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Abstract

We consider the inverse electromagnetic scattering problem of determining the
shape of a perfectly conducting cavity from measurement of scattered electric field
due to electric dipole sources on a surface inside the cavity. We prove a reciprocity
relation for the scattered electric field and a uniqueness theorem for the inverse
problem. Then the near field linear sampling method is employed to reconstruct
the shape of the cavity. Preliminary numerical examples areprovided to show the
viability of the method.

1 Introduction

In this paper we consider the inverse electromagnetic scattering problem of determining
the shape of a perfectly conducting cavity. In contrast to the typical exterior problems,
such as radar or sonar imaging, the problem we are interested in can be called the
interior inverse scattering problem due to the fact that thesources and measurements
are in the interior of the cavity. This is desirable in some applications of non-destructive
testing to obtain the structural integrity by placing the transmitters and receivers inside
the cavities [12]. To be precise, we consider a bounded domain D ⊂ R3 such that
∂D is perfectly conducting. The dipole sources and measurements are on a surfaceΛ
insideD (see Fig. 1). The inverse problem considered in this paper isto determine
∂D from the measured scattered electric field onΛ due to dipole sources on the same
surface. In particular, we apply the near field linear sampling method to reconstruct the
cavityD [3].

To the authors’ knowledge, there are only a few papers dealing with the qualitative
methods for this type of interior inverse scattering problems. In [12] Jakubik and Pot-
thast used the solutions of the Cauchy problem by potential methods and the range test
to test the integrity of the boudary of some cavity by acoustic waves. In [18], Qin and
Colton applied the linear sampling method to exactly the same problem discussed in
this paper but in 2D case. They further extended their methodto reconstruct both the

1Department of Mathematical Sciences, Delaware State University, Dover, DE 19901, U.S.A.
E-mail: fzeng@desu.edu

2Department of Mathematical Sciences, University of Delaware, Newark, DE 19716, U.S.A.
E-mail: cakoni@math.udel.edu

3Department of Mathematical Sciences, Delaware State University, Dover, DE 19901, U.S.A.
E-mail: jsun@desu.edu

1



D

Λ

Figure 1: Explicative picture. The cavity is denoted byD. The surfaceΛ is insideD.
Dipole sources and measurement locations are distributed on Λ.

shape of the cavity and surface impedance in [19]. Nonlinearintegral equations have
also been used to reconstruct the cavity [17].

Note that in some ways the interior inverse scattering problem is physically more
complicated since the scattered waves are "trapped" insidethe cavity. Similar to [18],
our numerical reconstructions by the linear sampling method are less satisfactory than
the results for the exterior inverse scattering problem [3]. However, whether this phe-
nomenon is due to the reconstruction method or the physics ofthe interior scattering
problem remains unclear at this point.

The rest of our paper is organized as the following. In Section 2, we formulate
the interior scattering problem mathematically and introduce some functional spaces.
In addition, we prove a reciprocity property of the scattered electric field which will
be useful for ouruniqueness proof andnumerical scheme. We show that under suit-
able conditions the cavity is uniquely determined from a knowledge of incident dipole
sources and measurements on a surface inside the cavity. In Section 3, we describe how
to employ the near field linear sampling method to reconstruct the cavity. We provide
some preliminary numerical examples to show the viability of our method in Section
4. Finally in Section 5, we make conclusions and discuss somefuture works.

2 The scattering problem for a cavity

LetD ⊂ R3 be a simply connected bounded Lipschitz domain inR3, and consider a
surfaceΛ contained inD (see Fig. 1). Letν be the unit outward normal defined almost
everywhere on∂D. (More generally, in the followingν denotes the unit normal to the
indicated surface directed outward to the region bounded bythis surface). We consider
the interior scattering problem of time-harmonic Maxwell’s equations for the cavityD
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written in terms of the electric field

∇×∇× Es − k2Es = 0, in D, (2.1a)

ν × Es = h, on∂D, (2.1b)

wherek is the wave number,h = −ν × Ei, Ei is theincident wave in the form of the
electric dipole given by

Ei = G(x, z)p :=
i

k
∇x ×∇x × Φ(x, z)p

whereG(x, z) is the Green’s tensor,p is the polarization andΦ(x, z) is the fundamen-
tal solution of the Helmholtz equation given by

Φ(x, z) =
1

4π

eik|x−z|

|x− z|
.

