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Abstract

We consider the inverse electromagnetic scattering pnobfedetermining the
shape of a perfectly conducting cavity from measurementattsred electric field
due to electric dipole sources on a surface inside the cal&prove a reciprocity
relation for the scattered electric field and a uniquenessréim for the inverse
problem. Then the near field linear sampling method is enguldy reconstruct
the shape of the cavity. Preliminary numerical examplegpereided to show the
viability of the method.

1 Introduction

In this paper we consider the inverse electromagneticsaagtproblem of determining
the shape of a perfectly conducting cavity. In contrast étyipical exterior problems,
such as radar or sonar imagijrthe problem we are interested in can be called the
interior inverse scattering problem due to the fact thatstnerces and measurements
are in the interior of the cavity. This is desirable in somplagations of non-destructive
testing to obtain the structural integrity by placing thesmitters and receivers inside
the cavities [12]. To be precise, we consider a bounded dofaic R? such that
0D is perfectly conducting. The dipole sources and measurenaea on a surfacé
inside D (see Fig. 1). The inverse problem considered in this paptr determine
oD from the measured scattered electric fieldodue to dipole sources on the same
surface. In particular, we apply the near field linear sangpinethod to reconstruct the
cavity D [3].

To the authors’ knowledge, there are only a few papers dgalith the qualitative
methods for this type of interior inverse scattering pratde In [12] Jakubik and Pot-
thast used the solutions of the Cauchy problem by poteng#thods and the range test
to test the integrity of the boudary of some cavity by acaustives. In [18], Qin and
Colton applied the linear sampling method to exactly theesanoblem discussed in
this paper but in 2D case. They further extended their metbodconstruct both the
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Figure 1: Explicative picture. The cavity is denoted Dy The surface\ is insideD.
Dipole sources and measurement locations are distributéd o

shape of the cavity and surface impedance in [19]. Nonliirgegral equations have
also been used to reconstruct the cavity [17].

Note that in some ways the interior inverse scattering gmobk physically more
complicated since the scattered waves are "trapped" itisedeavity. Similar to [18],
our numerical reconstructions by the linear sampling mgttre less satisfactory than
the results for the exterior inverse scattering problem FBjwever, whether this phe-
nomenon is due to the reconstruction method or the physitseohterior scattering
problem remains unclear at this point.

The rest of our paper is organized as the following. In Secfipwe formulate
the interior scattering problem mathematically and intrmalsome functional spaces.
In addition, we prove a reciprocity property of the scattieedectric field which will
be useful for ourniqueness proof angumerical scheme. We show that under suit-
able conditions the cavity is uniquely determined from awdealge of incident dipole
sources and measurements on a surface inside the cavisctin®3, we describe how
to employ the near field linear sampling method to reconsthecavity. We provide
some preliminary numerical examples to show the viabilitpar method in Section
4. Finally in Section 5, we make conclusions and discuss datnee works.

2 Thescattering problem for a cavity

Let D C R? be a simply connected bounded Lipschitz domaifR# and consider a
surfaceA contained inD (see Fig. 1). Let be the unit outward normal defined almost
everywhere o@D. (More generally, in the following’ denotes the unit normal to the
indicated surface directed outward to the region boundetibysurfac® We consider
the interior scattering problem of time-harmonic Maxwse#quations for the cavitip



written in terms of the electric field

V x V x E* — E*E® =0, in D, (2.1a)
v x E* =h, onoD, (2.1b)

wherek is the wave numbeh = —v x E?, E' is theincident wave in the form of the
electric dipole given by

E' = G(z,2)p := %Vm X Vg x ®(z, 2)p

whereG(z, z) is the Green'’s tensop is the polarization ané(z, z) is the fundamen-
tal solution of the Helmholtz equation given by

1 eik\m—z\
D(x,2) = yrp—
Thus the scattered electric fiedlépends o, z, p which is indicated by writindg® :=
E®(x, z,p).
For the following discussion, we need to introduce sometional spaces. Let
I' = 9D and we define (see, e.g., [15, 2])

