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Abstract

Dirichlet and transmission eigenvalues have important applications in
qualitative methods in inverse scattering. Motivated by the fact that
these eigenvalues can be obtained from scattering data, we propose a new
eigenvalue method using multiple frequency data (EM2F). The method
detects eigenvalues and builds indicator functions to reconstruct the sup-
port of the target. Numerical reconstruction is quite satisfactory. In
addition, estimation of Dirichlet or transmission eigenvalues can be ob-
tained. Furthermore, reconstruction of D and estimation of eigenvalues
can be combined together to distinguish between the sound soft obstacle
and non-absorbing inhomogeneous medium.

1 Introduction

Dirichlet and transmission eigenvalues play important roles in qualitative meth-
ods in inverse scattering [1]. The Dirichlet eigenvalue problem has been well-
studied. Transmission eigenvalue problem is fairly new and its research devel-
oped quickly recently [24, 14, 22, 20, 6]. Based on theoretical investigation, new
qualitative methods have emerged to estimate index of refraction using trans-
mission eigenvalues [4, 3, 25]. Numerical methods to compute transmission
eigenvalues and the corresponding interior transmission problem are developed
as well [13, 26, 17].

It is known that transmission eigenvalues can be estimated from far field
data by the linear sampling method (LSM) [2]. It is also possible to do this
using near field Cauchy data [25]. In fact, Dirichlet eigenvalues or transmission
eigenvalues can be estimated from either far field or near field data [2, 5].

There are only a few works on qualitative methods using multiple frequency
data. In [21], Luke and Potthast established conditions on the time-dependent
waves that provide a correspondence between time domain and frequency do-
main inverse scattering via Fourier transforms. Then they applied the result
to extend the point source method to scattering from the pulses. Chen et al.
proposed a time domain linear sampling method [7]. In [16], Guzina et al. in-
vestigated the possibility of multi-frequency reconstruction of sound soft and
penetrable obstacles via the linear sampling method. It is also worth to men-
tion the work by Colton and Monk [12] which uses Herglotz wave functions at
first Dirichlet eigenvalue to find the shape of scatterers.
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Figure 1: Explicative Example. We assume that the target D is inside some
domain Ω (Γ := ∂Ω) which itself is inside a curve C. The scattered field us is
due to the scattering of the incident field ui due to a point source at x0 ∈ C

In this paper, we propose an eigenvalue method using multiple frequency
data (EM2F). The EM2F detects Dirichlet or transmission eigenvalues of the
target and builds indicator functions to reconstruct the support of the target.
Estimation of eigenvalues can also be obtained. Furthermore, the method can
distinguish between the sound soft obstacle and non-absorbing inhomogeneous
medium.

We consider two cases: 1) the sound soft obstacle, and 2) the inhomogeneous
medium. We assume that the target D is inside some domain Ω which itself is
inside a curve C (see Fig. 1). Let k be the wave number. The scattered field us,
which will be specified later for sound soft obstacles and inhomogeneous media,
respectively, is due to the scattering of the incident field ui due to a point source
at x0 ∈ C given by

(1.1) ui(x, x0) := Φ(x, x0), x0 ∈ C

where Φ(x, x0) is the fundamental solution of the Helmholtz equation in R2.
We assume that us is measured on Γ = ∂Ω for all point sources x’s on C.

In the following, we will need the near field operator N : L2(Γ) → L2(C)
such that for v ∈ L2(Γ),

(1.2) (N v)(x) =

∫
Γ

us(y, x)v(y)ds(y), x ∈ C.

The near field linear sampling method is based on solving linear ill-posed integral
equations

(1.3) (N v)(x) = Φ(x, z) for all x ∈ C

where z ∈ T , a sampling domain inside Ω containing the target. It is well-
known that the above equation does not have a solution in general. However, it
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is possible to find an approximate solution of (1.3) and use the linear sampling
method to reconstruct D except a discrete set of wave number k’s. These
wave numbers are Dirichlet eigenvalues for sound soft obstacles or transmission
eigenvalues for inhomogeneous media. In fact, this is the case we are interested
in, i.e., detecting Dirichlet eigenvalues or transmission eigenvalues from the near
field data us on Γ and use them to reconstruct D.