Thus the scattered electric fielddepends onx, z,p which is indicated by writingEs :=
Es(x, z,p).

For the following discussion, we need to introduce some functional spaces. Let
Γ = ∂D and we define (see, e.g., [15, 2])

H(curl, D) :=
{

u ∈ (L2(D))3 : ∇× u ∈ (L2(D))3
}

, (2.2a)

L2
t (Γ) :=

{

u ∈ (L2(Γ))3 : ν · u = 0 onΓ
}

, (2.2b)

Hs
t (Γ) :=

{

u ∈ (Hs(Γ))3 : ν · u = 0 onΓ
}

, s ∈ [−1, 1], (2.2c)

H
−1/2
div (Γ) :=

{

u ∈ H
−1/2
t (Γ),∇Γ · u ∈ H−1/2(Γ)

}

, (2.2d)

H
−1/2
curl (Γ) :=

{

u ∈ H
−1/2
t (Γ),∇Γ × u ∈ H−1/2(Γ)

}

. (2.2e)

For precise definitions of above spaces and surface divergence∇Γ· and surface curl
∇Γ×, we refer the readers to [1, 15].It is well known that foru ∈ H(curl, D) the

tracesν × u and(ν × u)× ν are well defined and belong toH−1/2
div (Γ) andH−1/2

curl (Γ),

respectively. Furthermore,H−1/2
div (Γ) andH−1/2

curl (Γ) are dual of each other withL2
t (Γ)

as the pivot space, and in the following we use〈·, ·〉
H

−1/2

div ,H
−1/2

curl
to denote the duality

pairing betweenH−1/2
div (Γ) andH−1/2

curl (Γ). For anyu, v ∈ H(curl, D) we have that

〈γtu, γT v〉H−1/2

div ,H
−1/2

curl
:=

∫

Γ

(ν × u) · v ds =

∫

D

(∇× u · v − u · ∇ × v) dx

where
γtu = ν × u and γT v = (ν × v) × v.

If k is not a Maxwell’s eigenvalue andh ∈ H
−1/2
div (Γ), the well-posedness of the cavity

problem (2.1) is well-known [3]. We first prove a reciprocityrelation for the scattered
electric field.
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Theorem 2.1. LetEs(·, z,p) be the scattered field satisfying(2.1)due to the incident
field given by an electric dipole atz with polarizationp. Then we have

s · Es(xp, xq,p) = p ·Es(xq , xp, s)

for xp, xq ∈ Λ ands,p ∈ R3.

Proof. By the Stratton-Chu formula (see Thm 9.2 of [15]), we have

E(x) = −∇×

∫

∂D

(ν × E)(y)Φ(x, y) ds(y)

+
1

ik
∇×∇×

∫

∂D

(ν × H)(y)Φ(x, y) ds(y).

Using the fact thatΦ is the fundamental solution of the Helmholtz equation and
x 6= y andH = (1/ik)∇× E, we have

1

ik
∇×∇×

∫

∂D

(ν × H)(y)Φ(x, y) ds(y)

= −
1

ik
(∆ −∇∇·)

∫

∂D

(ν × H)(y)Φ(x, y) ds(y)

=
1

ik

∫

∂D

{

k2(ν × H)(y)Φ(x, y) + ∇x[(ν × H)(y) · ∇xΦ(x, y)]
}

ds(y)

= −

∫

∂D

G
T (x, y)(ν × (∇× E))(y) ds(y)

sincelth entry of the gradient term is

(∇x[(ν × H)(y) · ∇xΦ(x, y)])l =
∂

∂xl

3
∑

m=1

(ν × H)m(y)
∂Φ

∂xm
(x, y)

=

3
∑

m=1

(ν × H)m(y)
∂2Φ

∂xl∂xm
(x, y).

Using the fact that∇xΦ = −∇yΦ, we have

∇×

∫

∂D

(ν × E)(y)Φ(x, y) ds(y) =

∫

∂D

(ν × E)(y) ×∇yΦ(x, y) ds(y)

=

∫

∂D

(∇y × (ΦI))T (x, y)(ν × E)(y) ds(y)

=

∫

∂D

(∇y × G)T (x, y)(ν × E)(y) ds(y).

