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Abstract The quad-curl problem arises in the study of the electromagnetic
interior transmission problem and magnetohydrodynamics (MHD). In this pa-
per, we study the quad-curl eigenvalue problem and propose a mixed method
using edge elements. Assuming stringent regularity of the solution of the quad-
curl source problem, we prove the convergence and show that the divergence-
free condition can be bypassed.
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1 Introduction

The quad-curl problem arises in inverse electromagnetic scattering theory for
inhomogeneous media [13] and magnetohydrodynamics (MHD) equations [15].
To compute eigenvalues, one usually starts with the corresponding source prob-
lem. The construction of conforming finite elements with suitable regularity
for the quad-curl problem is extremely technical and prohibitively expensive
even if such finite elements exist.

In this paper, we propose a mixed finite element method for the quad-curl
source problem. The major advantage of this approach lies in the fact that only
curl-conforming edge elements are needed [14]. Then we employ the method
to compute quad-curl eigenvalues. We prove convergence following [1]. Unlike
the Maxwell eigenvalue problem, which has been studied extensively in the
literature (see, for example [7] and [3]), there are few results on the quad-curl
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source problem. Recently Zheng et al. [15] propose a non-conforming finite
element method. To the author’s knowledge, this paper is the first numerical
treatment of the quad-curl eigenvalue problem.

The rest of the paper is organized as follows. Section 2 contains some
preliminaries. In Section 3, we propose a mixed finite element method for the
the quad-curl problem and prove its convergence. In Section 4, we employ
the mixed method for the quad-curl eigenvalue problem. In addition, we show
that the divergence-free condition, which is usually treated using Lagrange
multipliers, can be ignored for the eigenvalue problem.

2 Preliminaries

2.1 Function Spaces

Let D ⊂ R3 be a convex, simply connected Lipschitz polyhedral domain.
The boundary of D is assumed to be connected with unit outward normal ν.
We denote by (·, ·) the L2(D) inner product and by ‖ · ‖ the L2(D) norm.
The variational approach we shall describe for the quad-curl problem requires
several Hilbert spaces. We define

Hs(curl;D) :=
{
u ∈ L2(D)3 | curlj u ∈ L2(D)3, 1 ≤ j ≤ s

}
equipped with the scalar product

(u,v)Hs(curl;D) = (u,v) +

s∑
j=1

(curlj u, curlj v)

and the corresponding norm ‖ · ‖Hs(curl;D). We shall use the standard notation
H(curl;D) when s = 1. Next we define

H0(curl;D) := {u ∈ H(curl;D) | u× ν = 0 on ∂D} ,
H2

0 (curl;D) :=
{
u ∈ H2(curl;D) | u× ν = 0 and (curlu)× ν = 0 on ∂D

}
.

We also need the space H(div;D) of functions with square-integrable diver-
gence defined by

H(div;D) = {u ∈ L2(D)3 | div u ∈ L2(D)},

equipped with the scalar product

(u,v)H(div;D) = (u,v) + (div u,div v)

and the corresponding norm ‖ · ‖H(div,D).
Taking the divergence-free condition into account, we define

X = {u ∈ H(curl;D) ∩H(div;D)|div u = 0 in D} ,
Y = {u ∈ H0(curl;D) ∩H(div;D)|div u = 0 in D} ,

H(div0;D) = {u ∈ H(div;D)|div u = 0 in D} .

For functions in Y , the following Friedrichs inequality holds.
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Lemma 1 (see, for example, Corollary 3.51 of [12]) Suppose that D is a
bounded Lipschitz domain. If D is simply connected, and has a connected
boundary, there is a constant C ≥ 0 such that for every u ∈ Y ,

‖u‖ ≤ C‖curl u‖. (1)

2.2 The edge element

We give a short introduction of edge elements [14]. We assume that the domain
D is covered by a regular tetrahedral mesh. We denote the mesh by Th where
h is the maximum diameter of the elements in Th. Let Pk be the space of
polynomials of maximum total degree k and P̃k the space of homogeneous
polynomials of degree k. We define

Rk = (Pk−1)3 ⊕ {p ∈ (P̃k)3 | x · p(x) = 0 for all x ∈ R3}.

The curl-conforming edge element space [14] is given by

Uh = {v ∈ H(curl;D) | v|K ∈ Rk for all K ∈ Th}.

The H0(curl;D) conforming edge element space is simply

U0,h = {uh ∈ Uh | ν × uh = 0 on ∂D}, (2)

which can be easily obtained by setting the degrees of freedom associated with
edges and faces on ∂D to zero. Let rhu ∈ Uh be the global interpolant. The
following result holds.

