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Abstract

Recent study in inverse scattering theory shows that Dirichlet and
transmission eigenvalues for sound soft obstacles and inhomogeneous non-
absorbing media, respectively, can be reconstructed from scattering data.
In this paper, we show that Neumann eigenvalues can be estimated from
scattering data as well. It is done by choosing a point inside the obsta-
cle and solving some linear ill-posed integral equations depending on the
wavenumber. However, certain points inside the obstacle cannot be used
for certain eigenvalues. Furthermore, we present some numerical study for
the behavior of the solutions of the integral equations for points outside
the obstacle. Finally, an eigenvalue method is employed to reconstruct
the support.

1 Introduction

Recent study in inverse scattering theory shows that Dirichlet and transmission
eigenvalues for sound soft obstacles and inhomogeneous non-absorbing media,
respectively, can be reconstructed from scattering data [7, 8, 23] using qualita-
tive methods such as the linear sampling method, the reciprocity gap method,
the factorization method, etc., [11, 12, 13, 18, 19]. In this paper, we consider
the problem of recovering Neumann eigenvalues for sound hard obstacles. Non-
iterative methods using multiple frequency data in inverse scattering have been
studied by only a few researchers. These methods include the multi-frequency
obstacle reconstruction via the linear sampling method [15], the time domain
linear sampling method [9], the time domain point source method [20], the
enclosure method with dynamical data [16], the multi-frequency orthogonal-
ity sampling method [14], a multi-frequency linear sampling method using a
frequency based partial variation approach [2], and the eigenvalue method [24].

We first study the reconstruction of Neumann eigenvalues for sound hard
obstacles. We show that the Neumann eigenvalues can be estimated effectively
from multiple frequency scattering data. In general, this is done by solving linear
ill-posed integral equations at a point inside the obstacle and plotting the norm
of the solutions as a function of the wavenumber. The value of the wavenumber
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where a high spike appears is expected to be a Neumann eigenvalue. However,
for certain points, some Neumann eigenvalues can not be recovered from the
scattering data. This fact is taken into account when we use the eigenvalue
method to reconstruct the sound hard obstacles. In addition, we perform some
numerical study of the ill-posed integral equations for points outside the obsta-
cle. To the best of the authors’ knowledge, the paper contains the first numerical
study of this kind.

The current paper completes the results in [7, 23, 24] in some sense. To
be precise, corresponding to sound soft obstacles, sound hard obstacles, and
inhomogeneous media, Dirichlet eigenvalues, Neumann eigenvalues, and trans-
mission eigenvalues, respectively, can be computed from either far field or near
field scattering data and be used to obtain the support of the scatterers.

The rest of the paper is organized as follows. In Section 2, we introduce
the scattering problem by a sound hard obstacle and show that the Neumann
eigenvalues can be estimated using multiple frequency scattering data by the
linear sampling method. In Section 3, we employ the eigenvalue method to
reconstruct sound hard obstacles using the eigenvalue indicator proposed in
[24]. Finally, we draw some conclusions and discuss future works in Section 4.

2 The estimation of Neumann eigenvalues

Given the multiple frequency scattering data, we study the reconstruction of
Neumann eigenvalues for sound hard obstacles using the linear sampling method.
Let D ⊂ R2 be an open and bounded domain with Lipschitz boundary ∂D such
that the exterior De := R2\D of D is connected. Let k be the wavenumber
and S1 := {x ∈ R2 : |x| = 1} denote the unit sphere in R2. The fundamental
solution of the Helmholtz equation in R2 is given by

Φ(x, x0, k) :=
i

4
H

(1)
0 (k|x− x0|)

where H
(1)
0 denotes the Hankel function of the first kind of order zero. The two

incident fields ui of interest are plane waves eikx·d, d ∈ S1 and point sources
Φ(x, x0, k), x0 ∈ C. The scattered field us is due to the scattering of the incident
field ui by D. For a sound hard obstacle, the scattered field us satisfies the
following exterior boundary value problem with f = −∂ui/∂ν:

Given f ∈ H−1/2(∂D) find us ∈ H1
loc(R2\D) such that

∆us + k2us = 0 in R2\D,(2.1a)

∂us

∂ν
= f on ∂D,(2.1b)

lim
r→∞

√
r

(
∂us

∂r
− ikus

)
= 0,(2.1c)

where r = |x| and ν is the unit outward normal to ∂D. The well-posedness of
the above problem can be found in [12]. The corresponding eigenvalue problem
is the Neumann eigenvalue problem.