Thus we have shown that

E(x) = −

∫

∂D

{

(∇y × G)T (x, y)(ν × E)(y) + G
T (x, y) (ν × (∇× E)) (y)

}

ds(y).
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Now we consider the incident field due to a point dipole sourcelocate atxp with
polarizationp

Ei(x) = G(x, xp)p

Then the scattered field atxq is given by

Es(xq, xp,p) = −

∫

∂D

(∇y × G)T (xq, y)(ν(y) × (G(y, xp)p))

+G
T (xq, y) (ν(y) × (∇y × (G(y, xp)p))) ds(y)

Hence, using the symmetry ofG, we have

s · Es(xq, xp,p) = −

∫

∂D

s · (∇y × G)T (xq , y)(ν(y) × (G(y, xp)p))

+s · GT (xq , y) (ν(y) × (∇y × (G(y, xp)p))) ds(y)

=

∫

∂D

{[(∇y × G)(xq, y)s] × [(G(y, xp)p)]} · ν(y)

+[G(xq, y)s] × [∇y × (G(y, xp)p)] · ν(y) ds(y)

= −

∫

∂D

p · (∇y × G)T (xp, y)(ν(y) × (G(y, xq)s))

+p · G
T (xp, y) (ν(y) × (∇y × (G(y, xq)s))) ds(y)

= p ·Es(xp, xq, s)

which completes the proof.

The inverse scattering problem we are interested in is to determineD from a knowl-
edge of tangential componentsν × Es of the scattered electric fieldEs = Es(·, z,p)
measured onΛ for all incident field due to point sourcesz ∈ Λ and all polarizations
p ∈ R3. To this end, we have the following uniqueness theorem.

Theorem 2.2. If k2 is not a Maxwell’s eigenvalue for the interior ofΛ, thenD is
uniquely determined fromν × Es(x, z,p) for x, z ∈ Λ and all polarizationsp ∈ R3.

Proof. The proofis based on the approach used by Kirsch and Kress for the exte-
rior scattering problem[13, 14]. AssumeD1 6= D2 are two bounded domain and
Es

i , i = 1, 2, satisfy equations (2.1), respectively. Suppose thatν × Es
1(x, z,p) =

ν × Es
2(x, z,p) onΛ for all z ∈ Λ and letV = Es

1 − Es
2. Then

∇×∇× V − k2V = 0, in Λ̇, (2.3a)

ν × V = 0, onΛ, (2.3b)

whereΛ̇ is the interior ofΛ. Sincek2 is not a Maxwell’s eigenvalue foṙΛ, we have
thatV = 0 in Λ̇ ∪ Λ.

LetD0 be the connected component ofD1∩D2 containingΛ̇. Then by analyticity,
V = 0 in D0, i.e.,

Es
1(x, z,p) = Es

2(x, z,p)
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for all x ∈ D0, z ∈ Λ and all polarizationp. By the reciprocity relation, we have, for
i = 1, 2, 3,

ei · E
1
s(z, x,p) = p · E1

s(x, z, ei) = p · E2
s(x, z, ei) = ei ·E

2
s(z, x,p).

Thus we obtain
Es

1(z, x,p) = Es
2(z, x,p)

for all x ∈ D0, z ∈ Λ and all polarizationp. Using the same argument as above, we
have that

Es
1(x, z,p) = Es

2(x, z,p)

for all x, z ∈ D0 and all polarizationp.
Without loss of generality, there existsx∗ ∈ ∂D0 such thatx∗ ∈ ∂D1 andx∗ /∈

∂D2. In particular, we have that

zn := x∗ −
1

n
ν(x∗) ∈ D0

for sufficiently largen. Then, in view of the well-posedness of the cavity problem for
scattererD2, on one hand we obtain that

lim
n→∞

ν × Es
2(x

∗, zn,p) = ν × Es
2(x

∗, x∗,p).

On the other hand we find that

lim
n→∞

ν × Es
1(x

∗, zn,p) = ∞ for p ⊥ ν(x∗),

because of the boundary condition forEs
1 in terms of the electric dipole located at

zn → x∗ for n→ ∞. This is a contradiction and thusD1 = D2.