H(curl, D) := {u € (L*(D))*: V x u e (L*(D))*}, (2.2a)
L) :={ue (L*T))*:v-u=00nT}, (2.2b)
H{ () :={ue H*I))?:v-u=00nl}, se[-1,1], (2.2¢)
Hy (1) = {u e H Y2T),Vr-ue H-1/2(r)} , (2.2d)
H VD) = {u e H YD), Vr xu e H‘l/Q(I‘)} . (2.2€)

For precise definitions of above spaces and surface diveegén- and surface curl
Vrx, we refer the readers to [1, 15]t is well known that foru € H(curl, D) the
tracess x u and(rv x u) x v are well defined and belong Hcgvl/g(r) anngu:l/Q(F),
respectively. Furthermoréf . '/*(T") andH_,/*(T") are dual of each other with?(T")

curl
as the pivot space, and in the following we yse) ,,—1/2 ,,—1/2 to denote the duality
url

div 'Hc
pairing betweerf ;.//*(T") and H,,+/*(T"). For anyu, v € H(curl, D) we have that

curl

div »*eurl

(Ve YTV) 172 172 :Z/(qu)-vdSZ/(qu-v—u-va)dx
r D

where
wu=vxu and vyrv= (v xwv)Xov.

If k& is nota Maxwell's eigenvalue aridl € H[gvl/z(l“), the well-posedness of the cavity

problem (2.1) is well-known [3]. We first prove a reciprociglation for the scattered
electric field.



Theorem 2.1. Let E*(-, z, p) be the scattered field satisfyiifg.1) due to the incident
field given by an electric dipole atwith polarizationp. Then we have

S - Es(xpu ZCq,p) =p- Es(xqu Tp, S)
for z,,z, € A ands,p € R3.

Proof. By the Stratton-Chu formula (see Thm 9.2 of [15]), we have
B@) = Vx| (v xE)0)oy)diy)

+ LT xvx /aD(” x H)(y)®(z, y) ds(y).

Using the fact thatb is the fundamental solution of the Helmholtz equation and
x #yandH = (1/ik)V x E, we have

LYV x /a < H)(3)2(r, ) ds(y)
~La-vwy / (v x H)(y)®(a, ) ds(y)
/ (v x H)(y)® () + V(v x H)(y) - Vbl )]} ds(y)
— [ GT(x,9)(v x (V x E))(y) ds(y)

oD

sincelth entry of the gradient term is

3
(Val(v < B)9)- ooy = o D0 (0 x H)ly) o (2,1)

Using the fact thaV,® = —V,®, we have

Vi [ @xBweedst) = [ (X B)w) x V000 ds0)
oD oD
= [ x @) @) x E)y) (o)
oD
= [ 9% 6 @) x B)y) ds(y).
oD
Thus we have shown that

E(z) = — . {(Vy x G)(z,y)(v x E)(y) + G" (2,y) (v x (V x E)) (y)} ds(y)



Now we consider the incident field due to a point dipole solocate atr, with
polarizationp

E'(z) = G(z, 2)p
Then the scattered field af, is given by

E*(zg,2p,p) = —/M(V x G) (g, y)(v(y) x (G(y,zp)P))
+G" (zg,y) (v(y) x (Vy x (G(y,2,)p))) ds(y)

Hence, using the symmetry @f, we have

S By app) = [ 5409, x6) (0 0)(v(0) X (G(u.2,)p)
oD
8- GT(20,9) () X (Vy  (G(y,2,)p))) ds(y)
- / {(Vy % G)(z0.9)s] x (Gl 2,)p)]} - v(v)
G (zg,m)8] X [Vy X (Gl 2)p)] - v(y) ds(v)
- - /@ P (9, X B)T (@) 0)  (€(0.29))
- GT (1, ) (v(y) X (T % (G5, 2,)s))) ds(y)
= p-ES(:Cp,xq,S)
which completes the proof. O

The inverse scattering problem we are interested in is teraéheD from a knowl-
edge of tangential components< E° of the scattered electric fieldl* = E*(-, z, p)
measured o\ for all incident field due to point sourcese A and all polarizations
p € R3. To this end, we have the following uniqueness theorem.

