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Abstract

In this paper, we consider an integral eigenvalue problem, which is a reformulation of the
transmission eigenvalue problem arising in the inverse scattering theory. The boundary element
method is employed for discretization and leads to a generalized matrix eigenvalue problem. We
propose a novel method based on the spectrum projection. The method probes a given region
on the complex plane using contour integrals and decides if the region contains eigenvalue(s)
or not. It is particularly suitable to test if zero is an eigenvalue of the generalized eigenvalue
problem, which in turn implies that the associated wavenumber is a transmission eigenvalue.
Effectiveness and efficiency of the new method are demonstrated by numerical examples.

1 Introduction

We consider a nonlinear nonselfadjoint transmission eigenvalue problem, which arises in the inverse

scattering theory [8]. The problem has attracted quite some attention from numerical analysts

[9, 23, 14, 1, 24, 17, 7, 18, 13]. However, computation of both real and complex eigenvalues remains

difficult due to the fact that the finite element methods usually end up with large sparse generalized

non-Hermitian eigenvalue problems. Traditional methods such as shift and invert Arnoldi are

handicapped by the lack of a priori spectrum information.

In this paper, we adopt an integral formulation for the transmission eigenvalue problem. Using

boundary element method (BEM), the integral equations are discretized and a generalized eigen-

value problem of dense matrices is obtained. The matrices are significantly smaller than those

from finite element methods. If zero is a generalized eigenvalue, the corresponding wavenumber

k is a transmission eigenvalue. We propose a probing method based on the spectrum projection

using contour integrals. We choose the contour to be a small circle with the origin inside and a

numerical quadrature is used to compute the spectrum projection of a random vector. The norm

of the projected vector is used as an indicator of whether zero is an eigenvalue or not.

Integral based methods [10, 21, 20, 3] for eigenvalue computation, having their roots in the

classical spectral perturbation theory (see, e.g., [16]), become popular in many areas, e.g., electronic

structure calculation. These methods are based on eigenprojections using contour integrals of the

resolvent [2]. Randomly chosen functions are projected to the generalized eigenspace corresponding
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to the eigenvalues inside a closed contour, which leads to a relative small finite dimension eigenvalue

problem. However, estimation on the locations, number of eigenvalues and dimensions of eigenspace

are critical for their successes. The method proposed here is more related to the methods used in

[17] and [12]. But it has a very distinct feature in the sense that it does not compute the actual

eigenvalues.

The rest of the paper is arranged as follows. In Section 2, we introduce the transmission

eigenvalue problem and rewrite it using integral operators. In Section 3, we present the probing

method based on contour integrals. We present numerical results in Section 4. Discussion and

future works are contained in Section 5.

2 The transmission eigenvalue problem

Let D ⊂ R2 be an open bounded domain with C2 boundary Γ. The transmission eigenvalue problem

is to find k ∈ C such that there exist non-trivial solutions w and v satisfying

∆w + k2nw = 0, in D, (1a)

∆v + k2v = 0, in D, (1b)

w − v = 0, on Γ, (1c)

∂w

∂ν
− ∂v

∂ν
= 0, on Γ, (1d)

where ν is the unit outward normal to Γ. The wavenumber k’s for which the transmission eigen-

value problem has non-trivial solutions are called transmission eigenvalues. Here n is the index of

refraction, which is assumed to be a constant greater than 1 in this paper.

In the following, we describe an integral formulation of the transmission eigenvalue problem

following [6] (see also [17]). Let Φk be the Green’s function given by

Φk(x, y) =
i

4
H

(1)
0 (k|x− y|),

where H
(1)
0 is the Hankel function of the first kind of order 0. The single and double layer potentials

are defined as

(SLkφ)(x) =

∫
∂Ω

Φk(x, y)φ(x) ds(y),

(DLkφ)(x) =

∫
∂Ω

∂Φk

∂ν(y)
(x, y)φ(x) ds(y),

where φ is the density function.