To solve (1.3) we need to use a convenient family of functions for v. In
particular, we use the Herglotz wave functions defined as

v = Hg :=

∫
Ω

eikx·dg(d) dsd, g ∈ L2(S1),

where S1 = {x ∈ R2, |x| = 1}.
The rest of the paper is organized as follows. In Section 2, we introduce two

scattering problems and illustrate how Dirichlet or transmission eigenvalues can
be determined from the scattering data using the LSM. In Section 3, we propose
an eigenvalue method using multiple frequency data. Numerical examples show
that the method can provide excellent reconstruction forD. We will also explain
how to obtain Dirichlet or transmission eigenvalues and distinguish sound soft
obstacle and inhomogeneous medium from each other. Finally, in Section 4, we
draw conclusions and discuss some future work.

2 The determination of eigenvalues

2.1 Scattering by a sound soft obstacle

We first consider the scattering problem for the sound soft obstacle. We assume
that D ⊂ R2 is an open, bounded region with Lipschitz boundary ∂D. The
direct problem is to find a solution u ∈ H1

loc(R2 r {x0}) such that

∆u+ k2u = 0 in R2 r {x0},(2.4a)

u = ui + us,(2.4b)

u = 0 on ∂D,(2.4c)

lim
r→∞

√
r

(
∂us

∂r
− ikus

)
= 0,(2.4d)

where ui is the incident field due to a point source x0 on C. The following
theorem is of fundamental importance for the LSM to reconstruct D (see [10]).

Theorem 2.1. Assume that k2 is not a Dirichlet eigenvalue for D. Let N be
the near-field operator defined by (1.2).

(a) If z ∈ D then there exist a sequence {vn} such that

lim
n→∞

N vn = Φ(·, z).

Furthermore, vn converges in L2(D).

(b) If z ∈ Ω \D then for every sequence {vn} such that

lim
n→∞

N vn = Φ(·, z)
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and we have that
lim
n→∞

∥vn∥L2(D) = ∞.

Let N δ be the near field operator corresponding to the noisy measurement.
We assume that, for all points z ∈ D, the perturbed operator N δ satisfies

(2.5) lim
δ→0

∥N δHgz,δ − Φ(·, z)∥L2(Γ) = 0.

The Tikhonov regularized solution gδz,ϵ of the near field equation is defined
as the unique minimizer of the Tikhonov functional

(2.6) ∥N δ(Hg)− Φ(·, z)∥2L2(Γ) + ϵ∥g∥2L2(S1)

where ϵ is the regularization parameter. We denote gδz,ϵ(δ) by gz,δ when ϵ =

ϵ(δ) → 0 as δ → 0.
In this paper, we are interested in the case when k is a Dirichelt eigenvalue.

The following theorem addresses the behavior of Hgz,δ. Its proof is similar to
Theorem 2.1 of [2] and thus we omit it here.

Theorem 2.2. Let k2 be a Dirichlet eigenvalue and assume that (2.5) is true.
Then for almost every z ∈ D, ∥Hgz,δ∥H1(D) cannot be bounded as δ → 0.

Combining Theorems 2.1 and 2.2, if we choose a point z inside D and plot
the norms of the kernels of the regularized solutions against the wave number k,
we would expect the norms are relatively large when k is a Dirichlet eigenvalue
and relatively small otherwise.

2.2 Scattering by an inhomogeneous medium

Next we consider the problem of scattering by an inhomogeneous medium. The
direct problem is to find a solution u ∈ H1

loc(R2 r {x0}) such that

∆u+ k2n(x)u = 0 in R2 r {x0},(2.7a)

u = ui + us,(2.7b)

lim
r→∞

√
r

(
∂us

∂r
− ikus

)
= 0,(2.7c)

where n(x) is the index of refraction and D := sup(n(x)−1). The corresponding
transmission eigenvalue problem is to find k ∈ C, w, v ∈ L2(D), w− v ∈ H2(D)
such that

∆w + k2n(x)w = 0, in D,(2.8a)

∆v + k2v = 0, in D,(2.8b)

w − v = 0, on ∂D,(2.8c)

∂w

∂ν
− ∂v

∂ν
= 0, on ∂D,(2.8d)

where ν is the unit outward normal to the boundary ∂D and the index of re-
fraction n(x) is positive. Values of k ̸= 0 such that there exists a nontrivial
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solution to (2.8) are called transmission eigenvalues. The existence of transmis-
sion eigenvalues has been studied by many researchers recently and we refer the
readers to [24, 22, 20, 6] and the references therein.