Theorem 2.2. If k2 is not a Maxwell’'s eigenvalue for the interior of, then D is
uniquely determined from x E*(z, z, p) for z, 2 € A and all polarizationg € R3.

Proof. The proofis based on the approach used by Kirsch and Kress for the exte-
rior scattering problenfl3, 14]. AssumeD; # D, are two bounded domain and
E:.i = 1,2, satisfy equations (2.1), respectively. Suppose thatE;(z, z,p) =

v x E§(z,z,p) onAforall z € AandletV = E$ — E5. Then

VxVxV-kV=0, in A, (2.3a)
vxV =0, onA, (2.3b)

whereA is the interior ofA. Sincek? is not a Maxwell’s eigenvalue fak, we have
thatV = 0in A U A.
Let Dy be the connected componentof N D, containingA. Then by analyticity,
V =0in Dy, i.e.,
Ej(z,z,p) = E5(z, z,p)



forall z € Dy, z € A and all polarizatiomp. By the reciprocity relation, we have, for
i=1,2,3,

e; - Ei(z,x,p) =p- E;(:zz, 2,€;) =P~ Eg(x,z,ei) =e; ~E§(z,:1:,p).
Thus we obtain
Ej(z,z,p) = E5(z,2,p)

forall z € Dy, z € A and all polarizatiorp. Using the same argument as above, we
have that

Ei(z,z,p) = Ej(z, 2, p)
forall z, z € Dy and all polarizatiorp.
Without loss of generality, there exist§ € 0D, such that:* € 0D, andz* ¢
0Ds. In particular, we have that
1
ni=a" — —v(x*) e D
z x nl/(:C ) 0

for sufficiently largen. Then, in view of the well-posedness of the cavity problem fo
scattererD,, on one hand we obtain that

lim v x E5(z%, z,,, p) = v x E5(z™, 2™, p).

n—oo

On the other hand we find that

lim v x Ej (2%, z,,p) = oo forp L v(z"),

n—oo
because of the boundary condition B¢ in terms of the electric dipole located at
zn, — x* for n — oo. This is a contradiction and thu3; = D-. O

3 Thelinear Sampling Method

In this section, we employ the linear sampling method (LSBl}¢ the inverse problem
stated in the previous section. For sake of simpligitthout loss of generalitfrom
now on we assume that C D is a sphere centered at the origin, i.&.,= {z €
R3,|z| = r. > 0}. We define the near field operatdf:: LZ(A) — L7 (A)

(Fo)(x) = / v(z) x E*(z,y, 6(y)) ds(y). (3.9)

A
SinceE? is analytic, the operatdF is compact. We also define the electric single layer
potentials : H,'/*(A) — (HL (curl R®\ A) given by [9]:

(S0)w) i= [ 6(0)G () ds(y) (3.5)
A
with densityg, i.e.,
(S0)(e) == 192 % V. x [ 9(0)0(.0) sl 36)

By superposition,F¢ is the rotated tangential component Arof the scattered field
due toS¢. In the following we prove an important property fér.



Theorem 3.1. The operatorF is injective and has dense rangéfis not a Maxwell’s
eigenvalue in the interior of.

Proof. Let ¢ = 0 and we need to show that= 0. Define

W= / E*(z,y, 6(y)) ds(y), € D.
A

It is obvious thatW satisfies
VxVxW-—EW=0, in A, (3.7a)
vx W =0, onA. (3.7b)

Sincek? is not a Maxwell’'s eigenvalue in the interior &f we haveW = 0 in A. Note
thatV x V x W — kW = 0in D. ThenW = 0 in D by analyticity. In particular,

W=— /(b G(z,y)ds(y) =0, x€ID.

