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Abstract. We present an iterative method to compute the Maxwell’s transmission

eigenvalue problem which has importance in non-destructive testing of anisotropic

materials. The transmission eigenvalue problem is first written as a quad-curl

eigenvalue problem. Then we show that the real transmission eigenvalues are the roots

of a non-linear function whose value is the generalized eigenvalue of a related self-

adjoint quad-curl eigenvalue problem which is computed using a mixed finite element

method. A secant method is used to compute the roots of the non-linear function.

Numerical examples are presented to validate the method. Moreover, the method is

employed to study the dependence of the transmission eigenvalue on the anisotropy

and to reconstruct the index of refraction of an inhomogeneous medium.
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1. Introduction

The transmission eigenvalue problem is a new research topic in the area of inverse

scattering theory due to its importance in non-destructive testing of anisotropic

materials. It is well-known that some non-iterative methods, such as the linear sampling

method, attempt to avoid these eigenvalues for the reconstruction of inhomogeneous

non-absorbing media [3, 5, 11]. Recent results show that transmission eigenvalues can

be estimated from the scattering data [6, 4, 26, 28]. This interesting fact leads to new

methods to reconstruct the shape and physical properties of the scattering objects. We

refer the readers to [14, 19, 9] and the references therein for the existence theories,

applications, and reconstruction of transmission eigenvalues.

The transmission eigenvalue problem is non-selfadjoint and non-elliptic. It is not

covered by any standard theory of partial differential equations. Due to this fact, the

study of transmission eigenvalues is an interesting, but challenging topic. Effective

numerical methods are needed since they can be used in optimization methods to

estimate the index of refraction using transmission eigenvalues estimated from the

scattering data. Furthermore, theoretical results are partial and numerical evidence

might lead theorists in the correct direction.

The first numerical treatment of the transmission eigenvalue problem appears

in [13] where three finite element methods are proposed for the Helmholtz transmission

eigenvalues. In [18], a mixed finite element method and its Matlab implementation

are given. This approach is also used in [23] for the Maxwell’s transmission eigenvalue

problem. Recently, an efficient Fourier-spectral-element method is proposed to treat

spherically stratified media [2]. Since the problem is non-selfadjoint, direct discretization

by the finite element method leads to non-Hermitian generalized eigenvalue problems or

quadratic eigenvalue problems, which are difficult in numerical linear algebra. We refer

to the readers to [18, 23, 17] for some attempts to overcome this difficulty. Numerical

methods for the corresponding interior transmission problem are also considered by some

authors, see Hsiao et al. [16] and Wu and Chen [29].

Based on the existence theory for transmission eigenvalues [25, 8], two iterative

methods are proposed in [27], which contains an error estimate. The transmission

eigenvalue problem is first written as a fourth order problem. Then it is shown that

the transmission eigenvalues are the roots of an algebraic equation. The value of this

equation is the eigenvalue of a fourth order, self-adjoint, and positive definite problem

which is solved by the Argyris element. Thus instead of a non-selfadjoint non-elliptic

problem, we solve a series of self-adjoint positive definite problems. Consequently, the

non-Hermitian matrix eigenvalue problem is avoided.

In this paper, we extend the method for Helmholtz transmission eigenvalues in [27]

to the Maxwell’s case. In particular, we are interested in the smallest transmission

eigenvalue, which can be stably estimated from the scattering data and is useful in

the reconstruction of the index of refraction. We first write the problem as a quad-

curl problem and show that the transmission eigenvalues are the roots of an algebraic



Computation of Maxwell’s Transmission eigenvalues 3

equation related to a series of self-adjoint positive definite quad-curl eigenvalue problem.

Since it is difficult to build conforming finite elements for the quad-curl problem, we

employ a mixed method for the quad-curl eigenvalue problem similar to [22]. Finally,

we propose an iterative method to search the roots of the algebraic equation which are

transmission eigenvalues and show some numerical examples. In addition, we give some

numerical evidence on how the transmission eigenvalues reflect changes in the anisotropy

It is well-known that the smallest transmission eigenvalue can be stably determined

from the scattering data (far field or near field) [6, 4, 26, 28, 15]. Thus they have been

used to reconstruct the index of refraction. In [26], an optimization method is proposed

to reconstruct the index of refraction using the estimated transmission eigenvalues from

scattering data. An interesting approach which reconstructs the index of refraction

as the smallest eigenvalue of a generalized eigenvalue problem was proposed in [15].

Spherically symmetric case using multiple transmission eigenvalues is considered in [1].

