), (3.7a)
w =0, onT, (3.7b)



and the Sommerfeld radiation condition

lim +/r (6_11} —ikw) =0
T—00 or
wherer = |z|. Since the solution of the exterior Dirichlet problem isque (see [2]),
w=0inR?\ (I UT). For the single layer potential, we have that
we —w owy  Ow-
+ — W= v v = -9,

wherev is the unit outward normal td' and + denotes the limits as — I" from
outside and inside. Thus we haye- 0 and the injectivity is proved.

Next we show tha$ has a dense range. Rore L?(C'), we assume thdtSg, 1)) =
0,i.e.

[ [ ae2)g:) oo ds(o) =0
cJr

forall g € L?(T). Interchanging the order of integration we have that

[ [ 2.2 0@ dstwig(e) ds() =0
rJc

forall g € L*(T). Thus we have

w(z) = /Cfl)(x,z)mds(:c), z € R?\ C.

Thenw(z) satisfiesAw + k*w = 0in T andw(x) = 0 onT. Sincek? is not Dirichlet
eigenvalue for the negative Laplacianlinwe havew(z) = 0in I'. Note thatC' ¢ T".
Using the jump relation of the single layer potential agair,havey) = 0. HenceS
has dense range it?(C).

O

Given the scattered field,, we can set up the ill-posed integral equation
S =u’|c. (3.8)

To solve (3.8), we employ the classical Tikhonov reguldiora In particular, we seek
the approximation solution,, by solving the following regularized problem

Ao + S* St = S*us, (3.9)

wherea denotes the regularization parameter &id: L?(C) — L*(T') denotes the
adjoint of S. In the rest of the papes is chosen according to the Morozov’s discrep-
ancy principle. It is well-known that solving (3.9) is eqalgnt to the minimization of
the Tikhonov functional [11, 2]

IS6a — ugl72(c) + @llalliz(r)- (3.10)
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Once we have found,,, we can compute the approximatiof) := S¢,, for the
scattered field.*. Then the boundary db is determined by identifying a curve so that
the sound-soft boundary condition is approximately satisfi.e.,

/(ba (x,y)ds(y) =~ 0. (3.112)

A simple approach would be just plotting the absolute valitb®left hand side of
(3.11). One can choose a sampling domain inkided outside” and plot the absolute
value of the total field

u' +/¢a O(x,y)ds(y)| . (3.12)

Then the closed curve outsidéwith rather small value of/(x) can be taken as the
reconstruction o D.
It is obvious that measurements due to additional pointcsiucan be added in a
straightforward way. Suppose that we have measuremgnjsdue to point sources
ui; = ®(z,2;) atz;, j = 1,...,N. For eachug, ;, we compute the corresponding
regularized solutio,, ; of (3 9) Note that a frxed regularization parameter can be
used if the noise levels are the same. Then we can plot the ofdie sum of the total

field
N
=2

The reconstruction oD can be decided in the same way as for the case of a single
point source.

The decomposition method treats (3.11) as an optimizatiohlem. We select a
family of starlike curves as the admissible set for the bamaf D. It is clear that
0D is betweerC andI'. Hence we can find; andry with r; < 7o and define

u —|—/¢a3 (z,y)ds(y)| . (3.13)

Vi={reC"(Q)0<r <r<r} (3.14)

whereQ) = {7 € R?||#| = 1} andC*#(Q),0 < 3 < 1 denotes the space of uniformly
Holder continuously differentiable functions. We define

A= {r(d)ilz €}, reV. (3.15)

The decomposition method seeks an approximatiof/foby solving the following
minimization problem

min [ [(uf + ®(-,2)) or|[*ds. (3.16)
reVv Q

Combining the above two steps, we can formulate an optiiizgiroblem for
the interior inverse scattering problem. For a given measentu, € L*(C) and a
regularization parameter, define the functionak : L?(I') x V — R by

ey riug, @) = S —ugl Lz o)+ allgllLz o +II(So+ (- 2)) orlliz(q). (8-17)



Herev > 0 denotes a coupling parameter. Ideally, the choice wbuld make the first
and third terms in (3.17) of the same magnitude. For sintgligie choosey = 1 in
the rest of the paper.