3 The Linear Sampling Method

In this section, we employ the linear sampling method (LSM) [3] to the inverse problem
stated in the previous section. For sake of simplicitywithout loss of generalityfrom
now on we assume thatΛ ⊂ D is a sphere centered at the origin, i.e.,Λ = {x ∈
R3, |x| = rc > 0}. We define the near field operator:F : L2

t (Λ) → L2
t (Λ)

(Fφ)(x) :=

∫

Λ

ν(x) × Es(x, y, φ(y)) ds(y). (3.4)

SinceEs is analytic, the operatorF is compact. We also define the electric single layer
potentialS : H

−1/2
div (Λ) → (H1

loc(curl,R3 \ Λ) given by [9]:

(Sφ)(x) :=

∫

Λ

φ(y)G(x, y) ds(y) (3.5)

with densityφ, i.e.,

(Sφ)(x) :=
i

k
∇x ×∇x ×

∫

Λ

φ(y)Φ(x, y) ds(y). (3.6)

By superposition,Fφ is the rotated tangential component onΛ of the scattered field
due toSφ. In the following we prove an important property forF .
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Theorem 3.1. The operatorF is injective and has dense range ifk2 is not a Maxwell’s
eigenvalue in the interior ofΛ.

Proof. Let Fφ = 0 and we need to show thatφ = 0. Define

W =

∫

Λ

Es(x, y, φ(y)) ds(y), x ∈ D.

It is obvious thatW satisfies

∇×∇× W − k2W = 0, in Λ̇, (3.7a)

ν × W = 0, onΛ. (3.7b)

Sincek2 is not a Maxwell’s eigenvalue in the interior ofΛ, we haveW = 0 in Λ̇. Note
that∇×∇× W − k2W = 0 in D. ThenW = 0 in D by analyticity. In particular,

W = −

∫

Λ

φ(y)G(x, y) ds(y) = 0, x ∈ ∂D.

Define

V(x) = −

∫

Λ

φ(y)G(x, y) ds(y), x ∈ R
3 \ Λ.

ThenV satisfies

∇×∇× V − k2V = 0, in R
3 \D, (3.8a)

ν × V = 0, on∂D, (3.8b)

and the Silver-Müller condition

lim
r→∞

r (∇× V × x̂− ikV) = 0

wherer = |x| andx̂ = x/|x|. Since the solution of the exterior Dirichlet problem is
unique,V = 0 in R3 \D. The unique continuation principle implies thatV = 0 in the
exterior ofΛ. By the jump relation for the single layer potential, we have

ν × V− − ν × V+ = 0, ν ×∇× V− − ν ×∇× V+ = φ,

whereν is the unit outward normal toΛ and+ and− denote the limit asx→ Λ from
outside and inside ofΛ, respectively. Sinceν×V+ = ν×∇× V+ = 0, we have that
ν × V− = 0 andν × ∇× V− = φ. Sincek2 is not a Maxwell’s eigenvalue in the
interior ofΛ, we haveV = 0 in the interior ofΛ. Henceφ = 0, i.e.,F is injective.

TheL2 adjointF∗ : L2
t (Λ) → L2

t (Λ) is given by

(F∗ψ)(x) =

∫

Λ

ν(x) × Es(x, y, ψ(y)) ds(y),

for ψ ∈ L2
t (Λ) andx ∈ Λ. Then we have(F∗ψ)(x) = (Fφ)(x) if φ(z) = ψ(z). Since

F is injective, thenF∗ is injective. Moreover, sinceN(F∗) = (R(F))⊥, F has dense
range inL2

t (Λ).
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We remark that the assumption thatk2 is not a Maxwell’s eigenvalue in the interior
of Λ is not a restriction sinceΛ can be chosen such that this assumption is satisfied.

Now we define a linear operatorB : H
−1/2
div (∂D) → L2

t (Λ) mapping the boundary
valueh to ν × Es onΛ whereEs is the corresponding scattered field satisfying (2.1).
Then we have

F = −B [ν × S|∂D] .

Theorem 3.2. Assume thatk2 is not a Maxwell’s eigenvalueeither in D or in the
interior of Λ. Then the operatorB is injective, compact and has dense range inL2

t (Λ).