The transmission eigenvalues are also used to reconstruct anisotropies for the Maxwell’s

equations [6]. In this paper, we employ the proposed numerical method to estimate the

index of refraction for the Maxwell’s equations.

The rest of the paper is organized as follows. We first introduce the Maxwell’s

transmission eigenvalue problem in Section 2. It is then written as a quad-curl eigenvalue

problem. Following [25, 8], we show that the transmission eigenvalues are in fact the

roots of an algebraic equation related to a series of self-adjoint positive definite eigenvalue

problems. In Section 3, we propose a mixed finite element method for the quad-curl

eigenvalue problem and develop a secant method to compute the roots of the algebraic

equations. Numerical examples are provided in Section 4. In Section 5, we study how

the transmission eigenvalues reflect changes in the anisotropy numerically. Then we

employ an optimization method to estimate the index of refraction from the smallest

transmission eigenvalue. Finally, we make conclusions and discuss some future works in

Section 6.

2. The Maxwell’s transmission eigenvalue problem

Let D ⊂ R3 be a bounded simply connected domain with piece-wise smooth boundary

∂D. We denote by (·, ·) the L2(D)3 scalar product and define the following Hilbert

spaces

H(curl, D) := {u ∈ L2(D)3 : ∇× u ∈ L2(D)3},
H0(curl, D) := {u ∈ H(curl, D) : u× ν = 0 on ∂D},

where ν is the unit outward normal vector to ∂D. The scalar product defined on

H(curl, D) is given by

(u,v)curl = (u,v) + (∇× u,∇× v).

Following [8], we also define the Hilbert spaces

H(curl2, D) := {u ∈ H(curl, D) : curlu ∈ H(curl, D)},
H0(curl

2, D) := {u ∈ H0(curl, D) : curlu ∈ H0(curl, D)}
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equipped with the scalar product

(u,v)
H(curl2,D)

= (u,v) + (∇× u,∇× v)curl

and the induced norm ‖ · ‖
H(curl2,D)

.

Let N(x) be the index of refraction given by a 3× 3 matrix value function defined

on D such that N(x) ∈ L∞(D,R3×3).

Definition 2.1. A real matrix field N is said to be bounded positive definite on D if

N ∈ L∞(D,R3×3) and if there exists a constant γ > 0 such that

ξ̄ ·Nξ ≥ γ|ξ|2, ∀ξ ∈ C
3 a.e. in D.

In the rest of the paper, we assume that N , N−1, and (N − I)−1 are bounded

positive definite real matrix fields on D. The case for which (I − N)−1 is bounded

positive definite can be treated in the same way [8].

We first introduce the scattering problem for inhomogeneous media. Let the

incident plane wave be given by

Ei(x,d,p) =
i

k
∇×∇× p eikx·d, H i(x,d,p) = ∇× p eikx·d

where d ∈ R3 is the direction of propagation of the wave, k is the wavenumber, and the

vector p is the polarization. The scattering problem by the anisotropic inhomogeneous

medium is to find the interior electric and magnetic fields E,H and the scattered electric

and magnetic field Es, Hs satisfying [11, 5]

curlEs − ikHs = 0, in R
3 \D, (1)

curlHs + ikEs = 0, in R
3 \D, (2)

curlE − ikH = 0, in D, (3)

curlH + ikN(x)H = 0, in D, (4)

ν × (Es + Ei)− ν × E = 0, on ∂D, (5)

ν × (Hs +H i)− ν ×H = 0, on ∂D, (6)

together with the Silver-Müller radiation condition

lim
r→∞

(Hs × x− rEs) = 0 (7)

where r = |x|. We refer the readers to [5] for the well-posedness of (1). The scattered

fields have the following asymptotic behavior

Es(x,d,p) =
eikr

r
E∞(x̂,d,p) +O

(

1

r2

)

, r → ∞, (8)

Hs(x,d,p) =
eikr

r
x̂× E∞(x̂,d,p) +O

(

1

r2

)

, r → ∞, (9)

where x̂ = x/r and E∞ is called the electric far field pattern [11]. Given E∞, the far

field operator F : L2
t (Ω) → L2

t (Ω) is defined as

(Fg)(x̂) :=

∫

Ω

E∞(x̂,d, g(d)) ds (10)
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where Ω = {x̂ ∈ R3; |x̂| = 1} and L2
t (Ω) := {u ∈ (L2(Ω))3 : ν · u = 0 on Ω}. The far

field operator F has fundamental importance in the non-iterative type of methods, for

example, the linear sampling method (see Section 3.3 of [5]). It is known that F has

a dense range provided that k does not belong to a special set of wavenumbers. This

special set of wavenumbers are transmission eigenvalues which we define next.