Let (v, w) ∈ H1(D)×H1(D) be a solution to (1). Denote by k1 =
√
nk and set

α :=
∂v

∂ν

∣∣∣
Γ

=
∂w

∂ν

∣∣∣
Γ
∈ H−1/2(Γ),

β := v|Γ = w|Γ ∈ H1/2(Γ).
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Then v and w has the following integral representation

v = SLkα−DLkβ, in D, (2a)

w = SLk1α−DLk1β, in D. (2b)

Let u := w − v. Then u|Γ = 0 and ∂u
∂ν |Γ = 0. The boundary conditions of (1) imply that the

transmission eigenvalues are k’s such that

Z(k)

(
α
β

)
= 0 (3)

where

Z(k) =

(
Sk1 − Sk −Kk1 +Kk

−K ′k1 +K ′k Tk1 − Tk

)
,

and the potentials Sk,Kk,K
′
k, Tk are given by

(Skφ)(x) =

∫
Γ

Φk(x, y)φ(y)ds(y), (4a)

(Kkψ)(x) =

∫
Γ

∂Φk

∂ν(y)
(x, y)φ(y)ds(y), (4b)

(K ′kφ)(x) =

∫
Γ

∂Φk

∂ν(x)
(x, y)φ(y)ds(y), (4c)

(Tkψ)(x) =
∂

∂ν(x)

∫
Γ

∂Φk

∂ν(y)
(x, y)φ(y)ds(y). (4d)

It is shown in [6] that

Z(k) := H−3/2(Γ)×H−1/2(Γ)→ H3/2(Γ)×H1/2(Γ)

is of Fredholm type with index zero and analytic on C \ R−.

From (3), k is a transmission eigenvalue if zero is an eigenvalue of Z(k). Unfortunately, Z(k)

is compact. The eigenvalues of Z(k) accumulate at zero, which makes it impossible to distinguish

zero and other eigenvalues numerically. The workaround proposed in [5] is to consider a generalized

eigenvalue problem

Z(k)

(
α
β

)
= λB(k)

(
α
β

)
(5)

where B(k) = Z(ik). Since there does not exist purely imaginary transmission eigenvalues [9], the

accumulation point is shifted to −1. Then 0 becomes isolated.

Now we describe the boundary element discretization of the potentials and refer the readers

to [15, 22] for more details. One discretizes the boundary Γ into element segments. Suppose the

computational boundary Γ is discretized into N segments Γ1,Γ2, ...,ΓN by nodes x1, x2, ..., xN and

Γ̃ = ∪Ni=1Γi. Let {ψj}, j = 1, 2, ..., N , be piecewise constant basis functions and {ϕj}, j = 1, 2, ..., N,

be piecewise linear basis functions. We seek an approximate solution αh and βh in the form

αh =

N∑
j=1

αjψj , βh =

N∑
j=1

βjϕj .
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We arrive at a linear system

(Vk,h − Vk1,h)~α+ (−Kk,h +Kk1,h)~β = 0,

(K ′k,h −K ′k1,h)~α+ (Wk,h −Wk1,h)~β = 0,

where ~α = (α1, ..., αN )T , ~β = (β1, ..., βN )T , and Vk,h,Kk,h,K
′
k,h,Wk,h are matrices with entries

Vk,h(i, j) =

∫
Γ̃

(Skψj)ψids,

Kk,h(i, j) =

∫
Γ̃

(Kkϕj)ψids,

K ′k,h(i, j) =

∫
Γ̃

(K ′kψj)ϕids,

Wk,h(i, j) =

∫
Γ̃

(Tkϕj)ϕids.

In the above matrices, we can use series expansions of the first kind Hankel function as

H
(1)
0 (x) =

∞∑
m=0

(−1)m

(m!)2

(x
2

)2m
+

2i

π

∞∑
m=0

(−1)m

(m!)2

(x
2

)2m (
ln
x

2
+ ce

)
− 2i

π

∞∑
m=0

(−1)m

(m!)2

(x
2

)2m
(

1 +
1

2
+

1

m

)
,

where ce is the Euler constant. Thus,

H
(1)
0 (k|x− y|) =

∞∑
m=0

(
C5(m) + C6(m) ln

k

2

)
k2m|x− y|2m + C6(m) ln |x− y|k2m|x− y|2m,

where

C5(m) =
(−1)m

22m(m!)2

[
1 +

2cei

π
− 2i

π

(
1 +

1

2
+

1

m

)]
,

C6(m) =
(−1)mi

22m−1(m!)2π
.

We also need the following integrals which can be computed exactly.