Proof. Sincek2 is not a Maxwell’s eigenvalue inD, B is well defined.
Let Bh = 0, i.e.,ν × Es = 0 onΛ. Sincek2 is not a Maxwell’s eigenvalue in the

interior ofΛ, Es = 0 in the interior ofΛ. By analyticityEs = 0 in D andh = 0, i.e.,
the operatorB is injective.

Next we choose a ballΩ = {x ∈ R
3, |x| ≤ r > rc} such thatΛ ⊂ Ω ⊂ D. Then

we have

Es(x) = −

∫

∂D

{

(∇y × G)T (x, y)(ν × Es)(y) + G
T (x, y) (ν × (∇× Es)) (y)

}

ds(y)

for x ∈ D. Decomposing the operatorB = B1B2, where

B2 : H
−1/2
div (∂D) → H

−1/2
div (∂Ω) ×H

−1/2
div (∂Ω)

is defined by

(B2h)(x) = (ν × (∇× Es)|∂Ω, ν × Es|∂Ω) =: (h1,h2)

and
B1 : H

−1/2
div (∂Ω) ×H

−1/2
div (∂Ω) → L2

t (Λ)

is defined by

B1(h1,h2)(x) = −

∫

∂Ω

{

(∇y × G)T (x, y)h2(y) + G
T (x, y)h1(y)

}

ds(y).

ThenB2 is bounded andB1 is compact. Hence, the operatorB is compact.
We now show that the operatorB has a dense range inL2

t (Λ). Following [7, 15],
let Y m

n be the spherical harmonic and define

M̃m
n = ∇× {xjn(k|x|)Y m

n (x̂)}, Ñm
n =

1

ik
× M̃m

n

wherex̂ = x/|x| andjn is the spherical Bessel’s function. Let

En =

n
∑

m=−n

an,mM̃m
n + bn,mÑm

n .

ThenEn satisfies the interior cavity problem withh = En|∂D. Since the spherical
harmonics are complete inL2

t (Λ) andk2 is not a Maxwell’s eigenvalue in the interior
of Λ, B has dense range.
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Theorem 3.3. LetG be the Green’s tensor. Thenν × G(x̃, z)p, x̃ ∈ Λ is in the range
ofB if and only ifz ∈ R3 \D.

Proof. If z ∈ R3 \D, thenG(·, z)p is the solution of (2.1) withh = ν × G(·, z)p|∂D

andBh = ν × G(x̃, z)p for x̃ ∈ Λ.
Now letz ∈ D \Λ and assume on the contrary thatν ×G(x̃, z)p is in the range of

B. ThenG(·, z)p is a solution of (2.1) withh = ν × G(·, z)p|∂D. However,G(·, z)p
is not in theH(curl, D). This leads to a contradiction which completes the proof.

Theorem 3.4. Assume thatk2 is not a Maxwell’s eigenvalueeither in D or in the
interior of Λ. Then the operatorS∂D = ν × S|∂D : H

−1/2
div (Λ) → H

−1/2
div (∂D) is

injective, compact and has dense range inH
−1/2
div (∂D).

Proof. It is obvious thatS∂D is compact since its kernel is analytic.
To show thatS∂D is injective, we first assume that

(S∂Dg)(x) = ν(x) ×

∫

Λ

g(y)G(x, y) ds(y) = 0, x ∈ ∂D.

Define

E(x) =

∫

Λ

g(y)G(x, y) ds(y), x ∈ R
3 \ Λ.

Thenν × E(x) = 0 on∂D. By the same arguments as in the proof thatF is injective,
we have thatg = 0, i.e. the operatorS∂D is injective.

We now show thatS∂D has dense range. Letψ ∈ H
−1/2
curl (∂D) be such that

〈S∂Dg, ψ〉
H

−1/2

div (∂D),H
−1/2

curl (∂D)
= 0

for all g, i.e.
∫

∂D

ν(x) ×

∫

Λ

g(y)G(x, y) ds(y)ψ(x) ds(x) = 0.