The transmission eigenvalue problem for the anisotropic Maxwell’s equations in

terms of electric fields is to find k2 ∈ C, E ∈ L2(D)3, E0 ∈ L2(D)3, and E − E0 ∈
H0(curl

2, D) such that

∇×∇×E− k2NE = 0 in D, (11)

∇×∇×E0 − k2E0 = 0 in D, (12)

E× ν = E0 × ν on ∂D, (13)

(∇×E)× ν = (∇× E0)× ν on ∂D. (14)

The values k2 ∈ C such that the above equation has non-trivial solutions E and E0

are called Maxwell’s transmission eigenvalues. Note that there also exist complex

transmission eigenvalues [20]. In this paper, we only consider the computation of the

smallest real transmission eigenvalue.

We first rewrite the transmission eigenvalue problem as a quad-curl problem.

Subtracting (12) from (11), we obtain that

∇×∇× (E− E0)− k2(E− E0) = k2(N − I)E.

Solving for E, we have

E =
1

k2
(N − I)−1(∇×∇− k2)(E− E0).

Applying ∇×∇×−k2N to the above equation and using (11), we obtain

(∇×∇×−k2N)(N − I)−1(∇×∇×−k2)(E− E0) = 0.

Setting τ := k2 and u = E−E0, we obtain a variation formulation for the transmission

eigenvalue problem: find τ ∈ C and u ∈ H0(curl
2, D) such that

Aτ(u,v)− τB(u,v) = 0 ∀v ∈ H0(curl
2, D) (15)

where

Aτ(u,v) =
(

(N − I)−1(∇×∇× u− τu), (∇×∇× v − τv)
)

+τ 2(u,v)(16)

and

B(u,v) = (∇× u,∇× v). (17)

The eigenvalue problem (15) is a non-selfadjoint quad-curl problem. It is shown

in [25, 8] that, if (N − I)−1 is a bounded positive definite matrix field on D, Aτ is

a coercive Hermitian sesquilinear form on H0(curl
2, D) × H0(curl

2, D). Furthermore,

the sesquilinear form B is Hermitian and non-negative. This leads us to consider the

auxiliary eigenvalue problem for fixed τ

Aτ(u,v)− λ(τ)B(u,v) = 0 ∀v ∈ H0(curl
2, D). (18)
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Note that the generalized eigenvalue λ(τ) depends on τ since Aτ depends on τ . Then

the smallest transmission eigenvalue is the first positive root of the function

f(τ) := λ(τ)− τ (19)

where λ(τ) is the smallest generalized eigenvalue of (18).

In the following, we present some analysis of the above generalized eigenvalue

problem which motivates the iterative method we shall describe later. We need the

space of functions with square-integrable divergence H(div, D) defined by

H(div, D) = {u ∈ L2(D)3 | divu ∈ L2(D)3}
equipped with the scalar product

(u,v)
H(div,D)

= (u,v) + (divu, divv)

and the corresponding norm ‖ · ‖
H(div,D)

. We also define

V :=
{

u ∈ H0(curl
2;D) ∩H(div;D) | divu = 0

}

. (20)

We first consider the quad-curl eigenvalue problem of finding κ ∈ R and u ∈ V such

that

(∇×∇× u,∇×∇× u) = κ(u,v), ∀v ∈ V. (21)

There exits an infinite discrete set of quad-curl eigenvalues κj > 0, j = 1, 2, . . .

and corresponding eigenfunctions uj ∈ V , uj 6= 0 such that (21) is satisfied and

0 < κ1 ≤ κ2 ≤ . . .. Furthermore

lim
j→∞

κj = ∞.

The eigenfunctions (uj ,ul)L2(D)3 = 0 if j 6= l (see [22]).

We denote by κ1 > 0 the smallest quad-curl eigenvalue and λ0 the smallest

Laplacian eigenvalue for D [21]. We define

Θ := 4

(

κ
1/2
1

λ0
+
κ1
λ20

)

and let 0 ≤ η1(x) ≤ η2(x) ≤ η3(x) be the eigenvalues of the index of refraction N(x).

Note that η3(x) coincides with ‖N(x)‖2 and is given by

η3(x) = sup
‖ξ‖=1

ξ̄ ·N(x)ξ.

The smallest eigenvalue η1(x) is given by

η1(x) = inf
‖ξ‖=1

ξ̄ ·N(x)ξ.