It is shown in [12] that the scattered field us has the asymptotic behavior of
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an outgoing spherical wave

us(x) =
eikr√
r

{
u∞(x̂) +O

(
1

r

)}
as r →∞,(2.2)

uniformly in all directions x̂ := x/r where the function u∞(x̂) defined on S1 is
known as the far field pattern with x̂ denoting the observation direction.

2.1 Reconstruction by the linear sampling method

We denote the far field pattern of the scattered field for an incident plane wave
given by ui(x, d) = eikx·d, x ∈ R2 with direction d ∈ S1 by u∞(x̂, d), x̂ ∈ S1.
The scattered field for an incident point source ui(x, x0) = Φ(x, x0, k) with
source point x0 ∈ C is denoted by us(x, x0), x ∈ R2\D. The inverse problem
we consider is to determine Neumann eigenvalues and reconstruct D from the
knowledge of the far field u∞(x̂, d) or the near field data us(x, x0).

2.1.1 Far field observations

We assume that the far field patterns u∞(x̂, d) are given for all x̂, d ∈ S1. The
far field operator F : L2(S1)→ L2(S1) is defined as

(2.3) (Fg)(x̂) =

∫
S1

u∞(x̂, d)g(d)ds(d), x̂ ∈ S1,

for g ∈ L2(S1).
To reconstruct the target using the linear sampling method, one needs to

solve the following linear ill-posed integral equations

(2.4) (Fg)(x̂) = Φ∞(x̂, z), x̂ ∈ S1,

for all z ∈ T where T is a sampling domain inside Ω containing the target D.
Here, Φ∞(x̂, z) := e−ikx̂·z+iπ/4/

√
8kπ is the far field pattern of the fundamental

solution Φ(x, z). Next we define the Herglotz wave functions

v = Hg :=

∫
S1

eikx·dg(d)ds(d), g ∈ L2(S1).

The function g is called the Herglotz kernel of v. The function Fg can be
interpreted as the far field pattern which corresponds to the incident field ui = v.
We denote by G : H−1/2(∂D) → L2(S1) the operator mapping the boundary
value f ∈ H−1/2(∂D) to the far field pattern of the solution to (2.1a)-(2.1c).
Hence F = −GH where H : L2(S1) → H−1/2(∂D) is an operator given by
Hg = ∂v/∂ν|∂D, g ∈ L2(S1).

In practice, one needs to deal with noisy data. Let Fδ and Gδ be the
operators corresponding to noisy measurement u∞,δ such that ‖Gδ − G‖ ≤ δ.
The linear sampling method usually seeks the Tikhonov regularization solutions
of the linear ill-posed integral equations (2.4), i.e., the unique minimizer of the
Tikhonov functional

(2.5) ‖Fδg − Φ∞(·, z)‖2L2(S1) + ε‖g‖2L2(S1)

where ε is the regularization parameter. We denote gδz,ε(δ) by gz,δ when ε =

ε(δ) → 0 as δ → 0. Then 1/‖gz,δ‖L2(S1) is a characteristic function of the
support of the scatterer D. We refer to [6, 18] for some theoretical analysis.
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2.1.2 Near field observations

In the case of near field measurement, we assume that the scattered fields
us(·, x0) are available on Γ = ∂Ω, a domain containing D, for all point sources
x0 on some closed curve C. The near field operator N : L2(Γ) → L2(C) is
defined as

(2.6) (N g)(x0) =

∫
Γ

us(x, x0)g(x)ds(x), x0 ∈ C,

for g ∈ L2(Γ). The near field counterpart of (2.4) is written as

(2.7) (N g)(x0) = Φ(x0, z), x0 ∈ C.

Let gz,δ be the the unique minimizer of the Tikhonov functional

(2.8) ‖N δg − Φ(·, z)‖2L2(C) + ε‖g‖2L2(Γ).

Similar to the far field case, 1/‖gz,δ‖L2(Γ) is used to be a characteristic function
of the support of the scatterer D.

2.2 Reconstruction of Neumann eigenvalues

Now we show how to reconstruct Neumann eigenvalues by the linear sampling
method. It is shown in [7] that if k2 is a Dirichlet or transmission eigenvalue,
for almost every z ∈ D, the value ‖Hgz,δ‖H1(D) cannot be bounded as δ → 0,
corresponding to the scattering of sound soft obstacles and inhomogeneous non-
absorbing medium. We generalize the result in [7] to the case of the scattering
by sound hard obstacles.