Define

/(b G(z,y)ds(y), = c€R3\A.
ThenV satisfies
VXxVxV—-k*V=0, inR3\ D, (3.8a)
vxV =0, onoD, (3.8b)

and the Silver-Miiller condition

lim 7 (VxVxz—ikV)=0
wherer = [z| and# = x/|z|. Since the solution of the exterior Dirichlet problem is
unique,V = 0in R3\ D. The unique continuation principle implies tidt= 0 in the
exterior of A. By the jump relation for the single layer potential, we have

vXV_—vxV,y=0, vXxVXV_—-vxVxV,=¢,

wherev is the unit outward normal ta and+ and— denote the limit ag — A from

outside and inside of, respectively. Since x V. = v x V x V = 0, we have that

vx V_ =0andrv x V x V_ = ¢. Sincek? is not a Maxwell's eigenvalue in the

interior of A, we haveV = 0 in the interior ofA. Hencep = 0, i.e., F is injective.
The L? adjointF* : LZ(A) — L#(A) is given by

(F)() = /A v(z) x B (2,4, 9()) ds(y).

fory € LZ(A) andz € A. Then we havéF*y)(z) = (}‘¢)( )if ¢(2) = 1(z). Since
F is injective, thenF* is injective. Moreover, sinc&' (F*) = (R(F))*, F has dense
range inL?(A). O



We remark that the assumption tfidtis not a Maxwell’s eigenvalue in the interior
of A is not a restriction sinca can be chosen such that this assumption is satisfied

Now we define a linear operaté: H(;Vl/?(ap) — L2(A) mapping the boundary
valueh tov x E® on A whereFE* is the corresponding scattered field satisfying (2.1)
Then we have

F = —B[v x Slop].

Theorem 3.2. Assume that? is not a Maxwell’s eigenvalueitherin D or in the
interior of A. Then the operatoB is injective, compact and has dense rangéfiiA).

Proof. Sincek? is not a Maxwell’s eigenvalue i, 3 is well defined.

Let Bh = 0, i.e.,v x E* = 0 on A. Sincek? is not a Maxwell’s eigenvalue in the
interior of A, E* = 0 in the interior ofA. By analyticityE* = 0in D andh = 0, i.e.,
the operatos is injective.

Next we choose a bafl = {z € R?, |z| < r > 7.} suchthatA ¢ Q c D. Then
we have

E*(z) = — - {(Vy x G) (2, y)(v x E*)(y) + G (2,y) (v x (V x E%)) (y) } ds(y)
for x € D. Decomposing the operatBr= 5,82, where
By : Hy'?(0D) — Hy,)'?(99) x Hy'*(09)
is defined by
(th)(l‘) = (V X (V X ES)|8Q, VvV X ES|aQ) =: (hl,hg)
and
By : Hy'?(0Q) x Hy!'?(09) — L2(A)
is defined by
Bi(hy, ha)(x) = — [ {(Vy x G)"(2,9)ha(y) + G (z,y)hi(y) } ds(y).

o0

ThenB; is bounded and; is compact. Hence, the operat®is compact.
We now show that the operatrhas a dense range i (A). Following [7, 15],
let Y, be the spherical harmonic and define
NG =V % (i (R )Y8)), NG = x M
1

where# = x/|z| andj,, is the spherical Bessel’s function. Let

E, = zn: UM + by N

m=—n

ThenE,, satisfies the interior cavity problem with = E,, |sp. Since the spherical
harmonics are complete ib?(A) andk? is not a Maxwell’s eigenvalue in the interior
of A, B has dense range. O



Theorem 3.3. LetG be the Green’s tensor. Thenx G(z, z)p, ¥ € A isin the range
of Bifand only ifz € R® \ D.

Proof. If z € R\ D, thenG(-, z)p is the solution of (2.1) witth = v x G(-, 2)p|ap
andBh = v x G(z,z)p forz € A.