We denote

N∗ = sup
D
η3(x), N∗ = inf

D
η1(x).
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In the following, we show that, under certain condition of N(x), transmission

eigenvalues exist as the roots of f(τ) := λ(τ)− τ where λ(τ) is the smallest generalized

eigenvalue of (18). We assume that

1 + Θ ≤ N∗ ≤ ξ̄ ·N(x)ξ ≤ N∗ <∞, ‖ξ‖ = 1, (22)

which also implies

0 <
1

N∗ − 1
≤ ξ̄ · (N − I)−1ξ ≤ 1

N∗ − 1
<∞.

Under the above assumption, it is shown in [8] that if

0 < τ0 <
λ0

supD ‖N‖2
, (23)

then f(τ0) = λ(τ0)− τ0 > 0. If

τ1 =
λ0 − 2Mκ

1/2
1

2 +M
, M =

1

N∗ − 1
(24)

then f(τ1) = λ(τ1) − τ1 < 0. Since f(τ) is a continuous function of τ , there exist a τ ∗

such that f(τ ∗) = 0, which implies that τ is the smallest transmission eigenvalue.

In summary, to compute the transmission eigenvalue, we first compute τ0 and τ1
defined in (23) and (24), respectively. Then we can employ an iterative method, such

as the bisection method, to search the root of f(τ). Note that for the bisection method,

at each step, we need to compute a generalized quad-curl problem which is not efficient

for 3D problems. Thus, in the next section, we will propose a secant method which

converges much faster.

The condition (22) on N(x) is rather strict. We use it for simplicity of presentation.

It can be relaxed significantly. The existence of transmission eigenvalues only requires

‖N(x)‖2 ≥ α > 1 for some positive α, for example, see Theorem 3.3 of [6].

In the inverse scattering theory, one often cares about the smallest transmission

eigenvalue. When N = N0I for some N0 > 1, much more can be said about f(τ). The

following lemma is proved in [6].

Lemma 2.2. Let µ1 be a continuous function which maps the index of refraction N0

to the smallest transmission eigenvalue. Moreover, denoting τ := k2, if f(τ, N0) :=

µ1(N0τ
2) − (N0 + 1)τ , then ∂f

∂τ
< 0 when τ < N0+1

2N0

λ0(D) where λ0(D) is the first

Dirichlet eigenvalue of the negative Laplacian in D.

3. Computation of transmission eigenvalues

We have shown that the transmission eigenvalues are the roots of (19). Since the value

of f(τ) depends on the smallest generalized eigenvalue of (18), we first construct a mixed

finite element method for the auxiliary eigenvalue problem (18).

It is easy to see that the variational formulation (18) corresponds to the following

partial differential equation

(∇×∇×−τ)(N − I)−1(∇×∇×−τ)w + τ 2w = λ∇×∇×w. (25)
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This is a quad-curl eigenvalue problem. Similarly to the approach in [22], we first

introduce a mixed formulation for (25). Let

u = w,

v = (N − I)−1(∇×∇×−τ)u.
Thus we obtain the following mixed form for (25):

(∇×∇×−τ)v + τ 2u = λ∇×∇× u, (26)

(∇×∇×−τ)u = (N − I)v. (27)

The weak formulation of the above problem can be stated as: find

(λ,u,v) ∈ (R, H0(curl, D), H(curl, D))

such that

(∇× v,∇× ξ)− τ(v, ξ) + τ 2(u, ξ) = λ(∇× u,∇× ξ), (28)

(∇× u,∇× φ)− τ(u,φ) = ((N − I)v,φ), (29)

for all ξ ∈ H0(curl, D) and φ ∈ H(curl, D).

Now we use the curl conforming edge elements of Nédélec [24, 21] for discretization.

Following [21], let Pn be the space of polynomials of maximum total degree n and P̃n

the space of homogeneous polynomials of degree n. We define

Sn = {p ∈ (P̃n)
3 | x · p(x) = 0 ∀x ∈ R

3},
Rn = (Pn−1)

3 ⊕ Sn.

The curl-conforming edge element space [21] is defined as

X+
h = {v ∈ H(curl;D) | v|K ∈ Rn, ∀K ∈ Th}

where Th is a tetrahedral mesh for D. The degrees of freedom are associated with the

edge e, faces f and the volume of an element K ∈ Th. Letting τ denote a unit vector

parallel to e and ν denote the unit outward normal to f , the degrees of freedom of edge

element are given by

Me(u) =

{∫

e

u · τ q ds for all q ∈ Pn−1(e) for each edge e of K

}

,

Mf (u) =

{
∫

f

u× ν · g dA for all g ∈ (Pn−2(f))
2 for each face f of K

}

,

MK(u) =

{
∫

K

u · g dx for all g ∈ (Pn−3(K))3
}

.