Theorem 2.1. Assume that k2 is a Neumann eigenvalue and the limit

lim
δ→0
‖Fδgz,δ − Φ∞(·, z)‖L2(S1) = 0,(2.9)

holds for all z ∈ D. Then, for almost every z ∈ D, ‖Hgz,δ‖H1(D) cannot be
bounded as δ → 0.

Proof. Assume on the contrary that ‖Hgz,δ‖H1(D) ≤ M for some M > 0 and
z ∈ D0 ⊂ D where D0 has a positive measure. By the trace theorem there
exists c1 > 0 with ‖Hgz,δ‖H−1/2(∂D) ≤ c1‖Hgz,δ‖H1(D). Thus, combining the
limit (2.9) and the inequality

‖Fδgz,δ −Fgz,δ‖ ≤ ‖Gδ −G‖‖Hgz,δ‖H−1/2(∂D),

we deduce that limδ→0 ‖Fgz,δ − Φ∞(·, z)‖L2(S1) = 0. On the other hand, there
exists a subsequence vn = Hgz,δn which converges weakly to some solution
v ∈ H1(D) of Helmholtz equation ∆v + k2v = 0 in D. Using again the trace
theorem, ‖Hgz,δn‖H−1/2(∂D) converges weakly to ‖∂v/∂ν‖H−1/2(∂D). By the
compactness of the operator G, we conclude that

‖Fgz,δn −G(∂v/∂ν|∂D)‖L2(S1) = ‖GHgz,δn −G(∂v/∂ν|∂D)‖L2(S1) → 0

as δ → 0. Therefore G(∂v/∂ν|∂D) = Φ∞(·, z) on S1. Rellich’s lemma and the
unique continuation principle yield that ∂v/∂ν = −∂Φ(·, z)/∂ν on ∂D. Let
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w ∈ H1(D) be a Neumann function corresponding to the eigenvalue k2. Then,
with the help of the Green’s theorem,

u(z) :=

∫
∂D

w(x)
∂Φ(x, z)

∂ν
ds(x)

=

∫
∂D

{
v(x)

∂w(x)

∂ν
− w(x)

∂v(x)

∂ν

}
ds(x)

= 0,

for z ∈ D0 and therefore for z ∈ D by unique continuation. On the other hand
u is a radiating solution in R2\D with homogeneous Neumann data ∂v/∂ν = 0
on ∂D. Here, we have used the continuity of the first derivative of the double-
layer potential. Hence u = 0 in R2\D. By the jump relation of the double-layer
potential across ∂D we deduce that w = 0 on ∂D. Note that ∂w/∂ν = 0 on
∂D, using the Holmgren’s uniqueness theorem we conclude that w = 0 in D.
This contradicts the fact that w is a Neumann function and ends the proof.

Remark 2.2. The limit (2.9) holds in many cases, e.g., if the operator F has
dense range. We refer to [7] for some examples when the limit (2.9) is valid
independently from the scattering problem.

Similar to the case of far field observations, if k2 is a Neumann eigenvalue,
we have the counterpart of Theorem 2.1 for the near field observations.

Theorem 2.3. Assume that k2 is a Neumann eigenvalue and the limit

lim
δ→0
‖N δgz,δ − Φ(·, z)‖L2(C) = 0,(2.10)

holds for all z ∈ D. Then, for almost every z ∈ D, ‖Sgz,δ‖H1(D) cannot be
bounded as δ → 0. Here,

(Sg)(x) =

∫
Γ

Φ(x, y)g(y)ds(y), x ∈ R2

is the single-layer potential with density g.

We hope that ‖Sgz,δ‖H1(D) plays the same role as ‖Hgz,δ‖H1(D) for the
far field case. However, if k2 is not a Neumann eigenvalue, the behavior of
‖Sgz,δ‖H1(D) is not known yet for the case of near field observations. Neverthe-
less, the numerical examples below give the expected results.

Let gz,δ be the unique minimizer of the Tikhonov functional (2.5). In [3],
Arens and Lechleiter proved that, if k2 is not a Neumann eigenvalue and if z ∈ D,
the Herglotz wave function Hgz,δ with kernel gz,δ converges in the H1(D) as
δ → 0. Thus for z ∈ D, if we plot the norms of the Herglotz kernels of the
regularized solutions against the wavenumber, we would expect the norms are
relatively large when k2 is a Neumann eigenvalue and relatively small otherwise.
However, it would be desirable to obtain a clear picture of the behavior of the
norms of Herglotz kernels as the wavenumber approaches a Neumann eigenvalue
k∗.