We need to show thatψ = 0. By interchanging the order of integration we have
∫

Λ

∫

∂D

ν(x) × G(x, y)ψ(x) ds(x)g(y) ds(y) = 0

for all g. Then

V(z) =

∫

∂D

ν(x) × G(x, z)ψ(x) ds(x) = 0

for all z ∈ Λ. Define

W(z) =

∫

∂D

ν(x) × G(x, z)ψ(x) ds(x), z ∈ R
3 \ ∂D.

Thenν × W(z) = 0 onΛ andW satisfies

∇×∇× W − k2W = 0 in Λ̇.
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Sincek2 is not a Maxwell’s eigenvalue in the interior ofΛ, we haveW = 0 in the
interior of Λ. By analyticityW = 0 in D. The jump condition for the single layer
potential gives

ν × W− − ν × W+ = 0, ν ×∇× W− − ν ×∇× W+ = ψ.

Since the solution for the exterior Dirichlet problem is unique we haveW = 0 in
R3 \D. Henceψ = 0 and the operatorS∂D has a dense range.

Now we employ the linear sampling method for the inverse problem. Define the
near field equation:

∫

Λ

ν(x) × Es(x, y, φz(y)) ds(y) = ν(x) × G(x, z)p, x ∈ Λ (3.9)

wherep is an artificial polarization andν is the unit outward normal toΛ. The linear
sampling method is based on solving the above linear near field equation for the indi-
cator functionφz ∈ L2

t (Λ). If z ∈ R3 \D, we can see that ifφz is a solution for the
near field equation, the tangential trace ofEs and the electric dipoleG(x, z)p coin-
cide on∂D. As z → ∂D, we have that‖ν × G(x, z)p‖

H
−1/2

div (∂D)
→ ∞, and hence

‖ν × Es‖
H

−1/2

div (∂D)
→ ∞. Thus‖φz‖L2

t (Λ) → ∞ and this behavior determines∂D

(see [3] for the case of the exterior inverse scattering problem). The above argument is
only heuristic because of the ill-posed nature of (3.9). However, we can always solve
for approximate solution of the near field equation and expect the similar behavior of
the solution asz → ∂D. The following theorem is of fundamental importance to the
linear sampling method for the interior inverse scatteringproblem.

Theorem 3.5. Assume thatk2 is not a Maxwell’s eigenvalue either inD or in the
interior of Λ. Then

• If z ∈ R3 \D, then for everyǫ > 0, there exist a solutionφǫ
z ∈ L2

t (Λ) satisfying

‖Fφǫ
z(x) − ν(x) × G(x, z)p‖L2

t(Λ) < ǫ

such thatS∂Dφ
z
ǫ converges to the solution of the problem(2.1)with h = −ν ×

Gp asǫ→ 0. Furthermore, for a fixedǫ,

lim
z→∂D

‖S∂Dφ
ǫ
z‖H

−1/2

div (∂D)
= ∞ (3.10)

and
lim

z→∂D
‖φǫ

z‖L2

t(Λ) = ∞. (3.11)

• If z ∈ D \ Λ, then for everyǫ > 0, there exists a solutionφǫ
z ∈ L2

t (Λ) such that

‖Fφǫ
z(x) − ν(x) × G(x, z)p‖L2

t(Λ) < ǫ

such that
lim
ǫ→0

‖S∂Dφ
ǫ
z‖H

−1/2

div (∂D)
= ∞

and
lim
ǫ→0

‖φǫ
z‖L2

t(Λ) = ∞.
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Proof. We first assume thatz ∈ R3 \D. Then there existshz ∈ H
−1/2
div (∂D) such that

Bhz = ν×G(x, z)p for x ∈ Λ. For everyǫ0 > 0, there exists a functionφǫ0
z ∈ L2

t (Λ)
such that

‖S∂Dφ
ǫ0
z − hz‖L2

t(∂D) < ǫ0. (3.12)

Since the operatorB is bounded, we have

‖BS∂Dφ
ǫ0
z − Bhz‖L2

t (Λ) < cǫ0

wherec > 0 is a constant. Lettingǫ = cǫ0, we have

‖Fφǫ
z(·) + ν × G(·, z)p‖L2

t(Λ) < ǫ. (3.13)

Obviouslyhz is ν × Gp on∂D by definition. Asz → ∂D, ‖hz‖H
−1/2

div (∂D)
blows up.

