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Abstract

We consider an interior inverse scattering problem of reconstructing the shape
of a cavity. The measurements are the scattered fields on a curve inside the cavity
due to one point source. We employ the decomposition method to reconstruct the
cavity and present some convergence result. Numerical examples are provided to
show the effectiveness of the method.

1 Introduction

Typical inverse scattering problems are considered as exterior problems in the sense
that the scattering objects are illuminated by incident waves from the exterior of the
objects. The measurements are also in the exterior of the objects, or even far way from
them (far field pattern). Examples of such inverse problems appear in a wide range of
applications such as radar techniques, geophysical explorations, non-destructive test-
ing, etc [2]. In this paper, we consider a different class of inverse scattering problems,
i.e. theinterior inverse scattering problems of reconstructing the boundary of a cav-
ity. These problems can arise from non-destructive testingin industrial applications
such as the test of the structural integrity of cavities [8].The terminterior comes from
the fact that the sources (incident waves) and measurements(scattered waves) are both
inside the cavity. The goal is to reconstruct the shape of thescattering object. To be
precise, we consider a bounded domainD ⊂ R

2 with the sound soft boundary condi-
tion on∂D. Assuming the measurements are available on some curveC insideD due
to one point source, the interior inverse scattering problem we are interested in is to
reconstruct∂D (see Fig. 1).

The interior inverse scattering problem is a fairly new research topic. There are a
few recent works. In [8], Jakubik and Potthast use the solutions of the Cauchy problem
by potential methods and the range test to study the integrity of the boundary of some
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Figure 1: Explicative figure. The point source and receiversare on a curveC insideD.

cavity by acoustic waves. Assuming the measurements onC are available for all point
sources on the same curve, Qin and Colton apply the linear sampling method to the
above problem in 2D case in [19]. They further extend their method to reconstruct
both the shape of the cavity and the surface impedance in [20]. Zeng et. al. [21]
consider the interior electromagnetic scattering problemin 3D case using the linear
sampling method. Note that the above papers require multistatic data, i.e., the scattered
fields onC due to many point sources. For the case of one point source andseveral
measurements, nonlinear integral equations have been usedto reconstruct the cavity
[18].

In this paper, we study the determination of the shape of the cavity using the decom-
position method due to Kirsch and Kress [11] (see also Section 5.4 of [2] and [14, 3]).
The original version of the method was for the exterior inverse scattering problems us-
ing far field data. It has a close connection to the approach ofColton and Monk [4, 5].
We refer the readers to [12, 14, 3] and the references thereinfor further discussion of
the method and its applications to other types of the inversescattering problems. Our
treatment of the decomposition method for interior inversescattering problems follows
the steps in Section 5.4 of [2].

The rest of the paper is organized as follows. In Section 2, weintroduce the in-
terior direct and inverse scattering problems and present recent results of uniqueness
theorems in [19, 20, 18]. In Section 3, we discuss the decomposition method for the
interior inverse scattering problem which breaks into two parts: the first part deals with
the ill-posedness by constructing the scattered field from the measurement onC and the
second part deals with the nonlinearity by reconstructing∂D as the minimization curve
of theL2 norm of the total field. In Section 4, we present some numerical examples.
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Finally, in Section 5, we make conclusions and discuss some future works.

2 The interior inverse scattering problem

We first consider the interior scattering problem due to a point source inside the cavity.
LetD ⊂ R

2 be a bounded simply connected domain withC2 boundary∂D. Letk > 0
be the wave number andz be a point insideD. The direct scattering problem is to find
the scattered fieldus such that

△us + k2us = 0, in D, (2.1a)

us = −Φ(·, z), on∂D. (2.1b)

HereΦ is the fundamental solution to the Helmholtz equation givenby

Φ(x, z) =
i

4
H

(1)
0 (k|x− z|) (2.2)

whereH(1)
0 is the Hankel function of the first kind of order zero. In the rest of the

paper, we assume thatk2 > 0 is not a Dirichlet eigenvalue ofD. The well-posedness
of this scattering problem is well-known [2].

The inverse problem we are interested in is to determine the shape ofD from the
measurement of the scattered field on some curveC insideD due to a point source
z ∈ C. Note thatz ∈ C is not an essential requirement.