For effective reconstruction of the Neumann eigenvalues, we would like to
know how many wavenumbers are necessary in the unit interval. To start dis-
cussion, we need some results of the interior Neumann problem. Let

(u, v) =

∫
D

uv̄dx, for all u, v ∈ L2(D).
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and

V =

{
v ∈ H1(D) :

∫
D

v(x)dx = 0

}
.

Then V is compactly imbedded in L2(D) (see [1] or Theorem 3.6 of [21]). In
addition, we assume that D is a bounded domain that can be written as a finite
union of domains that are star-shaped with respect to a ball. It is known that

a(u, v) = (∇u,∇v)

is coercive on V (see Section 4.2 of [4]). Assuming k2 is not a Neumann eigen-
value, we consider the interior Neumann boundary value problem to find vz ∈ V
such that

4vz + k2vz = 0, in D,(2.11a)

∂vz
∂ν

+
∂Φ(·, z, k)

∂ν
= 0, on ∂D.(2.11b)

The corresponding Neumann eigenvalue problem is to find (λ, u) ∈ R × V
such that

(∇u,∇φ) = λ(u, φ), for all φ ∈ V,(2.12a)

∂u

∂ν
= 0, on ∂D.(2.12b)

Let θ := Φ(·, z, k)χ where χ is a C∞ cutoff function which is one in a
neighborhood on ∂D and zero in a neighborhood of z. Furthermore, we choose
χ is such that ∂θ/∂ν = ∂Φ/∂ν on ∂D as well.

Let A : V → V and B : V → V be given by

(Aϕ,ψ)H1(D) = (∇φ,∇ψ) and (Bψ, φ)H1(D) = (φ, ψ),

respectively. We also define a functional lz,k on V

(2.13) (lz,k, ψ)H1(D) = (∇θ,∇φ)− k2(θ, φ), for allψ ∈ V.

Letting ϕ := vz − θ one has that

(4ϕ+ k2ϕ, φ) = (4vz, φ) + k2(vz, φ)− (4θ, φ) + k2(θ, φ)

= −(∇vz,∇φ) + k2(vz, φ) +

∫
∂D

∂vz
∂ν

φds

+(∇θ,∇φ)− k2(θ, φ)−
∫
∂D

∂θ

∂ν
φds

= (lz,k, φ).

Then the Neumann boundary value problem for ϕ can be written as

(2.14) Aϕ− k2Bϕ = −lz,k.

It is clear that A is a bounded self-adjoint positive definite operator which
has a bounded inverse. In addition, B : V → V is compact. To see this, let
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{uj} be a bounded sequence in V . Due to the compact imbedding of H1(D)
into L2(D), there is a convergent subsequence {ujk} of {uj} in L2(D).

‖Bu‖2H1(D) = (Bu,Bu)H1(D) = (u,Bu)L2(D)

≤ ‖u‖L2(D)‖Bu‖L2(D) ≤ ‖u‖L2(D)‖Bu‖H1(D).

Thus ‖Bu‖H1(D) ≤ ‖u‖L2(D) and {Bujk} is a Cauchy sequence in V since {ujk}
is a Cauchy sequence. Hence {Bujk} converges in V .

For the behavior of the kernel of the approximate solution for the far-field
equation, we have the following theorem.

Theorem 2.4. Let k2
∗ be a Neumann eigenvalue for −4 in D and α > 0 such

that the ball
Bk2∗,α := {k2 : |k2 − k2

∗| < α, k2 6= k2
∗}

does not contain any Neumann eigenvalues other than k2
∗. Let gεz be an approx-

imate solution of the far-field equation. Then for sufficient small ε > 0 and
α > 0, and almost every z > 0 one has that

‖vgεz‖H1(D) ≥
C1

|k2 − k2
∗|

and ‖gεz‖L2(Ω) ≥ C2|k2 − k2
∗|

for all k2 ∈ Bk2∗,α where vg is the Herglotz wave function and C1 and C2 are the
positive constants dependent on z, k∗ and α, but not on k and ε.

The proof is similar to that of Theorem 5 in [15] with suitable changes
of the functional spaces for sound-hard obstacles. We give it here only for
completeness.

Proof. Let T be the compact self-adjoint operator given by T := A−1/2BA−1/2 :
V → V . If k2

∗ is a Neumann eigenvalue, λ∗ = 1/k2
∗ is a eigenvalue of T . Let E

and M be the eigenspaces and generalized eigenspaces for T , respectively. The
resolvent R(ξ) = (T − ξ)−1 has a Laurent series expansion in a neighborhood
of λ∗ [17]

R(ξ) = − P

ξ − λ∗
−
∞∑
p=1

Qp

(ξ − λ∗)p+1
+

∞∑
p=0

(ξ − λ∗)pSp+1.