For a fixedǫ, from (3.12), we have that (3.10) holds, and thus (3.11) alsoholds.
Now if z ∈ D \ Λ, ν × G(·, z)p is not in the range ofB. ButB has dense range.

Hence, using Tikhonov regularization, for everyǫ > 0 we can construct a unique
regularized solutionhz

α of equation(Bh)(·) = −ν × G(·, z)p given by

hz
α = −

∞
∑

j=1

µj

α+ µ2
j

(ν × G(·, z)p, yj)xj

where(µj , xj , yj) is a singular system for the compact operatorB such that

‖(Bhz
α)(·) + ν × G(·, z)p‖L2

t(Λ) <
ǫ

2

and
lim
α→0

‖hz
α‖L2

t (∂D) = ∞.

SinceS∂D has a dense range, there existsφα
z such that

‖S∂Dφ
α
z − hz

α‖H
−1/2

div (∂D)
<

ǫ

2c

wherec is a constant such that‖B‖ < c. Hence we have

‖Fφα
z (·) − ν(x) × G(·, z)p‖L2

t(Λ)

≤ ‖BS∂Dφ
α
z − Bhz

α‖L2

t(Λ) + ‖Bhz
α + ν(x) × G(·, z)p‖L2

t(Λ) < ǫ.

Sincelimǫ→0 α(ǫ) = 0 we have that

lim
ǫ→0

‖hz
α(ǫ)‖H

−1/2

div (∂D)
= ∞.

SinceS∂D is bounded, we obtain

lim
ǫ→0

‖φǫ
z‖L2

t(Λ) = ∞.
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Figure 2: The geometries for two targets, an ellipsoid and a cube, and the meshes
used for the edge element method for the interior scatteringproblem. The mesh size
h ≈ 0.2. Left: The ellipsoid. Right: The cube.

4 Numerical examples

In this section, we show some preliminary examples using synthetic data. We use finite
element method to solve the interior scattering problems. We first choose the cavityD
and a sphereΛ insideD. Then we use COMSOL to generate a tetrahedra meshT for
D (see Fig. 2). We also generate a tetrahedra mesh forΛ̇ which induces a triangulation
T for Λ whose vertices restricted toΛ, denoted byxi, i = 1, . . .N , are chosen to
be positions for the dipole sources and measurement locations (see Fig. 3). For each
dipole source atxi ∈ Λ and polarizationp, we use the linear edge element (see [15])
to solve (2.1) for the scattered fieldEs(·, xi,p) and record the values at allxi’s. All
the numerical examples are done using Matlab on a desktop with 12G memory. Due
to the memory restriction and the 3D nature of the scatteringproblem, the mesh size
is restricted to0.2 which leads to roughly 10% error (maximum norm) of the scattered
field. This is one of the reasons of the poor reconstruction ofthe cavityD. However,
on the other hand, even with this inaccurate synthetic data,the position, the size and a
rough shape can still be obtained.

After we have recorded the synthetic data onΛ, we turn to the problem of solving
the linear ill-posed integral equations (3.9). Note that the left hand side of (3.9) ob-
scures the dependence of the far field operator onφz . Similar to [15], we will derive an
equivalent form. Let(e1(x), e2(x), ν(x)) be an orthonormal basis onΛ. Then (3.9) is
equivalent to the two scalar equations,

∫

Λ

el(x) · E
s(x, y, φz(y)) ds(y) = el(x) · G(x, z)p, x, z ∈ Λ

for l = 1, 2. Since the scattered field satisfies the reciprocity relation, we may rewrite
the above equation as

∫

Λ

φz(y) ·E
s(y, x, el(x)) ds(y) = el(x) · G(x, z)p

12



Figure 3: TriangulationT of the unit sphereΛ with 152 triangles and 78 vertices.

for x, y ∈ Λ, z ∈ R3 andl = 1, 2.
The integral in (3.9) will be approximated by a quadrature. The vertices of each

triangleT ∈ T is denoted byaT
j , j = 1, 2, 3. For any smooth functionf onΛ, we have

∫

T

f dA ≈
1

3
area(T )

3
∑

j=1

f(aT
j ).