We first present a uniqueness result from [19] for multistatic data. Assuming the
knowledge of the scattered fieldus(x, z) for all x, z ∈ C, Qin and Colton [19] proved
the following theorem.

Theorem 2.1. (Theorem 2.1 of [19]) Ifk2 is not a Dirichlet eigenvalue for the interior
ofC, then the boundary∂D is uniquely determined fromus(x, z) for x, z ∈ C.

The requirement thatk2 is not a Dirichlet eigenvalue for the interior ofC is non-
essential since we can always changeC. The proof of the above theorem in [19] is
based on Schiffer’s proof in 1967. Unfortunately, Schiffer’s proof cannot be general-
ized immediately to other boundary conditions. In the following, we present a proof
which is based on the approach of Kirsch and Kress for the exterior inverse scattering
problem [10].

Proof. Assume thatD1 6= D2 are two bounded domains andus
1 andus

2 satisfy the
scattering problem (2.1), respectively. Suppose thatus

1(x, z) = us
2(x, z) onC for all

z ∈ C. Letw = us
1 − us

2. We have that

△w + k2w = 0, in Ċ, (2.3a)

w = 0, onC, (2.3b)

whereĊ denotes the interior ofC. Sincek2 is not a Dirichlet eigenvalue foṙC, we
have thatw = 0 in Ċ ∪ C.
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Let D0 be the connected component ofD1 ∩ D2 containingĊ. By analyticity,
w = 0 in D0, i.e.

us
1(x, z) = us

2(x, z)

for all x ∈ D0 andz ∈ C. By the reciprocity relation, we have that

us
1(z, x) = us

2(z, x)

for all x ∈ D0 andz ∈ C. Using the same argument as above, we have that

us
1(x, z) = us

2(x, z)

for all x, z ∈ D0.
Without loss of generality, there existsx∗ ∈ ∂D0 such thatx∗ ∈ ∂D1 andx∗ /∈

∂D2. In particular, we set

zn := x∗ − 1

n
ν(x∗) ∈ D0

for sufficiently largen. Hereν(x∗) denotes the unit outward normal of∂D1 atx∗. In
view of the well-posedness of the cavity problem for scattererD2, on one hand, we
have that

lim
n→∞

us
2(x

∗, zn) = us
2(x

∗, x∗).

On the other hand, we have that

lim
n→∞

us
1(x

∗, zn) = ∞

because of the boundary condition forus
1 in terms of the point source located atzn →

x∗ asn→ ∞. This is a contradiction and thusD1 = D2.

In case of only finitely many incident wave, i.e.,us(x, z) is known for finitely many
point sourcesz ∈ C, a general uniqueness theorem for the interior scattering problem
is an open problem. However, if some a priori information on the size ofD is available,
the shape ofD can be uniquely determined following the idea of Colton and Sleeman
[6] for the exterior problems.

Theorem 2.2. (Theorem 2.1 of [18]) Assume thatD1 andD2 are two bounded simply
connected regions containingC and contained in a disk of radiusR, and let

N :=
∑

t0l<kR

1 +
∑

tnl<kR,n6=0

2, (2.4)

wheretnl (l = 0, 1, . . . ;n = 0, 1, . . .) denote the positive zeros of the Bessel functions
Jn, i.e.,Jn(tnl) = 0. Denote byus

1(·, z) andus
2(·, z) the scattered field corresponding

to D1 andD2, respectively, due to the point sourceΦ(·, z). If us
1(·, z) andus

2(·, z)
coincide onC for N + 1 distinct locationsz ∈ C and one fixed wave numberk, then
D1 = D2.

As a consequence of the above theorem, Qin and Cakoni [18] also prove the fol-
lowing uniqueness result.
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Corollary 2.3. (Corollary 2.2 of [18]) Assume thatD1 andD2 are two bounded simply
connected regions containingC and contained in a disk of radiusR such thatkR < t0,
wheret0 (≈ 2.40483) is the smallest positive zero of the Bessel functionJ0. If the
measured dataus(·, z) on C coincide for one locationz ∈ C and one fixed wave
numberk, thenD1 = D2.