The linear edge element when n = 1 is given by

R1 =
{

u(x) = a+ b× x, where a,b ∈ C
3
}

.

The six degrees of freedom are determined from the moments
∫

e
u ·τds on the six edges

of K. The H0(curl;D) conforming edge element space is simply given by

Xh = {uh ∈ X+
h | ν × uh = 0 on ∂D} (30)
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which can be easily obtained by taking the degrees of freedom associated with edges or

faces on ∂D to vanish [21].

In the following implementation, for simplicity, we employ the linear edge element.

Let

Sh = the space of lowest order edge element on D,

S0
h = Sh ∩H0(curl, D)

= the subspace of functions in Sh that have vanishing DoF on ∂D,

where DoF stands for degree of freedom. Let ψ1, . . . , ψK be a basis for S0
h and

ψ1, . . . , ψK , ψK+1, . . . , ψT be a basis for Sh. Let uh =
∑K

i=1 uiψi and vh =
∑T

i=1 uiψi.

Furthermore, let ~u = (u1, . . . , uK)
T and ~v = (v1, . . . , vT )

T . Then the matrix form

corresponding to the above problem is

SK×T~v − τMK×T~v + τ 2MK×K~u = λhSK×K~u, (31)

ST×K~u− τMT×K~u =MN−I
T×T ~v, (32)

where

Matrix Dimension Definition

SK×K K ×K Si,j
K×K = (∇× ψi,∇× ψj), 1 ≤ i ≤ K, 1 ≤ j ≤ K

SK×T K × T Si,j
K×T = (∇× ψi,∇× ψj), 1 ≤ i ≤ K, 1 ≤ j ≤ T

ST×K T ×K Si,j
T×T = (∇× ψi,∇× ψj), 1 ≤ i ≤ T, 1 ≤ j ≤ K

MK×K K × T M i,j
K×T = (ψi, ψj), 1 ≤ i ≤ K, 1 ≤ j ≤ K

MK×T K × T M i,j
K×T = (ψi, ψj), 1 ≤ i ≤ K, 1 ≤ j ≤ T

MT×K T ×K M i,j
T×K = (ψi, ψj), 1 ≤ i ≤ T, 1 ≤ j ≤ K

MN−I
T×T T × T (MN−I

T×T )
i,j = ((N − I)ψi, ψj), 1 ≤ i ≤ T, 1 ≤ j ≤ T

From (32) we obtain

~v =
(

MN−I
T×T

)−1
(ST×K − τMT×K) ~u.

Substituting ~v in (31), we obtain a generalized matrix eigenvalue problem

A~u = λSK×K~u (33)

where

A =
(

(SK×T − τMK×T )
(

MN−I
T×T

)−1
(ST×K − τMT×K) + τ 2MK×K

)

.

Now we are in the position to present a secant method to compute the smallest

transmission eigenvalue k1.

AlgorithmS: (Secant Method): τ ∗ = secantTE(x0, x1, N(x), tol,maxit)

generate a regular tetrahedra mesh for D

set it = 1 and δ =abs(x1 − x0)

compute the smallest generalized eigenvalue λA of (18) for τ = x0

compute the smallest generalized eigenvalue λB of (18) for τ = x1

while δ > tol and it < maxit
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Figure 1. The unit ball and the unit cube with sample meshes.

τ = x1 − λB
x1−x0

λB−λA

compute the smallest eigenvalue λτ of Ax = λBx

δ = abs(λτ − τ)

x0 = x1, x1 = τ, λA = λB, λB = λτ , it = it+ 1.

end

Here x0 and x1 are initial values which are chosen close to zero and x0 < x1 <
λ0

supD ‖N‖2
.

This is due to the fact that f(τ) is positive in an interval I right to zero. The parameters

maxit and tol are the maximum number of iterations and precision, respectively.

4. Numerical examples

In this section, we show some examples to compute the smallest transmission eigenvalue.

We choose two domains: D1 the unit ball centered at the origin, and D2 the unit cube

given by [0, 1]× [0, 1]× [0, 1] (see Fig. 1).