Int7(m) =

∫ 1

−1

∫ 1

−1
(ξ1 − ξ2)2mdξ2dξ1

=
22m+2

(2m+ 1)(m+ 1)
,

Int8(m) =

∫ 1

−1

∫ 1

−1
(ξ1 − ξ2)2m ln |ξ1 − ξ2|dξ2dξ1

=
22m+2 ln 2

(2m+ 1)(m+ 1)
− (4m+ 3)22m+3

(2m+ 1)2(2m+ 2)2
,
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Int9(m) =

∫ 1

−1

∫ 1

−1
(ξ1 − ξ2)2mξ1ξ2dξ2dξ1

=
2m∑
l=0

(−1)lC l2m
(l + 2)(2m+ 2− l)

[1− (−1)l]2,

and

Int10(m) =

∫ 1

−1

∫ 1

−1
(ξ1 − ξ2)2mξ1ξ2 ln |ξ1 − ξ2|dξ2dξ1

=
−m22m+2 ln 2

(2m+ 1)(m+ 1)(m+ 2)
+

1

(2m+ 1)(m+ 1)

[
22m+3

2m+ 3
− 22m+2

(m+ 2)2
− 22m+1

m+ 1

]
+

1

2(m+ 1)2(2m+ 1)2

2m+1∑
l=0

C l2m+1

[
(2m+ 1)2

l + 2
(1− (−1)l)− 4m+ 3

l + 3
(1− (−1)l+1)

]
.

Now we consider

Vk,h(i, j) =

∫
Γ̃

(Vkψj)ψids

=

∫
Γ̃

∫
Γ̃

Φk(x, y)ψj(y)ψi(x)dsydsx

=

∫
Γi

∫
Γj

Φk(x, y)ψj(y)ψi(x)dsydsx.

The integral over Γi × Γj can be calculated as∫
Γi

∫
Γj

Φk(x, y)ψj(y)ψi(x)dsydsx =
i

4

∫
Γi

∫
Γj

H
(1)
0 (k|x− y|)ψj(y)ψi(x)dsydsx

=
iLiLj

16

∫ 1

−1

∫ 1

−1
H

(1)
0 (k|x(ξ1)− y(ξ2)|)dξ2dξ1,

where

x(ξ1) = xi +
1 + ξ1

2
(xi+1 − xi),

y(ξ2) = xj +
1 + ξ2

2
(xj+1 − xj).

When i 6= j, it can be calculated by Gaussian quadrature rule. When i = j, we have

iL2
i

16

∫ 1

−1

∫ 1

−1
H

(1)
0 (k|x(ξ1)− y(ξ2)|)dξ2dξ1

=
iL2

i

16

∞∑
m=0

k2mL2m
i

22m

(
C5(m) + C6(m) ln

kLi

4

)∫ 1

−1

∫ 1

−1
(ξ1 − ξ2)2mdξ2dξ1

+
iL2

i

16

∞∑
m=0

k2mL2m
i

22m
C6(m)

∫ 1

−1

∫ 1

−1
(ξ1 − ξ2)2m ln |ξ1 − ξ2|dξ2dξ1

=
∞∑
m=0

ik2mL2m+2
i

22m+4

[(
C5(m) + C6(m) ln

kLi

4

)
Int7(m) + C6(m)Int8(m)

]
.
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The following regularization formulation is needed to discretize the hyper-singular boundary integral

operator

Wkβ(x) = − d

dsx
Vk(

dβ

ds
)(x)− k2νx · Vk(βν)(x). (6)

We refer the readers to [11] for details of the discretization.

The above boundary element method leads to the following generalized eigenvalue problem

Ax = λBx (7)

where A,B ∈ Cn×n, λ ∈ C is a scalar, and x ∈ Cn.

To compute transmission eigenvalues, the following method is proposed in [5]. A searching

interval for wave numbers is discretized. For each k, the boundary integral operators Z(k) and

Z(ik) are discretized to obtain (7). Then all eigenvalues λi(k) of (7) are computed and arranged

such that

0 ≤ |λ1(k)| ≤ |λ2(k)| ≤ . . .
If k is a transmission eigenvalue, |λ1| is very close to 0 numerically. If one plots the inverse of

|λ1(k)| against k, the transmission eigenvalues are located at spikes.