Now letz € D\ A and assume on the contrary that G(Z, z)p is in the range of
B. ThenG(-, z)p is a solution of (2.1) witth = v x G(-, z)p|op. HoweverG(-, z)p
is not in theH (curl, D). This leads to a contradiction which completes the prodi]

Theorem 3.4. Assume that? is not a Maxwell’s eigenvalueitherin D or in the
interior of A. Then the operatoSyp = v x Slop : Hyy/*(A) — Hy/?(0D) is
injective, compact and has dense rangédg./*(9D).

Proof. It is obvious thatSyp is compact since its kernel is analytic.
To show thatSyp is injective, we first assume that

(Sopg)(x) = v(z) x /A g()G(z,y)ds(y) =0, €D

Define
E(r) = /A e()G(x,y) ds(y), € R3\ A

Thenrv x E(z) = 0 ondD. By the same arguments as in the proof thas injective,
we have thagg = 0, i.e. the operatafsp is injective.

We now show tha,» has dense range. Léte H_+/*(9D) be such that

curl

<53D37¢>HJV1/2(6D),H’”2(6D) =0

curl
forall g, i.e.
| @) [ )60 dsty)vta) o) =0,
oD A
We need to show that = 0. By interchanging the order of integration we have

| [ vie) % Gt ds(orelu) dsio) = 0
forall g. Then
V(z) = /(?D v(z) x G(z, 2)Y(z)ds(z) =0
forall z € A. Define

Wi(z) = /aD v(z) x G(z,2)Y(z)ds(x), z€R3\ID.

Thenv x W(z) =0 onA andW satisfies

VxVxW-—EW=0inA.



Sincek? is not a Maxwell’s eigenvalue in the interior of, we haveW = 0 in the
interior of A. By analyticity W = 0in D. The jump condition for the single layer
potential gives

UXW_ —-vxXxWi=0 vxVXW_-vxVxW,=1.

Since the solution for the exterior Dirichlet problem is que we havéW = 0 in
R3\ D. Hencey = 0 and the operata$sp has a dense range. O

Now we employ the linear sampling method for the inverse f@mb Define the
near field equation:

/A v(z) X B (2,9, 6-(1)) ds(y) = v(2) x G(z,2)p, z€ A (3.9)

wherep is an artificial polarization and is the unit outward normal td. The linear
sampling method is based on solving the above linear nedrdaghation for the indi-
cator functiong, € L2(A). If z € R3\ D, we can see that if, is a solution for the
near field equation, the tangential tracelst and the electric dipol&(z, z)p coin-
cide ongD. As z — 9D, we have thatr x G(a:,z)pHH(;ivl/ng) — 00, and hence
lv x ESHHJN./Q(E)D) — 00. Thus||¢.[[2(x) — oo and this behavior determinés
(see [3] for the case of the exterior inverse scatteringlproh The above argument is
only heuristic because of the ill-posed nature of (3.9). Ewsv, we can always solve
for approximate solution of the near field equation and ekfiexsimilar behavior of
the solution ag — 0D. The following theorem is of fundamental importance to the
linear sampling method for the interior inverse scattepnaplem.

Theorem 3.5. Assume that? is not a Maxwell's eigenvalue either i or in the
interior of A. Then

e If z € R?\ D, then for every > 0, there exist a solutiopS € L7(A) satisfying
[Fos(x) —v(z) X G(z,2)pllLza) <€

such thatSyp¢? converges to the solution of the problétnl)with h = —v x
Gp ase — 0. Furthermore, for a fixed,

zE%lD ||88D¢2HH£V1/2(6D) = (310)
and
i f[65] 2 a) = oo (3.11)

e If z € D\ A, then for every > 0, there exists a solutionS € L7(A) such that
[F¢L(x) = v(@) x G(x, 2)pllL2(a) <€
such that
i [Sop% | 17255y = 00
and
lim 912 (a) = oo

10



Proof. We first assume thate R3\ D. Then there existh., € Hy,/*(8D) such that

\
Bh, = v x G(z, 2)p for x € A. For everye > 0, there exists a functiops® € L?(A)

such that
[Sop¢® — h.|L2(ap) < €o- (3.12)

Since the operatds is bounded, we have
[BSop¢2” — Bh. | 2a) < ceo
wherec > 0 is a constant. Letting = ceq, we have
[Fo(:) + v x G(-, 2)pllr2(a) <€ (3.13)

Obviouslyh, isv x Gp ondD by definition. Asz — 9D, ”hZ”H;W(aD) blows up.
For a fixede, from (3.12), we have that (3.10) holds, and thus (é’v.ll) latdds.