3 The decomposition method

In this section, we present the decomposition method to treat the interior inverse scat-
tering problem. In general, the decomposition method can bedivided into two steps:
at the first step, the scattered fieldus is constructed from the measurementsus on the
curveC; at the second step, the unknown boundary∂D of the cavity is determined by
finding the location where the boundary condition for the total fieldui + us is satisfied
in a least-squares sense. The first step mainly deals with theill-posedness of the inverse
problem, and the second step deals with the nonlinearity of the problem [3, 11].

Suppose that the scattered fieldus(x, z) is known for allx ∈ C due to a point
sourcez ∈ C, denoted byus

C . Assume thatΓ is a curve outsideD, i.e., a prior
information on the rough size ofD is known. We define the single layer potential by

(Sφ)(x) :=

∫

Γ

φ(y)Φ(x, y) ds(y) x /∈ Γ. (3.5)

Theorem 3.1. Assumek2 is not a Dirichlet eigenvalue for the negative Laplacian in
the interior ofΓ or in the interior ofC. Then the operatorS : L2(Γ) → L2(C) is
compact, injective and has a dense range.

Proof. The compactness is obvious.
To show thatS is injective, we set

(Sg)(x) =

∫

Γ

g(z)Φ(x, z) ds(z) = 0, x ∈ C,

and define

w(x) =

∫

Γ

g(z)Φ(x, z) ds(z), x ∈ R
2 \ Γ.

Thenw(x) is the solution of

△w + k2w = 0, in Ċ, (3.6a)

w = 0, onC. (3.6b)

Sincek2 is not a Dirichlet eigenvalue for the negative Laplacian inĊ, we conclude
thatw = 0 in Ċ. In addition,△w + k2w = 0 in Γ̇ implies thatw = 0 in Γ̇ ∪ Γ due
to analyticity. Using the property of the single layer potential, we see thatw(x) also
satisfy

△w + k2w = 0, in R
2 \ (Γ̇ ∪ Γ), (3.7a)

w = 0, onΓ, (3.7b)
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and the Sommerfeld radiation condition

lim
r→∞

√
r

(

∂w

∂r
− ikw

)

= 0

wherer = |x|. Since the solution of the exterior Dirichlet problem is unique (see [2]),
w = 0 in R

2 \ (Γ̇ ∪ Γ). For the single layer potential, we have that

w+ = w−,
∂w+

∂ν
− ∂w−

∂ν
= −g,

whereν is the unit outward normal toΓ and± denotes the limits asx → Γ from
outside and inside. Thus we haveg = 0 and the injectivity is proved.

Next we show thatS has a dense range. Forψ ∈ L2(C), we assume that(Sg, ψ) =
0, i.e.

∫

C

∫

Γ

Φ(x, z)g(z) ds(z)ψ(x) ds(x) = 0

for all g ∈ L2(Γ). Interchanging the order of integration we have that
∫

Γ

∫

C

Φ(x, z)ψ(x) ds(x)g(z) ds(z) = 0

for all g ∈ L2(Γ). Thus we have

v(z) =

∫

C

Φ(x, z)ψ(x) ds(x) = 0

for all z ∈ Γ. Define

w(z) =

∫

C

Φ(x, z)ψ(x) ds(x), z ∈ R
2 \ C.

Thenw(x) satisfies△w+ k2w = 0 in Γ̇ andw(x) = 0 onΓ. Sincek2 is not Dirichlet
eigenvalue for the negative Laplacian inΓ̇, we havew(x) = 0 in Γ̇. Note thatĊ ⊂ Γ̇.
Using the jump relation of the single layer potential again,we haveψ = 0. HenceS
has dense range inL2(C).

Given the scattered fieldus
C , we can set up the ill-posed integral equation

Sφ = us|C . (3.8)

To solve (3.8), we employ the classical Tikhonov regularization. In particular, we seek
the approximation solutionφα by solving the following regularized problem

αφα + S∗Sφα = S∗us
C (3.9)

whereα denotes the regularization parameter andS∗ : L2(C) → L2(Γ) denotes the
adjoint ofS. In the rest of the paper,α is chosen according to the Morozov’s discrep-
ancy principle. It is well-known that solving (3.9) is equivalent to the minimization of
the Tikhonov functional [11, 2]