3 The probing method

The method in [5] only uses the smallest eigenvalue. Hence it is not necessary to compute all

eigenvalues of (5). In fact, there is no need to know the exact value of λ1. The only thing we need

is that, if k is a transmission eigenvalue, the generalized eigenvalue problem (5) has an isolated

eigenvalue close to 0. This motivates us to propose a probing method to test if 0 is an generalized

eigenvalue of (5). The method does not compute the actual eigenvalue and only solves a couple

of linear systems. The workload is reduced significantly in two dimension and even more in three

dimension.

We start to recall some basic results from spectral theory of compact operators [16]. Let

T : X → X be a compact operator on a complex Hilbert space X . The resolvent set of T is defined

as

ρ(T ) = {z ∈ C : (z − T )−1 exists as a bounded operator on X}. (8)

For any z ∈ ρ(T ), the resolvent operator of T is defined as

Rz(T ) = (z − T )−1. (9)

The spectrum of T is σ(T ) = C \ ρ(T ). We denote the null space of an operator A by N(A). Let

α be such that

N ((λ− T )α) = N
(
(λ− T )α+1

)
.

Then m = dimN ((λ− T )α) is called the algebraic multiplicity of λ. The vectors in N ((λ− T )α)

are called generalized eigenvectors of T corresponding to λ. Geometric multiplicity of λ is defined

as dimN(λ− T ).

Let γ be a simple closed curve on the complex plane C lying in ρ(T ) which contains m eigen-

values, counting multiplicity, of T : λi, i = 1, . . . ,m. We set

P =
1

2πi

∫
γ
Rz(T )dz.
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It is well-known that P is a projection from X onto the space of generalized eigenfunctions ui, i =

1, . . . ,m associated with λi, i = 1, . . . ,m [16].

Let f ∈ X be randomly chosen. If there are no eigenvalues inside γ, we have that P f = 0.

Therefore, P f can be used to decide if a region contains eigenvalues of T or not.

For the generalized matrix eigenvalue problem (7), the resolvent is

Rz(A,B) = (zB −A)−1 (10)

for z in the resolvent set of the matrix pencil (A,B). The projection onto the generalized eigenspace

corresponding to eigenvalues enclosed by γ is given by

Pk(A,B) =
1

2πi

∫
γ
(zB −A)−1dz. (11)

We write Pk to emphasize that P depends on the wavenumber k.

The approximation of Pkf is computed by suitable quadrature rules

Pkf =
1

2πi

∫
γ
Rz(A,B)fdz ≈ 1

2πi

W∑
j=1

ωjRzj (A,B)f =
1

2πi

W∑
j=1

ωjxj , (12)

where wj are weights and zj are quadrature points. Here xj ’s are the solutions of the following

linear systems

(zjB −A)xj = f , j = 1, . . . ,W. (13)

Similar to the continuous case, if there are no eigenvalues inside γ, then Pk = 0 and thus Pkf = 0

for all f ∈ Cn. Similar to [12], we project the random vector twice for a better result, i.e., we

compute P 2
k f .

For a fixed wavenumber k, the algorithm of the probing method is as follows.

Input: a small circle γ center at the origin with radius r << 1 and a random f

Output: 0 - k is not a transmission eigenvalue; 1 - k is a transmission eigenvalue

1. Compute P 2
k f by (12);

2. Decide if γ contains an eigenvalue:

– No. output 0.

– Yes. output 1.

4 Numerical Examples

We start with an interval (a, b) of wavenumbers and uniformly divide it into K subintervals. At

each wavenumber

kj = a+ jh, j = 0, 1, . . . ,K, h =
b− a
K

,

we employ the boundary element method to discretize the potentials. We choose N = 32 and end

up with a generalized eigenvalue problem (7) with 64×64 matrices A and B. To test whether 0 is a
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Table 1: TEs of a disk with radius r = 1/2 and index of refraction n = 16.
m = 0 1.9880 3.7594 6.5810

m = 1 2.6129 4.2954 5.9875

m = 2 3.2240 4.9462 6.6083

generalized eigenvalue of (7), we choose γ to be a circle of radius 1/100. Then we use 16 uniformly

distributed quadrature points on γ and evaluate the eigenprojection (12). If at a wavenumber kj ,

the projection is of O(1), then kj is a transmission eigenvalue. For the actual computation, we use a

threshold value σ = 1/2 to decide if kj is a transmission eigenvalue or not, i.e., kj is a transmission

eigenvalue if ‖P 2
kj
f‖/‖Pkj f‖ ≥ σ and not otherwise.