Now if z € D\ A, v x G(-, z)p is notin the range oB. But B has dense range.
Hence, using Tikhonov regularization, for every> 0 we can construct a unique
regularized solutioh? of equation(Bh)(-) = —v x G(-, z)p given by

where(u;, z;,y;) is a singular system for the compact operdauch that

[(BhZ) () + v x G(-, 2)pllr2(a) <

N

and
Clyi_)moﬂhzﬂLf(aD) = 0.

SinceSyp has a dense range, there existssuch that

€

H86D¢? - hZHHdTVl/z(BD) < %

wherec is a constant such thi5|| < c¢. Hence we have

[Fo2 () —v(z) x G(-, 2)PllL2(a)
< IBSapd? — Bhg|[Lza) + [IBhG + v(2) X G(-, 2)p|l12(a) <€
Sincelim,_.o a(€) = 0 we have that
Q0.

11_1% HhZ(e) HHd;,l/z(BD) =

SinceSyp is bounded, we obtain

lim [Pl 2(a) = oo

11
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Figure 2: The geometries for two targets, an ellipsoid andlzec and the meshes
used for the edge element method for the interior scattgninglem. The mesh size
h =~ 0.2. Left: The ellipsoid. Right: The cube.

4 Numerical examples

In this section, we show some preliminary examples usinghgfit data. We use finite
element method to solve the interior scattering problensfi¥st choose the caviti
and a spherd inside D. Then we use COMSOL to generate a tetrahedra riiefir

D (see Fig. 2). We also generate a tetrahedra mesh faich induces a triangulation
T for A whose vertices restricted th, denoted byx;,7 = 1,... N, are chosen to
be positions for the dipole sources and measurement losatgee Fig. 3). For each
dipole source at; € A and polarizatiorp, we use the linear edge element (see [15])
to solve (2.1) for the scattered fiekf (-, z;, p) and record the values at al}’s. All
the numerical examples are done using Matlab on a desktdpl&i&E memory. Due
to the memory restriction and the 3D nature of the scattguiofplem, the mesh size
is restricted td.2 which leads to roughly 10% error (maximum norm) of the scatte
field. This is one of the reasons of the poor reconstructich@fcavity D. However,
on the other hand, even with this inaccurate synthetic da¢gposition, the size and a
rough shape can still be obtained.

After we have recorded the synthetic data/gnve turn to the problem of solving
the linear ill-posed integral equations (3.9). Note that léft hand side of (3.9) ob-
scures the dependence of the far field operataf.orSimilar to [15], we will derive an
equivalent form. Lete;(x), e2(x),v(x)) be an orthonormal basis an Then (3.9) is
equivalent to the two scalar equations,

/A e(x) - E*(z,y, 6= (4)) ds(y) = ex(z) - Gz, 2)p, 2,7 € A

for I = 1, 2. Since the scattered field satisfies the reciprocity redatice may rewrite
the above equation as

/A 6:(4) - E(y,, ex(z)) ds(y) = ex(z) - G(z, 2)p

12
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Figure 3: TriangulatiofT of the unit spheré with 152 triangles and 78 vertices.

forz,y € A,z e R*andl =1, 2.
The integral in (3.9) will be approximated by a quadraturée Vertices of each
triangleT € T is denoted byz]T,j =1, 2, 3. For any smooth functioi on A, we have