The interior inverse scattering problem is to minimjzei.e., to seek(¢,r) €
L*(T") x V such that

(o, rius, ) = M(ud, a) == inf{u(y, ¢;us, o) - € L*(T),q € V}. (3.18)

Theorem 3.2. The optimization probler{8.18)of the interior inverse scattering prob-
lem has a solution.

Proof. Let (¢,,,7,) € L*(T') x V be a minimizing sequence
lim pu(n, ) = M(u, ). (3.19)

SinceV is compact (see Ch. 3 of [2]), we havg — r for somer € V asn — oc.
From (3.17), we obtain

a”¢nH%2(F) < pdnyrn) — M(ug, @).

Thus(¢,,) is bounded and converges weakly to same L?(T'). SinceS is compact,
we have that
S¢n - 8¢7 n — oo,

and
(Sén) 0 rn — (SP) o7, 1= 00,

From (3.19), we see thdlip,||> — |#]|*>,n — co. Together with the weak conver-
gence, we have the norm convergenge— ¢, n — oco. By continuity, we have

/L((bv T) = JEEO ,Lt(d)n, Tn) = M(Uscv a)
which completes the proof. O

Theorem 3.3. Letuf. be the scattered field due to a point sourcezain C. If the
boundary ofD can be represented by some& V', then

lin%J M(ug, a) = 0. (3.20)
Proof. We note that ifk2 is not a Dirichlet eigenvalue for the interior 6fthe range
{S¢lap : ¢ € L3(T)} is dense inL?(9D). Then there existg € L*(T") such that
[(S¢+ @(-, 2)) o7l r2(0) <€

for anye > 0. Since the solution of the Helmholtz equation continuouaglpends on
the boundary data, there exists a constamich that

I8¢ —ugllL2(c) < el (Sh —u®) o r|[L2(q)-
From the boundary condition ahD we have
(¢ riuy, @) < (1+ e +alldlizry — L+ e, a—0.

The proof is complete sinceis arbitrary. O



Theorem 3.4. Letu{, be the scattered field on a cur¢ginside D. Assume thad D
can be represented by some= V. Let(«,) be a null sequence and 1éb,,,,) be

a solution to the minimization problem with regularizatiparameterw,,. Then there
exists a convergent subsequencérqf). There is only a finite number of limit points
and every limit point represents a surface on which the tixéd «* + u° vanishes.

Proof. SinceV is compact, there exists a convergent subsequer(eg pfstill denoted
by (r,), such that

lim r, = r*.
n—oo

Let u* be the unique solution to the direct scattering problem ler domain with
boundaryA* given byr*. Thus we have that

(" +®(-,2))or*=0 onQ. (3.21)

We denoteS¢,, by u,, forn = 1,2, 3, ..., the solutions of the interior scattering prob-
lems with boundary valueS¢, |, onA,, described by-,. By Theorem 3.3, we have

| (wn + @(-,2)) o TnllL2() — 0, n — oo. (3.22)
Sincer,, — r* asn — oo, we have that
lun —u*||12(a,) — 0, n — oo.

This implies thatS¢,, converges uniformly ta:*. On the other hand, Theorem 3.3
implies
[S¢n — ugllL2c) — 0, n— oo.

Assuming thatk? is not a Dirichlet eigenvalue fof!, we have thatS¢,, converges
uniformly to »* in C. Thus we have:* = «* by analytic continuation and (3.21)
implies thatu® + u* vanishes om\*.

If there are an infinite number of different limit points, theexists a convergent
sub-sequence of these limit points. This implies that tlaeeearbitrary small domains
for which u* + ' are eigenfunctions for the Laplacian. This is not possibie the
proof is complete. O

The problem of multiple point sources can be formulated imaghtforward man-
ner. Assuming thaty,...,z, aren point sources andgl, ...,ug" are the corre-
sponding scattered fields @i then the minimization functional is simply

1 ,
P15y O T3 UG us " @)

given by

{||5¢i —ugl 720y + allgillia @y + [(Soi + @(-,2)) 7°||%2(sz)} :
1

n

2

Similar to the exterior inverse scattering problem, we cahaxpect more than
sub-sequence convergence due to the fact that we do not hmeeuness either for the
interior inverse scattering problem or for the optimizat@roblem (see Section 5.4 of
[2] for the discussion of the exterior inverse scatteringbem).