We only consider ‖N(x)‖2 ≥ α > 1, α > 0 since the case of 0 < ‖N(x)‖2 ≤
1 − β, β > 0 can be treated similarly. We test three different cases for the index of

refraction N(x) corresponding to isotropic medium with constant index of refraction,

anisotropic medium with constant index of refraction, and anisotropic medium with

non-constant index of refraction given by

N1 :=







16 0 0

0 16 0

0 0 16






, N2 :=







16 1 0

1 16 0

0 0 14






, N3 :=







16 x y

x 16 z

y z 14






.

The eigenvalues of N1 are 16 with multiplicity 3. The eigenvalues of N2 are 14, 15, 17.

For the case of N3, simple calculation shows that N∗ = 13.5698 and N∗ = 17 for the

unit ball and N∗ = 13.2679 and N∗ = 17.5616 for the unit cube.
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1
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τ:=k2

f(
τ)

:=
λ(

τ)
−

τ

 

 

ball, N1

ball, N2

ball, N3

cube, N1

cube, N2

cube, N3

Figure 2. The plot of f(τ) = λ(τ) − τ v.s. τ for two domains D1 and D2 with N1,

N2, and N3.

We first generate tetrahedra meshes for D1 and D2, respectively. Due to the

restriction of the computation power available, the meshes size is roughly h ≈ 0.2

which is rather coarse. For each τ , we compute the smallest eigenvalue of the generalized

eigenvalue problem (18) using the mixed finite element. In Fig. 2, we plot f(τ) = λ(τ)−τ
v.s. τ . For two domains D1 and D2 with N

1, N2, and N3, we see that the function f(τ)

is a monotonically decreasing function which is consistent with Lemma 2.2.

We choose x0 and x1 such that

x0 < x1 <
λ0

supD ‖N‖2
.

In fact, one can choose small values for x0 and x1 to avoid computing λ0 and supD ‖N‖2.
In the following computation, we simply set x0 = 0.1 and x1 = 0.2. We show the result

in Table. 1. The transmission eigenvalues are consistent with those in [23]. It can be seen

that the algorithm is very efficient since the computation needs only a few iterations.

For the unit ball with the index of refraction N = N0I, the transmission eigenvalues

k’s are known exactly which are given by the roots of
∣

∣

∣

∣

∣

jn(kρ) jn(k
√
N0ρ)

1
ρ

∂
∂ρ

(ρjn(kρ))
1
ρ

∂
∂ρ

(

ρjn(k
√
N0ρ)

)

∣

∣

∣

∣

∣

ρ=1

= 0, n ≥ 1 (34)
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Table 1. The computed smallest Maxwell’s transmission eigenvalues of the unit ball

and the unit cube together with the number of iterations used in the secant method.

domain k1 number of iterations

unit ball N1 1.1837 4

unit ball N2 1.1702 4

unit ball N3 1.1952 4

unit cube N1 2.0595 4

unit cube N2 2.0411 4

unit cube N3 2.0527 4

and
∣

∣

∣

∣

∣

1
ρ

∂
∂ρ

(ρjn(kρ))
1
ρ

∂
∂ρ

(

ρjn(k
√
N0ρ)

)

k2jn(kρ) k2N0jn(k
√
N0ρ)

∣

∣

∣

∣

∣

ρ=1

= 0, n ≥ 1 (35)

where jn’s are the spherical Bessel functions. For N0 = 16, the exact smallest

transmission eigenvalue is 1.1654 [23]. To check the convergence, we use the secant

method to compute the smallest transmission eigenvalues on a series of meshes with

degrees of freedom 273, 497, 1043, 2846 and 9711. Then we calculate the error for each

mesh. In Fig. 3, we show the convergence rate of the computed smallest transmission

eigenvalue. Note that in 3D, the mesh size h is proportional to the inverse of the cubic

root of the degrees of freedom. Although we carry out the computation on a desktop

using Matlab, 9711 is still a rather small matrix. In future, we plan to seek for a better

solver for the quad-curl eigenvalue problem such that larger 3D problems can be treated.

5. Applications in inverse scattering

5.1. Transmission eigenvalues v.s. anisotropy

Using the above method, we give some numerical evidence to show how the transmission

eigenvalues reflect changes in the anisotropy. The unit ball is used as the model domain.

For the first example, we set the index of refraction

N = diag(16, 15, x) (36)

with x changing from 12 to 14. In Fig. 4, we show the first transmission eigenvalues

τ1 := k21 v.s. x := N(3, 3). The result shows that the first transmission eigenvalue

decreases as the smallest eigenvalue of N increases when the other eigenvalues keep the

same.