‖Sφα − us
C‖2

L2(C) + α‖φα‖2
L2(Γ). (3.10)
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Once we have foundφα, we can compute the approximationus
α := Sφα for the

scattered fieldus. Then the boundary ofD is determined by identifying a curve so that
the sound-soft boundary condition is approximately satisfied, i.e.,

ui(x) +

∫

Γ

φα(y)Φ(x, y) ds(y) ≈ 0. (3.11)

A simple approach would be just plotting the absolute value of the left hand side of
(3.11). One can choose a sampling domain insideΓ and outsideC and plot the absolute
value of the total field

U(x) =

∣

∣

∣

∣

ui +

∫

Γ

φα(y)Φ(x, y) ds(y)

∣

∣

∣

∣

. (3.12)

Then the closed curve outsideC with rather small value ofU(x) can be taken as the
reconstruction of∂D.

It is obvious that measurements due to additional point sources can be added in a
straightforward way. Suppose that we have measurementsus

C,j due to point sources
ui

j = Φ(x, zj) at zj, j = 1, . . . , N . For eachus
C,j, we compute the corresponding

regularized solutionφα,j of (3.9). Note that a fixed regularization parameter can be
used if the noise levels are the same. Then we can plot the normof the sum of the total
field

U(x) =

N
∑

j=1

∣

∣

∣

∣

ui
j +

∫

Γ

φα,j(y)Φ(x, y) ds(y)

∣

∣

∣

∣

. (3.13)

The reconstruction of∂D can be decided in the same way as for the case of a single
point source.

The decomposition method treats (3.11) as an optimization problem. We select a
family of starlike curves as the admissible set for the boundary ofD. It is clear that
∂D is betweenC andΓ. Hence we can findr1 andr2 with r1 < r2 and define

V := {r ∈ C1,β(Ω)|0 < r1 < r < r2} (3.14)

whereΩ = {x̂ ∈ R
2||x̂| = 1} andC1,β(Ω), 0 ≤ β ≤ 1 denotes the space of uniformly

Hölder continuously differentiable functions. We define

A := {r(x̂)x̂|x̂ ∈ Ω}, r ∈ V. (3.15)

The decomposition method seeks an approximation to∂D by solving the following
minimization problem

min
r∈V

∫

Ω

|(us
α + Φ(·, z)) ◦ r|2 ds. (3.16)

Combining the above two steps, we can formulate an optimization problem for
the interior inverse scattering problem. For a given measurementus

C ∈ L2(C) and a
regularization parameterα, define the functionalµ : L2(Γ) × V → R by

µ(φ, r;us
C , α) = ‖Sφ−us

C‖2
L2(C)+α‖φ‖2

L2(Γ) +γ‖(Sφ+Φ(·, z))◦r‖2
L2(Ω). (3.17)
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Hereγ > 0 denotes a coupling parameter. Ideally, the choice ofγ would make the first
and third terms in (3.17) of the same magnitude. For simplicity, we chooseγ = 1 in
the rest of the paper.

The interior inverse scattering problem is to minimizeµ, i.e., to seek(φ, r) ∈
Ls(Γ) × V such that

µ(φ, r;us
C , α) = M(us

C , α) := inf{µ(ψ, q;us
C , α) : ψ ∈ L2(Γ), q ∈ V }. (3.18)

Theorem 3.2. The optimization problem(3.18)of the interior inverse scattering prob-
lem has a solution.

Proof. Let (φn, rn) ∈ L2(Γ) × V be a minimizing sequence

lim
n→∞

µ(φn, rn) = M(us
C , α). (3.19)

SinceV is compact (see Ch. 3 of [2]), we havern → r for somer ∈ V asn → ∞.
From (3.17), we obtain

α‖φn‖2
L2(Γ) ≤ µ(φn, rn) →M(us

C , α).

Thus(φn) is bounded and converges weakly to someφ ∈ L2(Γ). SinceS is compact,
we have that

Sφn → Sφ, n→ ∞,

and
(Sφn) ◦ rn → (Sφ) ◦ r, n→ ∞.

From (3.19), we see that‖φn‖2 → ‖φ‖2, n → ∞. Together with the weak conver-
gence, we have the norm convergenceφn → φ, n→ ∞. By continuity, we have

µ(φ, r) = lim
n→∞

µ(φn, rn) = M(us
C , α)

which completes the proof.