4 Numerical examples

We present some numerical examples to verify the effectisginf the decomposition
method. We choose two targets for One is a peanut given by

z(0) =3 (cos2 6 + 0.25 sin? 9) cosf, (4.23a)
y(0) = 3 (cos® 0 + 0.25sin” 0) sin@, 0 <6 < 2r. (4.23b)

The other is a kite given by

x(0) =2cosf + 1.3cos260 — 1.3, (4.24a)
y(0) = 3sin b, 0<6<2m. (4.24b)

We choose the curv€' to be the unit circle and putd measurement locations uni-
formly distributed onC'. The point source is located @t, 0) on C. The curvel is the
circle with radius = 6.

We set the wave numbér= 1. The direct interior scattering problems are solved
by a linear finite element method on a mesh with the mesh/size A/100. The
scattered fields:, at measurement locations are recorded and 5% random noise is
added.

For the inverse problem, we first replace the ill-posed irgkgquation (3.8) by a
finite dimensional approximations. In particular, we emyptloe trapezoidal rule for
the integral with 320 nodes. Tikhonov regularization (39}hen applied to obtain
a regularized solutiom, of (3.8). The regularization parameter is chosen taxbe
1.0e — 4 for all examples due to the fact that the noise levels areahees

4.1 Theplot of U(x)

We first check the plot o/ (x) defined in (3.12) to obtain some idea how the result
would look like. We choose a domah:= [—4,4] x [—4,4] \ C. For each sampling
pointz in S, we computé/(x) and plot it inS using the Matlab "image’ function.

In Fig. 2, we show the reconstruction for the peanut. Not¢ tira wave length
A = 27 which is a little larger than the size of the object. Theras&® be some other
curves outside the target also give snia(lz).

For the kite, the setting is the same as the peanut case. ddrsteuction is shown
in Fig. 3. It can be seen that the two wings of the kite are mgssi

For both cases, we see some defects of the plots, i.e.,dosatiot ond D where
U(z) is rather small. Considering the interior measurements;ouéd choose the first
reasonable closed curve outsides an approximation @fD.

4.2 The optimization result

Next we search in a suitable set of curvesiofor the optimization problem. In all
examples, we replaced by trigonometric polynomials of degreeas in [11]. The
nonlinear minimization problem is solved by a Matlab roatifminsearch’ which is
based on a simplex method [15]. The initial guess is a ciraksideC' with radius
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Figure 2: The plot ol (x) for the peanut target wheln= 1. The dashed line is the
exact boundary.

Figure 3: The plot ofU (x) for the kite whenk = 1. The dashed line is the exact
boundary.
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exact
25F —*— initial guess |
— - — - reconstructed

Figure 4: Reconstruction of the peanut. The point sourceis-a(1,0) and receivers
are on the unit circle. The initial guess is a circle of radils

1.2. We note that the initial guess can be any curve outsSid8ince the measurement
is inside D the choice of the initial guess is easier than the exterigrise scattering
problem.

In Fig. 4, we show the reconstruction of the peanut. Considehe added noise,
the result is satisfactory. In Fig. 5, we show the reconsimnof the kite. Again the
two wings of the kite are missing.

5 Conclusions and future work

In this paper, we consider a new category of inverse scagfguioblems - the in-
terior inverse scattering problem. In contrast to the saamabxterior problems, the
point source(s) and measurements are inside the cavitymiytog the decomposition
method, which has been used for the exterior inverse stagtproblems in literature,
to construct the cavity boundary.

For the interior problems, the case/of being a Dirichlet eigenvalue d has to
be avoided. This is due to the fact that using a point sourem atigenfrequency to
probe the cavity would lead to a resonance state [18]. Palgithe interior inverse
scattering problem can be more complicated than the exté@itering due to the fact
that the scattered waves are repeatedly reflected0f{19]. This can also be seen
from the numerical examples. The two wings of the kite argatift to resolve.

Due to the similarity of mathematical models, we believe ynexisting methods
for the exterior inverse scattering problems, e.g., thofaation method [9], the reci-
procity gap method [1, 7, 16], the optimization method [1B, 17], can be applied to
the interior inverse scattering problems. In future, we lddilie to extend the study to
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Figure 5: Reconstruction of the kite. The point source isat(1,0) and receivers are
on the unit circle. The initial guess is a circle of radiug.

three dimensional problems and other types of boundaryitonsl. It is also worth to
study the Fréchet differentiability of the boundary ingrperators such that Newton
type methods for the interior inverse scattering probleamshe justified.
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