The following theorem justifies the LSM for the scattering of inhomogeneous
medium (see [10] for the case of far field data and [9] for using the reciprocity
gap method).

Theorem 2.3. Assume that k is not a transmission eigenvalue for D. Let N
be the near-field operator defined by (1.2).

(a) If z ∈ D then there exist a sequence {vn}, such that

lim
n→∞

N vn = Φ(·, z).

Furthermore, vn converges in L2(D).

(b) If z ∈ Ω \D then for every sequence {vn}, such that

lim
n→∞

N vn = Φ(·, z)

we have that
lim
n→∞

∥vn∥L2(D) = ∞.

We consider the similar case of noisy data. It can be shown that if k is not a
transmission eigenvalue then Hgz,δ converges in the H1(D) norm as δ → 0 for
z ∈ D. For the case when k is a transmission eigenvalue, we assume that, for
z ∈ D, the perturbed operator N δ satisfies

(2.9) lim
δ→0

∥N δHgz,δ − Φ(·, z)∥L2(Γ) = 0.

If the operator N has dense range, the above assumption is true [2]. It is
well-known that N has dense range except when k is a transmission eigenvalue
associated with non-trivial solutions (w0, v0) of (2.8) such that v0 can be rep-
resented as a Herglotz wave function [11].

The following theorem shows the behavior of the solution of (2.6) when k is
a transmission eigenvalue. Its proof is similar to Theorem 3.2 in [2].

Theorem 2.4. Let k be a transmission eigenvalue and assume that (2.9) is
verified. Then for almost every z ∈ D, ∥Hgz,δ∥L2(D) cannot be bounded as
δ → 0.

Combining Theorems 2.4 and 2.3, if we choose a point z inside D and plot
the norms of the kernels of the regularized solutions against the wave number
k, we would expect the norms are relatively large when k is a transmission
eigenvalue and relatively small otherwise.

2.3 Numerical results

We show numerically that Dirichlet eigenvalues and transmission eigenvalues can
be detected from near field data by the LSM. The synthetic data is obtained
using a finite element method. We solve the scattering problems on a mesh fine
enough for wave numbers in an interval containing the lowest eigenvalue. We
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Table 1: The exact Dirichlet eigenvalues.
D 1st 2nd 3rd 4th

circle 4.8172 7.6911 7.6923 10.3408
ellipse 5.1007 7.2977 8.8791 9.6219

Table 2: The exact transmission eigenvalues for n = 16.
D 1st 2nd 3rd 4th

circle 1.9907 2.6181 2.6183 3.2361
ellipse 2.1876 2.5565 3.0705 3.1088

put 40 point sources on the curve C which is the circle with radius 6. We record
the scattered field us on the circle with radius 3 (∂Ω) and add 3% noise. Then
we choose a point inside D and solve the ill-posed integral equation (1.3) using
Tikhonov regularization with Morozov discrepancy. Note that we assume that
the support of D is known (approximately) as a priori which can be obtained
by the LSM using the scattering data when k is not a eigenvalue. Finally we
plot the norm of the Herglotz kernel g against the wave number k.

We choose two objects, a disk with r = 1/2 and an ellipse whose axes are 0.6
and 0.4, in the test. For comparison, we first compute Dirichlet eigenvalues and
transmission eigenvalues for n = 16 for both objects and list them in Tables
1 and 2. We refer the readers to [13, 26] for numerical methods to compute
transmission eigenvalues.