Lemma 2 (Lemma 5.38 of [12]) Suppose there are constants δ > 0 and p > 2
such that u ∈ H1/2+δ(K)3 and curl u ∈ Lp(K)3 for each K ∈ Th. Then rhu
is well-defined and bounded.

The following result provides error estimates for the interpolant.

Lemma 3 (Theorem 5.41 of [12]) Let Th be a regular mesh on D. Then

(1) If u ∈ Hs(D)3 and curl u ∈ Hs(D)3 for 1/2 + δ ≤ s ≤ k for δ > 0 then

‖u− rhu‖L2(D)3 + ‖curl(u− rhu)‖L2(D)3

≤ Chs
(
‖u‖Hs(D)3 + ‖curl u‖Hs(D)3

)
. (3)

(2) If u ∈ H1/2+δ(K)3, 0 < δ ≤ 1/2 and curl u|K ∈ Pk, then

‖u− rhu‖L2(D)3 ≤ C
(
h
1/2+δ
K ‖u‖H1/2+δ(K)3 + hK‖curl u‖L2(K)3

)
.

(3) If u ∈ Hs(D)3 and curl u ∈ Hs(D)3 for 1/2 + δ ≤ s ≤ k and δ > 0, the
following result holds

‖curl(u− rhu)‖L2(D)3 ≤ Chs‖curl u‖Hs(D)3 .
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The following inverse inequality for edge elements will be useful in the forth-
coming error analysis (see Section 3.6 of [10]).

Lemma 4 Let Th be a regular mesh for D. Then for uh ∈ Uh,

‖uh‖H(curl;D) ≤ Ch−1‖uh‖

for some constant C independent of uh and h.

2.3 The curl-curl problem

The curl-curl problem has been studied extensively in the literature. We just
collect some results for later use and refer the readers to [10] and [11] for
details. The problem is stated as follows. For f ∈ H(div0;D), find u such that

curl curl u = f in D, (4a)

div u = 0 in D, (4b)

u× ν = 0 on ∂D. (4c)

The mixed form is to find (u, p) ∈ H0(curl;D)×H1
0 (D) such that

(curl u, curlφ) + (grad p,φ) = (f ,φ) for all φ ∈ H0(curl;D), (5a)

(u, grad q) = 0 for all q ∈ H1
0 (D). (5b)

Let the finite element space for H1
0 (D) be given by

Sh =
{
ph ∈ H1

0 (D) | ph|K ∈ Pk for all K ∈ Th
}
.

It follows that gradSh ⊂ U0,h. The discrete Helmholtz decomposition can be
defined via

U0,h = Yh ⊕ gradSh

where Yh is given by

Yh = {uh ∈ U0,h | (uh, grad ξh) = 0 for all ξh ∈ Sh} . (6)

Then the discrete problem for (5) is to find (uh, ph) ∈ U0,h × Sh such that

(curl uh, curlφh) + (grad ph,φh) = (f ,φh) for all φh ∈ U0,h, (7a)

(uh, grad qh) = 0 for all qh ∈ Sh. (7b)

Lemma 5 (discrete Friedrichs inequality of Yh) Let D be a bounded simply
connected Lipschitz domain. There exists a positive constant C independent of
h such that, for h small enough,

‖uh‖ ≤ C‖curl uh‖ for all uh ∈ Yh.
Lemma 6 The discrete problem (7) has a unique solution (uh, ph) ∈ U0,h×Sh
with ph = 0. In addition, if (u, p) ∈ H0(curl;D)×H1

0 (D) is the solution of (4)
with p = 0, there exists a constant C independent of h, u, and uh such that

‖u− uh‖H(curl) ≤ C inf
vh∈U0,h

‖u− vh‖H(curl).
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3 The Quad-curl Problem

The quad-curl problem is defined as follows. For f ∈ H(div0;D), find u such
that

(curl)4 u = f in D, (8a)

div u = 0 in D, (8b)

u× ν = 0 on Γ, (8c)

(curl u)× ν = 0 on Γ. (8d)

In this section, we first prove the well-posedness of the quad-curl problem.
Then we propose a mixed formulation. To this end, we let V and W be given
by

V :=
{
u ∈ H2

0 (curl;D) ∩H(div;D) | div u = 0
}
, (9)

W := {u ∈ H2(curl;D) ∩H(div;D) | divu = 0}. (10)

We define a bilinear form C : V × V → R by

C(u,v) := (curl curl u, curl curl v) for all u,v ∈ V. (11)

Let f ∈ H(div0;D). The weak formulation for the quad-curl problem is to find
u ∈ V such that

C(u,v) = (f ,v) for all v ∈ V. (12)

Theorem 1 There exists a unique solution u ∈ V to (12).