Let D be a disk with radius 1/2. The index of refraction is n = 16. In this case, the exact

transmission eigenvalues are known [9]. They are the roots of the following

dm = J1(k/2)J0(2k)− 4J0(k/2)J1(2k), m = 0, (14)

dm = Jm−1(k/2)Jm(2k)− 4Jm(k/2)Jm−1(2k), m = 1, 2, . . . (15)

The actual values are given in Table (1).

We choose the interval to be (1.5, 3.5) and uniformly divide it into 2000 subintervals. At each

kj we compute the projection (12) twice. The probing method finds three eigenvalues in (1.5, 3.5)

k1 = 1.988, k2 = 2.614, k3 = 3.228,

which approximate the exact eigenvalues (the first column of Table (1)) accurately. We also plot

the log of |P 2f | against the wavenumber k in Fig. 1. The method is robust since the eigenvalues

can be easily identified.

We repeat the experiment by choosing n = 9 and (a, b) = (3, 5). The rest parameters keep the

same. The following eigenvalues are obtained

k1 = 3.554, k2 = 4.360.

The log of |P 2f | against the wavenumber k is shown in Fig. 2.

Finally, we compare the proposed method with the method in [5]. We take n = 16 and compute

for 2000 wave numbers. The CPU time in second is shown in Table 2. We can see that the proposed

method saves more time if the size of the generalized eigenvalue problem is larger. We expect that

it has a greater advantage for three dimension problems since the size of the matrices are much

larger than two dimension cases.

We also show the log plot of 1/|λmin| by the method of [5] in Fig. 3. Comparing with Figures

1 and 2, it is clear that the probing method has much narrower span.
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Figure 1: The plot of log |P 2f | against the wavenumber k for n = 16.
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Figure 2: The plot of log |P 2f | against the wavenumber for n = 9.

9



Table 2: Comparison. The first column is the size of the matrix problem. The second column is the
time used by the proposed method in second. The second column is the time used by the method
given in [5]. The fourth column is the ration.

size probing method method in [5] ratio

64× 64 1.741340 5.742839 3.30

128× 128 5.653961 31.152448 5.51

256× 256 25.524530 224.435704 8.79

512× 512 130.099433 1822.545973 14.01

1.5 2 2.5 3 3.5
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1
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wavenumber
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m
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3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5
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8
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wavenumber
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g

(1
/|

λ
m

in
|)

Figure 3: Log plot of 1/|λmin|. Left: n = 16. Right: n = 9.
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5 Conclusions and Future Works

In this paper, we proposed a probing method based on contour integrals for the transmission eigen-

value problems. The method only tests if a given region contains an eigenvalue or not. Comparing

to the existing methods, it needs little a prior spectrum information and seems to be more efficient.

The method can be viewed as an eigensolver without computing eigenvalues.

Note that one needs to construct two matrices for each wavenumber. It is time consuming if one

wants to divide the searching interval into more subintervals to improve accuracy. The overload is

much more in three dimension. Currently, we are developing a parallel version of the method using

graphics processing units (GPUs).

Acknowlegement

The work of F. Zeng is partially supported by the NSFC Grant (11501063). The work of J. Sun is

supported in part by NSF DMS-1521555 and the US Army Research Laboratory and the US Army

Research Office under the cooperative agreement number W911NF-11-2-0046. The work of L. Xu

is partially supported by the NSFC Grant (11371385), the Start-up fund of Youth 1000 plan of

China and that of Youth 100 plan of Chongqing University.

References

[1] J. An and J. Shen, A Fourier-spectral-element method for transmission eigenvalue problems.

Journal of Scientific Computing, 57 (2013), 670–688.

[2] A.P. Austin, P. Kravanja and L.N. Trefethen, Numerical algorithms based on analytic function

values at roots of unity. SIAM J. Numer. Anal. 52 (2014), no. 4, 1795-1821.

[3] W.J. Beyn, An integral method for solving nonlinear eigenvalue problems. Linear Algebra Appl.

436 (2012), no. 10, 3839–3863.

[4] F. Cakoni, D. Colton, P. Monk, and J. Sun, The inverse electromagnetic scattering problem

for anisotropic media. Inverse Problems, 26 (2010), 074004.

[5] A. Cossonnière, Valeurs propres de transmission et leur utilisation dans l’identification
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