Here p is the least integer such that (T − λ∗I)pw = 0 for all w ∈M ,
P : V →M is the orthogonal projection,
Q = (T − λ∗I)P is the eigen-nilpotent projection such that Q = PQ = QP ,
and S is a bounded operator satisfying (T − λ∗I)S = I − P such that

SP = PS = 0.
It is easy to see that Qj = 0 if j ≥ m := dimM and the range of Qm−1 is a

subset of E.
If k2 is not a Neumann eigenvalue for D, then

k2(T − ξI)A1/2ϕ = A−1/2lz,k

and thus
k2A1/2ϕ = R(ξ)A−1/2lz,k
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where ϕ = vz − θ. Using the expansion for R(ξ), one has that

k2A1/2ϕ = −PA
−1/2lz,k
ξ − λ∗

−
m−1∑
p=1

QpA−1/2lz,k
(ξ − λ∗)p+1

+

∞∑
p=0

(ξ − λ∗)pSp+1A−1/2lz,k.

Thus

‖k2A1/2ϕ‖ =
1

(ξ − λ∗)m
∥∥∥Qm−1A−1/2lz,k +

m−2∑
p=1

(ξ − λ∗)m−p−1QpA−1/2lz,k

+(ξ − λ∗)m−1PA−1/2lz,k −
∞∑
p=0

(ξ − λ∗)p+mSp+1A−1/2lz,k

∥∥∥.
Substituting ξ = 1/k2 and λ = 1/k2

∗, due to the fact that A,Q, S are bounded
operators and lz,k is uniformly bounded for α small enough, one has that

‖k2A1/2ϕ‖ ≥ |k2k2
∗|m

|k2 − k2
∗|m
‖Qm−1A−1/2lz,k‖H1(D) − Cp,

where Cp ≥ 0 depends on z and k∗, but not on k.
Now it is suffice to show that Qm−1A−1/2lz,k 6= 0 for almost all z ∈ D. If

this is true, then

‖Qm−1A−1/2lz,k‖ ≥
1

2
‖Qm−1A−1/2lz,k∗‖

for k1 ∈ Bk2∗,α and sufficiently small α > 0 due to continuity. Then one would
have that

‖k2A1/2ϕ‖H1(D) ≥
|k2k2

∗|m

2|k2 − k2
∗|m
‖Qm−1A−1/2lz,k∗‖H1(D) − Cp, m ≥ 1.

Obviously, Cp ≈ O(1) as α→ 0 which implies

‖A1/2ϕ‖H1(D) ≥
C

|k2 − k2
∗|
‖Qm−1A−1/2lz,k∗‖H1(D), k2 ∈ Bk2∗,α

where C is a positive constant independent of k such that 0 < C < 1
2 |k

2k2
∗|m.

Since A−1/2 and Q are bounded operators, lz,k∗ is bounded, χ vanishes in a
neighborhood of z, and Qm−1A−1/2lz,k∗ 6= 0, q ≥ 0 for almost z ∈ D, the above
inequality implies

‖vz‖H1(D) ≥ |‖ϕ‖H1(D) − ‖Φ(·, z, k)χ(·)‖H1(D)| ≥
C ′

|k2 − k2
∗|
− C ′′ ≥ C ′′′

|k2 − k2
∗|

for suitably chosen constant C ′′′ > 0 dependent on z, k∗ and α, but not on k.
In the rest of the proof, we show that Qm−1A−1/2lz,k 6= 0 for almost all

z ∈ D. Assume that
Qm−1A−1/2lz,k∗ = 0.

Thus A−1/2lz,k∗ is orthogonal to at least one eigenvector, say u∗ in E. To see
this, note that T is a compact self-adjoint operator on the Hilbert space V , thus
M = E (see Page 683 in [5]). If m = 1, then A−1/2lz,k∗ = 0 and the result is
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Table 1: Square roots of Neumann eigenvalues of different obstacles.
Domain 1st 2nd 3rd

circle 3.6874 6.1246 7.6987

unit square π
√

2π 2π
triangle 4.1891 7.2367 8.3800
ellipse 3.1072 4.5070 5.5974

trivial. Let V = E ⊕ E⊥ and A−1/2lz,k∗ = x + y for x ∈ E and y ∈ E⊥. If
dimE = m > 1, it is obvious that we can find a u∗ ∈ E such that (x, u∗) = 0.
Since (y, u∗) = 0, we obtain (A−1/2lz,k∗ , u∗) = 0.