We first consider the case of scattering by a sound soft obstacle. We plot the
norm of the Herglotz kernel v.s. the wave number in Fig. 2 for z = (−0.1, 0.1)
inside the target. It can be seen that both pictures indicates the presence of
Dirichlet eigenvalues. Comparing with the values in Tables 1 and 2, for both
targets, the lowest a few Dirichlet eigenvalues can be determined from the near
field data with satisfactory accuracy.
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Figure 2: Estimation of Dirichlet eigenvalues. The plot of the norm of the
Herglotz kernel v.s. the wave number for z = (−0.1, 0.1) inside the target. Left:
The disk with r = 1/2. Right: The ellipse whose axis are 0.6 and 0.4.
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Next we consider the case when the target is an inhomogeneous medium.
For simplicity we set n = 16. The case when n(x) is a function is similar [25].
We plot the norm of the Herglotz kernel v.s. the wave number in Fig. 3 for
z = (0.1,−0.2) inside the target. It can be seen that in both pictures the lowest
transmission eigenvalues can be determined with good accuracy. We refer the
readers to [5] for more numerical results and [25] for a similar computation using
the reciprocity gap method.
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Figure 3: Estimation of transmission eigenvalues. The norm of the Herglotz
kernel v.s. the wave number for z = (0.1,−0.2) inside the target. Left: The
disk with r = 1/2 when n = 16. Right: The ellipse whose axis are 0.6 and 0.4
when n = 16.

3 The EM2F

We have shown that the estimation of eigenvalues can be obtained provided
a knowledge of a point z inside D. In this section, we assume no a priori
information about the scattering object and illustrate how the EM2F works.

3.1 The eigenvalue indicator

The idea of the EM2F to reconstruct the support of D replies on the detection
of eigenvalues. Let Λ be the set of either transmission eigenvalues or Dirichlet
eigenvalues. We first choose a sampling domain T containing D. For a point z
in the sampling domain, if the behavior of the norm of the solutions is similar to
those in Figures 2 and 3 indicating the existence of eigenvalues, z is deemed to
be inside D. For this purpose, we first choose an interval for wave number Fk =
[ka, kb] such that Λ∩Fk ̸= ∅ and consider a partition F i

k = {ki, i = 0, . . . , N} of
Fk. Note that Λ ∩ Fk ̸= ∅ is not a restrictive requirement since one can choose
ka close to zero and a rather large kb. Let us(y, x, ki) be the scattered field
of (2.4) or (2.7) and v(y, ki) be the Herlogtz wave function. We formulate the
multiple frequency near field integral operator

(3.10) (N v)(x, ki) =

∫
Γ

us(y, x, ki)v(y, ki)ds(y), x ∈ C, ki ∈ F i
k.
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Similarly, we set up the near field integral equations

(3.11) (N v)(·, ki) = Φ(·, z, ki), ki ∈ F i
k.

As in the previous section, we seek the regularized solutions for each z in the
sampling domain T and wave number ki in F i

k. Finally we define an eigenvalue
indicator function

(3.12) Iz =
maxi Hz(ki)∑

i Hz(ki)/N
, z ∈ T

where Hz(ki) is the vector of norms of the Herglotz kernels of the regularized
solutions for (3.11). Considering the results of the previous section (see Figures
2 and 3), we assume that a relatively large Iz, which might indicate the presence
of eigenvalues, implies z is inside D.

Now we show some numerical examples. The forward problems are again
solved using the finite element method and 3% noise is added to the computed
scattered fields us for each wave number ki ∈ F i

k. Same targets as in the
previous section are used for the tests. The sampling domain T is chosen to be
[−1, 1]× [−1, 1] containing D. We first consider the case of sound soft obstacles.
For the disk with radius r = 1/2, we set Fk = [4.5, 5.0] and

F i
k =

{
4.5 + i× 5.0− 4.5

40
, i = 0, 1, 2, . . . , 40.

}
.

For the ellipse, we set Fk = [5.0, 5.5] and

F i
k =

{
5.0 + i× 5.5− 5.0

40
, i = 0, 1, 2, . . . , 40.

}
.

From Tables 1 and 2, we know both intervals contain Dirichlet eigenvalues for
the circle and ellipse, respectively. Note that we could choose larger intervals
which needs more computation time. We solve the near field equations for each
ki at the sampling point z. Then we compute the indicator functions defined in
(3.12) for all sampling points.