Next we set

N = diag(16, 15, x) (37)



Computation of Maxwell’s Transmission eigenvalues 13

−3.2 −3 −2.8 −2.6 −2.4 −2.2 −2 −1.8

−4.6

−4.4

−4.2

−4

−3.8

−3.6

−3.4

−3.2

−3

−2.8

−2.6

log(DoF−1/3)

lo
g(

E
rr

or
)

Figure 3. The plot of the error for the the computed smallest transmission eigenvalue

for the unit ball for N = 16I.
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Figure 4. Left: The smallest transmission eigenvalue v.s. x = N(3, 3). Right: The

eigenvalues of N defined in (36) for different x.
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Figure 5. Left: The smallest transmission eigenvalue v.s. x = N(3, 3). Right: The

eigenvalues of N defined in (37) for different x.

with x changing from 16 to 18. Fig. 7 shows the smallest transmission eigenvalues

τ1 := k21 v.s. x := N(3, 3). The result is similar to Fig. 4, i.e., the smallest transmission

eigenvalue decreases as the largest eigenvalue of N increases when the other eigenvalues

of N keep the same.

For the third example, we set

N = diag(16, 15, x) (38)

with x changing from 15 to 16. Again, in Fig. 7, we see that smallest transmission

eigenvalue decreases as the second eigenvalue of N increases when the other eigenvalues

of N keep the same.

The above numerical examples indicate that, in general, the smallest transmission

eigenvalue gets smaller as the eigenvalues of the index of refraction gets larger.

Numerical study also shows that the smallest transmission eigenvalue gets larger as

the eigenvalues of the index of refraction gets smaller. Since the results are similar, we

do not show them for simplicity.

In the following, we consider some more complicated examples. We first choose the

unit ball and set

N :=







16 0 0

0 x 0

0 0 y






, (39)

with x := N(2, 2) changing from 15 to 10 and y := N(3, 3) changing from 17 to 22.

The smallest transmission eigenvalues and the eigenvalues of the index of refraction N

is shown in Fig. 7.
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Figure 6. Left: The first transmission eigenvalue v.s. x = N(3, 3). Right: The

eigenvalues of N defined in (38) for different x.
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Figure 7. Left: The smallest transmission eigenvalue. Right: The eigenvalues of

N(x) defined in (39) for different x.

For the second example, we set

N :=







16 x z

x 16 y

z y 16






(40)

with x changing from 1 to 6, y changing from 6 to 1, and z changing from 2 to 4. The

first transmission eigenvalue and the eigenvalues of N(x) defined in (40) are shown in

Fig. 8.

For above two examples, the behavior of the smallest transmission eigenvalue is

difficult to predict when the index of refraction is some what complicate. No obvious
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Figure 8. Left: The smallest transmission eigenvalue. Right: The eigenvalues of N

defined in (40) for varying x, y, z.

conclusion can be made about how the smallest transmission eigenvalue reflects changes

in the anisotropy.

Finally, we present an example with rough data without any comment. We set

N :=







16 x z

x 16 y

z y 16






(41)

with x, y, z being randomly generated numbers given by

x, y, z = (rand(1, 21)− 0.5)× 2.

The smallest transmission eigenvalue and the eigenvalues of of N(x) defined in (41) are

shown in Fig. 9.

5.2. Estimation of the index of refraction

We consider the inverse scattering problem to reconstruct the index of refraction from

the transmission eigenvalues. Suppose that the smallest transmission eigenvalue and

the shape of the scatterer D is available, we would like to obtain information of N using

an optimization method based on the above numerical method. In particular, given the

estimated smallest transmission eigenvalue kδ1, we would like to find N0 such that the

smallest transmission eigenvalue of D coincides with kδ1. Here δ is the noise level.

Let µD : R → R which maps a given index of refraction N0 (N = N0I) to the

smallest transmission eigenvalue of D, i.e.,

µD(N0) = k1(D). (42)

We seek a constant Ne minimizing the difference between µD(N0) and k
δ
1, i.e.,

Ne = argminN0
|µD(N0)− kδ1|. (43)
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Figure 9. Left: The smallest transmission eigenvalue. Right: The eigenvalues of N

defined in (41).

To this end, we quote the following theorem from [6] to justify the optimization method

we will give shortly.

Theorem 5.1. (Lemma 1 of [6]) Let µD(N0) be defined in (42) which maps the index

of refraction N = N0I, N0 > 1 to the smallest transmission eigenvalue k1. Then µD is

monotonically decreasing and continuous on (0, N0+1
2N0

λ0(D)). Furthermore,

µD(N0) → λ0(D), as N0 → ∞, and µD(N0) → ∞, as N0 → 1

where λ0(D) is the first Dirichlet eigenvalue of the negative Laplacian in D.