Since A−1/2 is self-adjoint, one has that (lz,k∗ , A
−1/2u∗) = 0. Noting that

(I − k2
∗A
−1/2BA−1/2)u∗ = 0, one obtains

A−1/2(A− k2
∗B)A−1/2u∗ = 0.

This requires that lz,k∗ be orthogonal to an element in the kernel of (A− k2
∗B).

Thus lz,k∗ is orthogonal to an eigenfunction corresponding to Neumann eigen-
value k2

∗. Let φ∗ denote this Neumann eigenfunction. By the first Green’s
identity, one has that

0 = (lz,k∗ , φ∗)H1(D) =

∫
D

∇θ · ∇φ̄∗ − k2
∗θφ̄∗dx =

∫
∂D

∂φ̄∗
∂ν

Φ(x, z, k∗)dsx,

for z ∈ D. We define

w(z) :=

∫
∂D

∂φ̄∗
∂ν

Φ(z, x, k∗)dsx

due to the symmetry of Φ. Hence w(z) = 0 for all z ∈ Z ⊂ D. Then w(z) = 0 in
D due to the unique continuity. By the continuity of the single layer potential,
w(z) = 0 on ∂D. This implies that w(z) = 0 in R2 \ D since w is a radiating

solution to the exterior Dirichlet problem with zero boundary data. Thus ∂φ̄∗
∂ν =

0 on ∂D which contradicts the assumption that φ∗ is a Neumann eigenfunction
and the proof is complete.

In the following, we show some numerical examples. We use the four objects
as above and assume that the support of D is known (approximately) as a priori
which can be obtained using the linear sampling method, etc. [6, 11, 13, 22, 18].
We choose an appropriate interval for each obstacle and partition the interval.
For each wavenumber k in the partition, we record the scattered field us on
Γ and add 3% normally distributed noise. Then we choose a point z inside
the obstacle D and solve the ill-posed integral equation (2.7) using Tikhonov
regularization with Morozov discrepancy [12]. Finally we plot the norm of the
Herglotz kernel g against the wavenumber k. The square roots of Neumann
eigenvalues should be the locations where a spike can be spotted.

We choose an interval F = [2, 8] and partition it using N = 301 in view of
Theorem 2.4:

(2.15) Fk =

{
2 + i× 8− 2

N − 1
, i = 0, 1, 2, . . . , N − 1.

}
.
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We compute the Tikhonov regularized solution and plot the norm of the Herglotz
kernel v.s. the wavenumber in Fig. 1 for z = (0.2, 0.1) inside the targets. It can
be seen that the pictures have clear spikes indicating the locations of Neumann
eigenvalues.

For verification, we also compute a few lowest Neumann eigenvalues using
a finite element method and show them in Table 1. The dotted vertical lines
in Fig. 1 are the exact Neumann eigenvalues. Comparing with the values in
Table 1, we see that the spikes in Fig. 1 and the Neumann eigenvalues in Table 1
coincide very well.
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Figure 1: Reconstruction of the Neumann eigenvalues (the norm of the Herglotz
kernel of the regularized solutions for z = (0.2, 0.1) inside the target v.s. the
wavenumber). The dotted lines are locations of the square roots of the exact
Neumann eigenvalues. Top left: A disk with r = 1/2. Top Right: The unit
square. Bottom left: A triangle. Bottom right: An ellipse with a = 0.6, b = 0.4.

To test the robustness of the reconstruction, we show the reconstruction
using different amount of noise in Fig. 2. With 10% of noise, the reconstruction
start to have some spikes formed at locations other than Neumann eigenvalues.
However, it seems that the first Neumann eigenvalue can be identified even with
20% of noise.

Theorems 2.1 and 2.3 hold for almost every z ∈ D. However, for certain
points, ‖Hgz,δ‖H1(D) may not be unbounded for certain Neumann eigenvalue k,
i.e., a spike will not be formed at some eigenvalue k. Fig. 3 shows similar plots
as in Fig. 1 but with a different point z = (0, 0). If we compare two figures, we
can see that, for z = (0, 0), the lowest two Neumann eigenvalues of the circle