Proof Due to the fact that functions in V are divergence-free, using the Friedrichs
inequality twice, we see that the bilinear form C is elliptic on V . Then Lax-
Milgram lemma implies that there exists a unique solution u of (12) in V . ut

To the author’s knowledge, there are no regularity results for the quad-curl
problem in the literature. For Maxwell’s equations, it is well-known that non-
convexity leads to singularities, see [7] and [8]. For the biharmonic equation
with clamped plate boundary conditions, convexity is sufficient for the solution
to be in H3 [9]. Therefore the mixed finite element method given in [6] for
the corresponding biharmonic eigenvalue problem does not produce spurious
modes. However, whether convexity is sufficient for the quad-curl solution
to be in H3(curl;D) is a non-trivial open problem. On the other hand, for
biharmonic eigenvalue problems on non-convex domains, mixed finite methods
compute spurious modes [4]. Thus non-convexity might lead to the failure of
the mixed method for the quad-curl eigenvalue problem. For simplicity, we
shall make the following assumption in the rest of the paper.

Assumption: The solution u of (12) belongs to H3(curl;D).
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Let φ = curl curl u. We define

a(u,v) = (u,v), b(u,v) = −(curl u, curl v).

The mixed formulation for the quad-curl problem can be stated as follows. For
f ∈ H(div0;D), find (u,φ) ∈ Y ×X such that

a(f ,v) + b(φ,v) = 0, for all v ∈ Y, (13a)

b(u,ψ) = −(φ,ψ), for all ψ ∈ X. (13b)

In the following, we derive the equivalence of the above mixed formulation
to the quad-curl problem. We employ a technique similar to that in Section
7.1 of [6] for the biharmonic equation.

The solution of the quad-curl problem is the solution of the following un-
constrained minimization problem: Find u such that

J(u) = inf
v∈V

J(v) (14)

where

J(v) =
1

2

∫
D

|curl2v|2 dx−
∫
D

f · v dx. (15)

This follows because (12) is the Euler-Lagrange equation for the minimiza-
tion problem. Equivalently we consider the constrained minimization problem
associated with the quadratic form

J (v,ψ) =
1

2

∫
D

|ψ|2 dx−
∫
D

f · v dx (16)

for (v,ψ) ∈ V × L2(D)3 such that curl2 v = ψ.
We define

V :=
{

(v,ψ) ∈ Y × L2(D)3 | β((v,ψ),µ) = 0 for all µ ∈ X
}
,

where

β((v,ψ),µ) =

∫
D

curl v · curlµdx−
∫
D

ψ · µdx. (17)

Thus the problem can be stated as: Find (u,φ) ∈ V such that∫
D

φ ·ψ dx =

∫
D

f · v dx for all (v,ψ) ∈ V.

Lemma 7 The mapping
(v,ψ) ∈ V → ‖ψ‖

is a norm over V. Furthermore, we have

V :=
{

(v,ψ) ∈ V × L2(D)3 | curl2v = ψ
}
.

Proof The lemma follows directly from the Friedrichs inequality. ut
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Theorem 2 If u ∈ V is the solution of (14), we have that

J (u, curl2 u) = inf
(v,ψ)∈V

J (v,ψ). (18)

and (u, curl2 u) ∈ V is the unique solution of (18).

Proof Since

((u,φ), (v,ψ)) ∈ V × V →
∫
D

φ ·ψ dx

is continuous and V-elliptic,

(v,ψ) ∈ V →
∫
D

f · v dx

is continuous, the minimization problem of finding (u∗,φ) ∈ V such that

J (u∗,φ) = inf
(v,ψ)∈V

J (v,ψ)

has a unique solution that satisfies∫
D

φ ·ψ dx =

∫
D

f · v dx for all (v,ψ) ∈ V.

From Lemma 7, we see that u∗ ∈ V and that curl2u∗ = φ. We have∫
D

curl2u · curl2v dx =

∫
D

f · v dx.

Consequently u∗ is the solution u of (14). ut

Based on the above theorem, we define two solution operatorsA : H(div0;D)→
X and B : H(div0;D)→ Y for (13) such that

Af = φ, Bf = u. (19)

We can write (13) as

a(Af ,v) + b(v, Bf) = 0, for all v ∈ X, (20a)

b(Af ,q) = −(f ,q), for all q ∈ Y. (20b)

Next we consider the edge element method for the minimization problem.
Let

Vh = {(vh,ψh) ∈ Yh ×Xh | β((vh,ψh),µh) = 0 for all µh ∈ Xh} ,

where Xh is such that
Uh = Xh ⊕ gradSh.