In Fig. 10, we plot the smallest transmission eigenvalue k1 v.s. the index of

refraction N0. It is clear that k1 is a monotonically decreasing function of N0.

Since µD is a continuous function of N0, we can look for N0 such that the computed

smallest transmission eigenvalue coincides with kδ1 using the following AlgorithmN. At

each step, the smallest transmission eigenvalue is computed using the proposed iterative

method in Section 3. Now we present the optimization algorithm to estimate the index

of refraction.

AlgorithmN Ne = algorithmN(D, kδ1, tol)

generate a regular tetrahedra mesh for D

estimate a suitable interval a and b

compute ka1 and kb1 using the secant method

while abs(a− b) > tol

c = (a+ b)/2 and compute kc1 using the secant method

if |kc1 − kδ1| < |ka1 − kδ1|
a = c
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Figure 10. The plot of the smallest transmission eigenvalue k1 v.s. the index of

refraction N0 for the unit ball and the unit cube.

else

b=c

end

end

Ne = c

In the following, we assume that the smallest transmission eigenvalue kδ1 is

obtained from the scattering data and seek an isotropic NeI with kδ1 being the smallest

transmission eigenvalue.

We first consider the unit ball. Let kδ1 = 1.17 corresponding to the case of N2. We

use AlgorithmN and find that Ne = 14.66. Then we let kδ1 = 1.19 corresponding the

case of N3. We obtain the optimal index of refraction Ne = 15.19.

Next we consider the unit square. Let kδ1 = 2.04 corresponding N2. We get

Ne = 15.38. Then we let kδ1 = 2.05 corresponding N3. We obtain the optimal index of

refraction Ne = 15.51. We show the result in Table 2 where we also show the smallest

and largest eigenvalues of the exact index of refraction. We see that for all the cases,

the reconstructed index of refraction Ne are close to the eigenvalues of N(x). In fact,

they are between N∗ and N∗ for all examples.
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Table 2. The reconstructed index of refraction Ne.

domain Ne N∗ N∗

unit ball N2 14.66 14 17

unit ball N3 15.19 13.57 17

unit cube N2 15.38 14 17

unit cube N3 15.51 13.27 17.56

6. Conclusions and future work

In this paper, we propose a secant method to compute the smallest transmission

eigenvalue. We change the problem into a series of self-adjoint positive definite

generalized eigenvalue problem. Thus we avoid computing a non-Hermitian matrix

eigenvalue problem which is very difficult for large sparse matrices. Then a mixed

finite element is proposed to solve the generalized eigenvalue problems. We show some

examples for the computation of the smallest transmission eigenvalues and numerical

evidence on how the transmission eigenvalues reflect changes in the anisotropy. Finally,

we use the secant method in an optimization method to estimate the index of refraction

based on the smallest transmission eigenvalues obtained from scattering data.

Here we only compute the smallest transmission eigenvalue. The method can

compute other real transmission eigenvalues as well. For example, to compute the

second smallest transmission eigenvalue, one only needs to compute the second smallest

generalized eigenvalue of (18) and plug it in f(τ) (see [8]).

Numerical computation of transmission eigenvalues is a challenging topic due to

the fact that the problem is non-standard and non-selfadjoint. The method proposed

here can only treat isotropic media. For anisotropic media, a fourth order formulation

as (15) is not possible [10]. Although a curl-conforming finite element is proposed in

[23], there is no error estimate. Furthermore, the resulting eigenvalue problem is large,

sparse and non-Hermitian which itself is a difficult problem in numerical linear algebra

as we mentioned above.

Since we are using the linear edge element, we would expect that the convergence

order is 2. However, we have the convergence order of roughly 1.7. This may be due

to the fact that the meshes are rather coarse. The smallest size of the mesh we use

is approximately 0.2. The error analysis of the mixed finite element method for the

generalized eigenvalue problem (18) will be carried out in future. Furthermore, an

effective ways to solve the discrete matrix eigenvalue problem resulting from the mixed

method is desirable such that we can treat larger problems.

We use the smallest transmission eigenvalue to obtain a constant estimation NeI

for a matrix valued index of refraction. In fact, more than one transmission eigenvalue

can be obtained from the scattering data. Thus an interesting problem is how to use

multiple transmission eigenvalues to get more information of the index of refraction.
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This is an inverse spectrum problem of the determination of the index of refraction

from transmission eigenvalue(s). We refers the readers to [1, 12] for some discussion for

the spherically stratified media.
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