10



2 3 4 5 6 7 8
0

2

4

6

8

10

12

wavenumber k

n
o

rm
 o

f 
th

e
 k

e
rn

e
l

2 3 4 5 6 7 8
0

2

4

6

8

10

12

wavenumber k

n
o

rm
 o

f 
th

e
 k

e
rn

e
l

2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

9

wavenumber k

n
o

rm
 o

f 
th

e
 k

e
rn

e
l

2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

wavenumber k

n
o

rm
 o

f 
th

e
 k

e
rn

e
l

Figure 2: Reconstruction of the Neumann eigenvalues (the norm of the Herglotz
kernel of the regularized solutions for z = (0.2, 0.1) inside the target v.s. the
wavenumber) for the disc with r = 1/2. The dotted lines are locations of the
square roots of the exact Neumann eigenvalues. Top Left: with 5% normally
distributed noise. Top Right: with 10% normally distributed noise. Bottom
Left: with 15% normally distributed noise. Bottom Right: with 20% normally
distributed noise.

are missed, the lowest two Neumann eigenvalues of the unit square are missed,
the lowest Neumann eigenvalue of the triangle is missed, and the lowest two
Neumann eigenvalues of the ellipse are missed. One way to fix this is to use
multiple random points inside the obstacle and combine the result. We refer
the reader to [8] for details.

The following theorem points out that, for points z outside ofD, ‖Hgz,δ‖H1(D)

is always unbounded as δ → 0 if the limit (2.9) holds.

Theorem 2.5. For every z /∈ D, assume that (2.9) (or (2.10) in the case of
near field observations) holds. Then ‖Hgz,δ‖H1(D) (or ‖Sgz,δ‖H1(D) in the case
of near field observations) is always unbounded as δ → 0.

Proof. We only prove the case of far field observations, the near field case can
be dealt with similarly.

Assume on the contrary that ‖Hgz,δn‖H1(D) ≤ M for some M > 0 and
some sequence δn → 0. Then there exists a subsequence of vn = Hgz,δn which
converges weakly to some v ∈ H1(D). Let vs be the radiating solution of the
Helmholtz equation in R2\D with Neumann boundary data ∂v/∂ν on ∂D and

11



2 3 4 5 6 7 8
0

2

4

6

8

10

12

14

16

wavenumber k

n
o

rm
 o

f 
th

e
 k

e
rn

e
l

2 3 4 5 6 7 8
0

5

10

15

20

25

30

wavenumber k

n
o
rm

 o
f 
th

e
 k

e
rn

e
l

2 3 4 5 6 7 8
0

5

10

15

20

25

wavenumber k

n
o
rm

 o
f 
th

e
 k

e
rn

e
l

2 3 4 5 6 7 8
0

5

10

15

20

25

30

35

wavenumber k

n
o

rm
 o

f 
th

e
 k

e
rn

e
l

Figure 3: We show that it is not possible to estimate some Neumann eigenvalues
if we choose certain points. The point is chosen to be z = (0, 0) for all examples.
Top Left: the circle. Top Right: the unit square. Bottom Left: the triangle.
Bottom Right: the ellipse.

v∞ be the corresponding far field pattern. From the arguments in the proof of
Theorem 2.1, we known that limδ→0 ‖Fgz,δn−φz‖L2(S1) = 0. Since Fgz,δn is the
far field pattern of the scattered field with Neumann boundary data −∂vn/∂ν
on ∂D we conclude that Fgz,δn → v∞ and thus v∞ = φz. Rellich’s lemma and
unique continuation principle imply vs = Φ(·, z) in R2\(D ∪ {z}). This leads to
a contradiction since vs ∈ H1

loc(R2\D) while this is not the case for Φ(·, z). The
proof is complete.

Remark 2.6. The above is true for the Dirichlet and Transmission eigenvalues
as well.

In general, when z ∈ R \ D, the solution of the ill-posed integral equation
is unbounded for all wavenumbers. In Fig. 4, we show the plots of the norm of
the kernels when z is chosen to be outside D. It can be seen that although at
some eigenvalues, spikes can be formed. But they are far from the clear plots
in Fig. 1. Moreover, when the wavenumber is not a Neumann eigenvalue, the
norm of the solution is not bounded as predicted by the linear sampling method
[6].

In the following, we check how the plots change when we move z from inside
to outside of the scatterer. We choose the circle and show the plot of the norm
of the kernel of the solutions in Fig. 5. For z = (0.5, 0.5), which is outside the
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Figure 4: The plots of the norms of the Herglotz kernels v.s. the wavenumber
when z = (0.7, 0.7) which is outside the scatterers. Top Left: the circle. Top
Right: the unit square. Bottom Left: the triangle. Bottom Right: the ellipse.

obstacle, we still see the spikes. However, the third spike is missing in contrast
withe the plot for z = (0.3, 0.3). In addition, in the top right plot, the first two
spikes is not reconstructed as good as the top left plot.