In Fig. 4, we show the plots of the indicator function Iz for the two sound
soft obstacles. We can clearly see the object which are a circle and an ellipse,
respectively. The behavior of the approximate solution of (3.11) for z outside D
is not clear at this point. Fortunately, the indicator function for z outside D is
much smaller and the reconstruction is quite satisfactory. In fact, our numerical
results indicate that Hz(ki) is smaller for z ∈ ∂D.

Next we consider the case of inhomogeneous media. The index of refraction
n is set to be 16. For the disk with radius r = 1/2, we set Fk = [1.8, 2.2] and

F i
k =

{
1.8 + i× 2.2− 1.8

20
, i = 0, 1, 2, . . . , 20.

}
.

For the ellipse, we set Fk = [2.0, 2.4] and

F i
k =

{
2.0 + i× 2.4− 2.0

20
, i = 0, 1, 2, . . . , 20.

}
.

Both intervals contain transmission eigenvalues for the circle and ellipse, respec-
tively. Again we assume that the scattered fields are available for all the wave
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Figure 4: Reconstruction (plot of Iz) of the sound soft obstacles using the
eigenvalue indicator. Left: The target is a disk with r = 1/2. Right: The target
is an ellipse whose axes are 0.6 and 0.4.

numbers in F i
k’s and we solve the near field equations (3.11) for each ki at the

sampling point z. Then we compute the indicator functions defined in (3.12)
for all sampling points in T .

In Fig. 5, we show the plots of the indicator function Iz for two non-absorbing
inhomogeneous media. The objects can be seen clearly as well. Note that the
reconstruction of inhomogeneous media by the linear sampling type methods
are usually not as satisfactory as for sound soft obstacles [23].
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Figure 5: Reconstruction (plot of Iz) of inhomogeneous media using the eigen-
value indicator. Left: The target is a disk with r = 1/2. Right: The target is
an ellipse whose axes are 0.6 and 0.4.

3.2 The gradient indicator

Theorems 2.2 and 2.4 only consider the case of z ∈ D. It is desirable to know
what happens when z ∈ R \ D. Our numerical results show that the norm
of regularized solution of (3.11) is relative small for z ∈ ∂D when k2 is an
eigenvalue. In fact it can be verified that ∥Hgz,δ∥L2(D) should be bounded as
δ → 0 for the simple case when ∂D, Γ and C are all circles centered at the
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origin. Moreover, the norm of the regularized solution is rather stable for z ∈ D
and the change for z from inside D to ∂D is quite sharp (see Fig. 4 and Fig. 5).

Based on the above observation, the gradient of the eigenvalue indicator
should change fast around the boundary of the target. Thus we define the
gradient indicator as

(3.13) Gz = ∥∇Iz∥L2 , z ∈ T.

In the numerical implementation, since we have Iz on discrete points in the
sampling domain T , we can compute the discrete gradient and calculate Gz

numerically. Then we draw the contour plot of Gz to obtain the reconstruction
of ∂D. The choice of reconstruction of ∂D could be the first reasonable closed
iso-curve of Gz. In Figures 6 and 7, we show the contour plot of Gz for the sound
soft obstacle and the inhomogeneous medium, respectively. For both cases, the
reconstructions provide good approximations of the targets’ boundaries.
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Figure 6: Reconstruction (contour plot of Gz) of the sound soft obstacles using
the gradient indicator. Left: The target is a disk with r = 1/2. Right: The
target is an ellipse whose axes are 0.6 and 0.4.
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3.3 Estimation of the eigenvalues

After we obtain the reconstruction of the target, we can locate the eigenvalues
by choosing a point z in D and plotting Hz(ki). We can choose a couple of
points and plot the corresponding Hz(ki). For the sound soft obstacle, from
the above reconstruction in Fig. 4 or Fig. 6, it is easy to see (0, 0), (0.2, 0.1)
and (−0.2, 0.2) are inside the circular target. We plot Hz(ki) corresponding to
these three points in the left picture of Fig. 8. The presence of an eigenvalue
can be seen clearly. The result is consistent with those in Section 2. We choose
the same points for the ellipse and obtain similar results (see the right picture
of Fig. 8).
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Figure 8: The plot of Hz(ki) for different points z = (0, 0), z = (0.2, 0.1) and
z = (−0.2, 0.2) inside the target for the sound soft obtacle. Left: The target is
a disk with r = 1/2. Right: The target is an ellipse whose axis are 0.6 and 0.4.