Theorem 3.3. Let us
C be the scattered field due to a point source atz on C. If the

boundary ofD can be represented by somer ∈ V , then

lim
α→0

M(us
C , α) = 0. (3.20)

Proof. We note that ifk2 is not a Dirichlet eigenvalue for the interior ofΓ the range
{Sφ|∂D : φ ∈ L2(Γ)} is dense inL2(∂D). Then there existsφ ∈ L2(Γ) such that

‖(Sφ+ Φ(·, z)) ◦ r‖L2(Ω) < ǫ

for anyǫ > 0. Since the solution of the Helmholtz equation continuouslydepends on
the boundary data, there exists a constantc such that

‖Sφ− us
C‖L2(C) ≤ c‖(Sφ− us) ◦ r‖L2(Ω).

From the boundary condition on∂D we have

µ(φ, r;us
C , α) ≤ (1 + c2)ǫ2 + α‖φ‖2

L2(Γ) → (1 + c2)ǫ2, α→ 0.

The proof is complete sinceǫ is arbitrary.
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Theorem 3.4. Let us
C be the scattered field on a curveC insideD. Assume that∂D

can be represented by somer ∈ V . Let (αn) be a null sequence and let(φn, rn) be
a solution to the minimization problem with regularizationparameterαn. Then there
exists a convergent subsequence of(rn). There is only a finite number of limit points
and every limit point represents a surface on which the totalfieldus + ui vanishes.

Proof. SinceV is compact, there exists a convergent subsequence of(rn), still denoted
by (rn), such that

lim
n→∞

rn = r∗.

Let u∗ be the unique solution to the direct scattering problem for the domain with
boundaryΛ∗ given byr∗. Thus we have that

(u∗ + Φ(·, z)) ◦ r∗ = 0 onΩ. (3.21)

We denoteSφn by un for n = 1, 2, 3, ..., the solutions of the interior scattering prob-
lems with boundary valuesSφn|Λn

onΛn described byrn. By Theorem 3.3, we have

‖ (un + Φ(·, z)) ◦ rn‖L2(Ω) → 0, n→ ∞. (3.22)

Sincern → r∗ asn→ ∞, we have that

‖un − u∗‖L2(Λn) → 0, n→ ∞.

This implies thatSφn converges uniformly tou∗. On the other hand, Theorem 3.3
implies

‖Sφn − us
C‖L2(C) → 0, n→ ∞.

Assuming thatk2 is not a Dirichlet eigenvalue foṙC, we have thatSφn converges
uniformly to us in Ċ. Thus we haveus = u∗ by analytic continuation and (3.21)
implies thatus + ui vanishes onΛ∗.

If there are an infinite number of different limit points, there exists a convergent
sub-sequence of these limit points. This implies that thereare arbitrary small domains
for which us + ui are eigenfunctions for the Laplacian. This is not possible and the
proof is complete.

The problem of multiple point sources can be formulated in a straightforward man-
ner. Assuming thatz1, . . . , zn aren point sources andus,1

C , . . . , us,n
C are the corre-

sponding scattered fields onC, then the minimization functional is simply

µ(φ1, . . . , φn, r;u
s,1
C , . . . , us,n

C , α)

given by

n
∑

i=1

{

‖Sφi − us
C‖2

L2(C) + α‖φi‖2
L2(Γ) + ‖(Sφi + Φ(·, z)) ◦ r‖2

L2(Ω)

}

.

Similar to the exterior inverse scattering problem, we can not expect more than
sub-sequence convergence due to the fact that we do not have uniqueness either for the
interior inverse scattering problem or for the optimization problem (see Section 5.4 of
[2] for the discussion of the exterior inverse scattering problem).

9



4 Numerical examples

We present some numerical examples to verify the effectiveness of the decomposition
method. We choose two targets forD. One is a peanut given by

x(θ) = 3
(

cos2 θ + 0.25 sin2 θ
)

cos θ, (4.23a)

y(θ) = 3
(

cos2 θ + 0.25 sin2 θ
)

sin θ, 0 ≤ θ ≤ 2π. (4.23b)

The other is a kite given by

x(θ) = 2 cos θ + 1.3 cos 2θ − 1.3, (4.24a)

y(θ) = 3 sin θ, 0 ≤ θ ≤ 2π. (4.24b)

We choose the curveC to be the unit circle and put40 measurement locations uni-
formly distributed onC. The point source is located at(1, 0) onC. The curveΓ is the
circle with radiusr = 6.