3 Reconstruction of sound hard obstacles

In this section, we employ the eigenvalue method proposed in [24] to reconstruct
the sound hard obstacles. We do not assume any a prior information of the
target unless a domain which contains the target, i.e., we do not assume that
we know a point in D as in the previous section.

Let Λ be the set of Neumann eigenvalues. We assume that an interval
F = [a, b] is chosen such that Λ ∩ F 6= ∅ and consider a partition Fk = {ki, i =
0, . . . , N} of F . For simplicity, we assume that the lowest Neumann eigenvalue
is in F . Note that the condition Λ∩F 6= ∅ is not a restrictive requirement since
one can choose a small enough and b large enough.

Let v(y, ki) be the Herlogtz wave function. The multiple frequency near field
integral operator is defined as

(3.16) (N v)(x, ki) =

∫
Γ

us(y, x, ki)v(y, ki)ds(y), x ∈ C, ki ∈ Fk.

For each point z ∈ T , a sampling domain containing D, the near field integral
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Figure 5: The plots of the norm of the Herglotz kernel against the wavenumber
with z’s from inside to outside the circle. Top Left: z = (0.3, 0.3). Top Right:
z = (0.5, 0.5) Bottom Left:z = (0.7, 0.7). Bottom Right: z = (0.9, 0.9).

equation is defined as

(3.17) (N v)(·, ki) = Φ(·, z, ki), ki ∈ Fk.

For each z ∈ T and wavenumber ki in Fk, we compute the regularized solutions
and denote the norm of the Herglotz kernel of the regularized solution for (3.17)
by Hz(ki). The eigenvalue indicator is defined as

(3.18) Iz =
maxiHz(ki)∑
iHz(ki)/Nk

, z ∈ T.

If z ∈ D, we expect to find a spike corresponding to a Neumann eigenvalue
which implies a large value of Iz. For z outside the obstacles, we have seen in
Fig. 4 that no obvious spikes indicating that the value of Iz is relatively small.

Now we show some numerical examples for sound hard obstacles. We choose
a sampling domain T given by [−1, 1]× [−1, 1] containing D. For the disk with
radius r = 1/2, we set F = [3.2, 4.2] and

(3.19) Fk =

{
3.2 + i× 4.2− 3.2

20
, i = 0, 1, 2, . . . , 20.

}
.

Similarly, we choose F = [2.6, 3.6], F = [3.6, 4.6], and F = [2.6, 3.6] for the unit
square, the triangle, and the ellipse, respectively. From Table 1, we know that
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all these intervals contain Neumann eigenvalues for the circle, the square, the
triangle, and the ellipse, respectively. We solve the near field equations for each
ki at the sampling point z and compute the indicator functions defined in (3.18)
for all sampling points.
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Figure 6: Reconstruction of the sound hard obstacles using the eigenvalue indi-
cator.

In Fig. 6, we show the plots of the indicator function Iz. The dotted lines are
the exact boundaries. We can see that the values of the indicator functions are
small for z = (0, 0), centers of the circle, the unit square, and the triangle. For
the ellipse, the values are small for all points on the y-axis. This is related to
the inability to reconstruct certain Neumann eigenvalues we saw in the previous
section. To correct this, we choose a larger interval [2, 8] which contains multiple
eigenvalues. We expect that at least one eigenvalue is reconstructed for each z
in the sampling domain. In Fig. 7 we show the result of the eigenvalue method
using a reasonable larger intervals for the wave numbers.

As the linear sampling method, we need to choose a contour as the recon-
struction of the obstacles. Since the indication function is rather stable for
z ∈ D, we can choose a uniform cutoff value as

c = 0.35×max
z∈T

Iz.

The result is shown in Fig. 8.
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Figure 7: Reconstruction of the sound hard obstacles using the eigenvalue indi-
cator on a larger interval.

4 Conclusions and future works

In this paper, we show that Neumann eigenvalues of sound hard obstacles can
be estimated from the scattering data. Then we use the eigenvalue method
to reconstruct the supports of sound hard obstacles. This work completes the
results given in [7, 23, 24].

For z outside D but close to the boundary, numerical examples implies that
some eigenvalues can still be reconstructed. This is an interesting phenomenon
which requires further study. In our numerical simulations, we have collected
the measurements on Γ for all the sources ui on C. It is desirable to study
limited aperture cases.
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Figure 8: Single contour plots of the reconstructions.
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