Suppose the triangulationT hasN vertices given byxm,m = 1, . . . , N , we obtain

∫

Λ

f dA ≈

N
∑

m=1

ωmf(xm)

where the quadrature weights areωm,m = 1, . . . , N . We may writeφj = φ1,je1 +
φ2,je2 whereφ1,j , φ2,j ∈ C. The fully discrete problem corresponding to (3.9) is to
find φ1,j , φ2,j , j = 1, . . . , N such that

N
∑

j=1

2
∑

n=1

ωjen(xj) · E
s(xj , xm, el(xm))φn,j = el(xm) · Φ(xm, z)p

for l = 1, 2,m = 1, . . . , N . We can rewrite this linear system as

A~φ = ~F (4.14)

whereA is a2N × 2N matrix,~φ is is the vector of unknowns, and~F is the right-hand
side depending on the sampling pointz. SinceA comes from a compact operator, we
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choose to employ the Tikhonov regularization method for (4.14). The regularization
parameter is chosen by Morozov’s discrepancy principle as discussed in [5].

To reconstruct the cavityD, we choose a uniform grid of the sampling region, i.e.
a regionS containsD in the exterior ofΛ. According to the results of previous section,
‖~φz‖ (where‖ · ‖ denotes‖ · ‖l2) should become large asz → ∂D from outside of
D andz ∈ D \ Λ. For simplicity, we just choose the sampling regionS to be a cube
containingD. After we solve (4.14) for all the sampling points inS, the reconstruction
is done by plotting an iso-surface such that‖~φz‖ = C for some constantC. Note
that in practice it is difficult to chooseC since~φz is computed from noisy data using
Morozov’s discrepancy and we have no a priori knowledge of the scatterer. In the
following examples we chooseC using the heuristic calibration approach of [8], where
the value ofC is determined from the reconstruction of a ball. In both of our examples,
we choose

C = 0.4 max
zi

‖~φzi‖

wherezi is the sampling point.
For the first example the cavityD is an ellipsoid withx andy axis 4 andz axis

6. We chooseΛ to be the unit sphere. The left picture of Fig.2 shows the exact shape
of D and the tetrahedra mesh we use for the interior scattering problem. The wave
numberk is set to be2. The bottom right picture of Fig.4 is the reconstruction of the
ellipsoid. In Fig. 4, for better visualization, we show the contour plot of1/‖~φ‖ on
different planes for the ellipsoid. The dashed lines are theexact boundary of the cavity
on the corresponding planes.

The second example is a cube, centered at the origin, whose sides are4. Again we
chooseΛ to be the unit sphere. The right picture of Fig.2 shows the exact shape ofD
and the tetrahedra mesh we use for the interior scattering problem. The wave numberk
is again set to be2. In Fig. 5, we show the contour plot of1/‖~φ‖ on different planes for
the cube. The dashed lines are the exact boundary of the cavity on the corresponding
planes. The bottom right picture of Fig.5 is the reconstruction of the cube.

5 Conclusions and future work

In this paper, an interior inverse electromagnetic scattering problem for cavities is con-
sidered. We prove a reciprocity relation for the scattered field, a uniqueness theorem of
the inverse problem, and employ the linear sampling method to reconstruct the shape
of the cavity. Numerical examples are provided to show the viability of the method.

Similar to [19], the method can be extended to cavities with impedance boundary
condition which is currently under our consideration. Due to the near field setting of the
problem, another qualitative method, the reciprocity gap method applies as well. We
refer the readers to [6, 10, 4, 11, 16] for the details and applications of the reciprocity
gap method.

It can be seen that the reconstruction is not as satisfactoryas the results of the linear
sampling method for exterior inverse scattering problems.How to refine the method to
obtain a better reconstruction is an interesting research topic worthy of efforts.
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Figure 4: The contour plot of1/‖~φ‖ on different planes for the ellipsoid. The dashed
lines are the exact boundary of the cavity on the corresponding planes. Bottom right:
The reconstruction of the ellipsoid, i.e. the iso-surface of ‖~φ‖ = 0.4 maxzi ‖

~φzi‖.
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Figure 5: The contour plot of1/‖~φ‖ on different planes for the cube. The dashed lines
are the exact boundary of the cavity on the corresponding planes.
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