. 3
/ FAA ~ 2aredT) S f(a7).
T 3 : !
Jj=1
Suppose the triangulatichhasN vertices given by:,,,,m = 1,..., N, we obtain
N
JREZED SN
A m=1

where the quadrature weights asg,, m = 1,..., N. We may writeg; = ¢1 je1 +

$2.jes Whereg, ;, ¢o; € C. The fully discrete problem corresponding to (3.9) is to
find ¢1,, ¢2;,5 = 1,..., N such that

N 2
> wiea(@;)  E (2, 2m eu(wm))bn; = €i(@m) - D, 2)p
j=1n=1
foril =1,2,m =1,..., N. We can rewrite this linear system as
Ag=F (4.14)

whereAd isa2N x 2N matrix,q?is is the vector of unknowns, andis the right-hand
side depending on the sampling pointSinceA comes from a compact operator, we

13



choose to employ the Tikhonov regularization method fot43t. The regularization
parameter is chosen by Morozov’s discrepancy principleéssudsed in [5].

To reconstruct the cavitp, we choose a uniform grid of the sampling region, i.e.
aregionS containsD in the exterior ofA. According to the results of previous section,
|- || (where| - || denotes| - ||;2) should become large as— 9D from outside of
D andz € D\ A. For simplicity, we just choose the sampling regi®io be a cube
containingD. After we solve (4.14) for all the sampling points$h the reconstruction
is done by plotting an iso-surface such thjat| = C for some constanf’. Note
that in practice it is difficult to choos€' sincquz is computed from noisy data using
Morozov's discrepancy and we have no a priori knowledge efgbatterer. In the
following examples we choosg using the heuristic calibration approach of [8], where
the value ofC' is determined from the reconstruction of a ball. In both afexamples,
we choose

C = 0.4max .,

wherez; is the sampling point.

For the first example the cavity is an ellipsoid withx andy axis4 andz axis
6. We choose\ to be the unit sphere. The left picture of Fig.2 shows the esiaape
of D and the tetrahedra mesh we use for the interior scatteriolglggm. The wave
numberk is set to be2. The bottom right picture of Fig.4 is the reconstruction o t
ellipsoid. In Fig. 4, for better visualization, we show thentour plot of1/||¢|| on
different planes for the ellipsoid. The dashed lines arestteet boundary of the cavity
on the corresponding planes.

The second example is a cube, centered at the origin, whibse aiet. Again we
chooseA to be the unit sphere. The right picture of Fig.2 shows thetesiaape ofD
and the tetrahedra mesh we use for the interior scatteroigjgm. The wave numbér
is again set to b2. In Fig. 5, we show the contour plot of ||4|| on different planes for
the cube. The dashed lines are the exact boundary of they @avihe corresponding
planes. The bottom right picture of Fig.5 is the reconstomodf the cube.

5 Conclusions and future work

In this paper, an interior inverse electromagnetic saatigsroblem for cavities is con-
sidered. We prove a reciprocity relation for the scattergd fia uniqueness theorem of
the inverse problem, and employ the linear sampling metbhaddonstruct the shape
of the cavity. Numerical examples are provided to show théility of the method.

Similar to [19], the method can be extended to cavities witpeédance boundary
condition which is currently under our consideration. Dathe near field setting of the
problem, another qualitative method, the reciprocity gagthod applies as well. We
refer the readers to [6, 10, 4, 11, 16] for the details andieajibns of the reciprocity
gap method.

It can be seen that the reconstruction is not as satisfaatottye results of the linear
sampling method for exterior inverse scattering probldrwy to refine the method to
obtain a better reconstruction is an interesting reseab tvorthy of efforts.
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plane x=0

Figure 4: The contour plot of/||4|| on different planes for the ellipsoid. The dashed
lines are the exact boundary of the cavity on the correspanalanes. Bottom right:
The reconstruction of the ellipsoid, i.e. the iso-surfatég@l| = 0.4 max., ||¢., ]

15



plane x=0

plane y=0

Figure 5: The contour plot af/||4|| on different planes for the cube. The dashed lines
are the exact boundary of the cavity on the correspondintggla
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