For the inhomogeneous medium, we choose three points (0, 0), (0.2, 0.1) and
(−0.2, 0.1) and show the result in Fig. 9. It can be seen that the estimation
of the eigenvalues is rather stable with respect to the location of z inside the
target for both scattering problems.

3.4 Distinguish between a sound soft obstacle and an in-
homogeneous medium

Having reconstruction of D and estimation of eigenvalues, we can distinguish
between a sound soft obstacle and an inhomogeneous medium. Since we obtain a
rather accurate reconstruction ofD, we can compute the Dirichlet eigenvalues. If
these Dirichlet eigenvalues agree with the eigenvalues we obtain in the previous
sub-section, the target is a sound soft obstacle. Otherwise, the target is a
non-absorbing inhomogeneous medium. Note that the distribution of (real)
transmission eigenvalues are more complicate than Dirichlet eigenvalues and it
is not likely they coincide [13] (see Fig. 10).

4 Discussion and future work

In this paper, we propose an eigenvalue method using multiple frequency data
(EM2F). The method can obtain accurate reconstruction of the target, esti-
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Figure 9: The plot of Hz(ki) for different points z = (0, 0), z = (0.2, 0.1) and
z = (−0.2, 0.1) inside the target for the inhomogeneous medium. Left: The
target is a disk with r = 1/2. Right: The target is an ellipse whose axis are 0.6
and 0.4.

mate Dirichlet or transmission eigenvalues, and distinguish between a sound
soft obstacle and a non-absorbing inhomogeneous medium. Comparing to the
LSM using single frequency data, the method could provide better and more
stable reconstruction for certain cases. For the LSM, the choice of iso-curve as
the reconstructed boundary of the target is usually done by using the heuris-
tic calibration approach which may not be reliable sometimes [8, 18]. The
reconstruction also depends on the particular wave number which could be a
restrictive condition when the size of the object is not known a priori. In addi-
tion, the standard LSM (at least theoretically) avoids eigenvalues unless special
treatment is employed (see [27]). For the EM2F, the contrast of the eigenvalue
indicators for z inside and outside D is large and the value changes rapidly
across the boundary for the numerical examples we consider. Thus the cut-off
value can be chosen easily. For the gradient indicator, it is even simple since
one can choose the iso-curve whenever a close curve is formed.

The goal of this paper is to introduce the idea of the EM2F and show its
potential use in inverse scattering with simple examples. Obviously a paper like
this raises more questions than it answers. Among them, how to theoretically
justify the behavior of the solutions of the ill-posed integral equations for z ∈ ∂D
and outside D when k is an eigenvalue is highly desirable. Furthermore, the
choice of the interval Fk and the corresponding partition F i

k should also be
elaborated. We refer the readers to [16] which contains interesting examples
related to the problems we discussed above.

In this paper, we only test two scattering problems, namely, the sound soft
object and the non-absorbing medium. Other types of scattering objects should
be investigated. The EM2F can be extended to the case of the far field data
in the same way. In addition, one expects that other qualitative methods such
as the reciprocity gap method [9, 15, 23] and the factorization method [19] can
also be applied and should obtain similar results.

Note that the method do need a lot of data and computation. It becomes
more expensive if one considers three dimensional problems. However, the
EM2F is essentially parallelizable. This is due to the fact that processing of
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Figure 10: Distribution of Dirichlet eigenvalues and transmission eigenvalues
in the complex plane. Transmission eigenvalues are corresponding the constant
index of refraction n = 16. Note that there exist complex transmission eigen-
values. Left: The target is a disk with r = 1/2. Right: The target is an ellipse
whose axis are 0.6 and 0.4.

a point z in the sampling domain is totally independent on other points. In
fact, even for a fixed point z, the processing of the ill-posed integral equations
corresponding to different wave number k is independent. It would be interest-
ing to parallelize the method for three dimensional problems.
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