We set the wave numberk = 1. The direct interior scattering problems are solved
by a linear finite element method on a mesh with the mesh sizeh ≈ λ/100. The
scattered fieldsus

C at measurement locations are recorded and 5% random noise is
added.

For the inverse problem, we first replace the ill-posed integral equation (3.8) by a
finite dimensional approximations. In particular, we employ the trapezoidal rule for
the integral with 320 nodes. Tikhonov regularization (3.9)is then applied to obtain
a regularized solutionφa of (3.8). The regularization parameter is chosen to beα =
1.0e− 4 for all examples due to the fact that the noise levels are the same.

4.1 The plot of U(x)

We first check the plot ofU(x) defined in (3.12) to obtain some idea how the result
would look like. We choose a domainS := [−4, 4] × [−4, 4] \ Ċ. For each sampling
pointx in S, we computeU(x) and plot it inS using the Matlab ’image’ function.

In Fig. 2, we show the reconstruction for the peanut. Note that the wave length
λ = 2π which is a little larger than the size of the object. There seems to be some other
curves outside the target also give smallU(x).

For the kite, the setting is the same as the peanut case. The reconstruction is shown
in Fig. 3. It can be seen that the two wings of the kite are missing.

For both cases, we see some defects of the plots, i.e., locations not on∂D where
U(x) is rather small. Considering the interior measurements, wecould choose the first
reasonable closed curve outsideC as an approximation of∂D.

4.2 The optimization result

Next we search in a suitable set of curves ofV for the optimization problem. In all
examples, we replacedV by trigonometric polynomials of degree2 as in [11]. The
nonlinear minimization problem is solved by a Matlab routine ’fminsearch’ which is
based on a simplex method [15]. The initial guess is a circle outsideC with radius
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Figure 2: The plot ofU(x) for the peanut target whenk = 1. The dashed line is the
exact boundary.
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Figure 3: The plot ofU(x) for the kite whenk = 1. The dashed line is the exact
boundary.
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Figure 4: Reconstruction of the peanut. The point source is at z = (1, 0) and receivers
are on the unit circle. The initial guess is a circle of radius1.2.

1.2. We note that the initial guess can be any curve outsideC. Since the measurement
is insideD the choice of the initial guess is easier than the exterior inverse scattering
problem.

In Fig. 4, we show the reconstruction of the peanut. Considering the added noise,
the result is satisfactory. In Fig. 5, we show the reconstruction of the kite. Again the
two wings of the kite are missing.

5 Conclusions and future work

In this paper, we consider a new category of inverse scattering problems - the in-
terior inverse scattering problem. In contrast to the standard exterior problems, the
point source(s) and measurements are inside the cavity. We employ the decomposition
method, which has been used for the exterior inverse scattering problems in literature,
to construct the cavity boundary.

For the interior problems, the case ofk2 being a Dirichlet eigenvalue ofD has to
be avoided. This is due to the fact that using a point source atan eigenfrequency to
probe the cavity would lead to a resonance state [18]. Physically, the interior inverse
scattering problem can be more complicated than the exterior scattering due to the fact
that the scattered waves are repeatedly reflected off∂D [19]. This can also be seen
from the numerical examples. The two wings of the kite are difficult to resolve.

Due to the similarity of mathematical models, we believe many existing methods
for the exterior inverse scattering problems, e.g., the factorization method [9], the reci-
procity gap method [1, 7, 16], the optimization method [10, 12, 17], can be applied to
the interior inverse scattering problems. In future, we would like to extend the study to
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Figure 5: Reconstruction of the kite. The point source is atz = (1, 0) and receivers are
on the unit circle. The initial guess is a circle of radius1.2.

three dimensional problems and other types of boundary conditions. It is also worth to
study the Fréchet differentiability of the boundary integral operators such that Newton
type methods for the interior inverse scattering problems can be justified.
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