Note that Xh 6⊂ X. Functions in Xh are said to be discrete divergence-free.
The discrete problem corresponding to (16) is to find (uh,φh) ∈ Vh such that

J (uh,φh) = inf
(vh,ψh)∈Vh

J (vh,ψh). (21)
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It is easy to see that the discrete problem (21) has a unique solution and the
element (uh,φh) ∈ Vh satisfies

∫
D

φh ·ψh dx =

∫
D

f · vh dx for all (vh,ψh) ∈ Vh. (22)

Theorem 3 Let (u,φ) and (uh,φh) be solutions of (18) and (21), respec-
tively, and assume that u ∈ H3(curl;D). There exists a constant C indepen-
dent of h such that

‖curl u− curl uh‖+ ‖curl2u− φh‖ ≤

C

(
inf

(vh,ψh)∈Vh

(
‖curl u− curl vh‖+ ‖curl2u−ψh‖

)
+ inf
µh∈Xh

‖curl2 u− µh‖H(curl)

)
. (23)

Proof Assuming that u ∈ H3(curl;D), we have

∫
D

curl(curl2u) · curl v dx =

∫
D

curl2u · curl2v dx =

∫
D

f · v dx

for all v ∈ D(D)3, the space of smooth functions with compact support in D.
Hence for all v ∈ H0(curl;D), the following holds

∫
D

curl(curl2u) · curl v dx =

∫
D

f · v dx. (24)

Thus for any v ∈ H0(curl;D) and ψ ∈ L2(D)3, we have

β
(
(v,ψ), curl2u

)
=

∫
D

f · v dx−
∫
D

ψ · curl2u dx.
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For any (vh,ψh) ∈ Vh and µh ∈ Xh, using the fact that β((vh,ψh),µh) = 0,
(24), and (22), we have

β
(
(uh − vh,φh −ψh), curl2u− µh

)
(25)

=

∫
D

curl(uh − vh) · curl(curl2u− µh) dx

−
∫
D

(φh −ψh) · (curl2u− µh) dx

=

∫
D

curl(uh − vh) · curl curl2u dx−
∫
D

curl(uh − vh) · curlµh dx

−
∫
D

(φh −ψh) · curl2u dx+

∫
D

(φh −ψh) · µh dx

=

∫
D

curl(uh − vh) · curl curl2u dx−
∫
D

(φh −ψh) · curl2u dx

=

∫
D

f · (uh − vh) dx−
∫
D

(φh −ψh) · curl2u dx

=

∫
D

φh · (φh −ψh) dx−
∫
D

(φh −ψh) · curl2u dx

= −
∫
D

(curl2u− φh) · (φh −ψh) dx.

On the other hand, for all µh ∈ Xh, one has∫
D

curluh · curlµhdx =

∫
D

φh · µhdx,∫
D

curlvh · curlµhdx =

∫
D

ψh · µhdx.

Taking the difference and letting µh = uh − vh, we have∫
D

curl(uh − vh) · curl(uh − vh)dx =

∫
D

(φh −ψh) · (uh − vh)dx,

which implies

‖curl(uh − vh)‖ ≤ C‖φh −ψh‖, (26)

where C is the constant in the discrete Friedrichs inequality.
Using the above inequality and (25), we have∣∣∣∣∫

D

(curl2u− φh) · (φh −ψh) dx

∣∣∣∣
=
∣∣β ((uh − vh,φh −ψh), curl2u− µh

)∣∣
≤ ‖curl(uh − vh)‖ ‖curl(curl2u− µh)‖+ ‖φh −ψh‖ ‖curl2u− µh‖
≤ C‖φh −ψh‖ ‖curl(curl2u− µh)‖+ ‖φh −ψh‖ ‖curl2u− µh‖
≤ C1‖φh −ψh‖ ‖curl2u− µh‖H(curl),
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where C1 = max{C, 1}. Thus we have that

‖φh −ψh‖2

= −
∫
D

(φh −ψh) · (curl2u− φh) dx+

∫
D

(φh −ψh) · (curl2u−ψh) dx

≤ C1‖φh −ψh‖ ‖curl2u− µh‖H(curl) + ‖φh −ψh‖ ‖curl2u−ψh‖

and hence

‖φh −ψh‖ ≤ C1‖curl2u− µh‖H(curl) + ‖curl2u−ψh‖.

Moreover, we have that

‖curl u− curl uh‖+ ‖curl2u− φh‖
≤ ‖curl u− curl vh‖+ ‖curl vh − curl uh‖+ ‖curl2u−ψh‖+ ‖ψh − φh‖
≤ ‖curl u− curl vh‖+ ‖curl2u−ψh‖+ (1 + C)‖ψh − φh‖,

where we have used (26). Combining the above inequalities, we obtain

‖curl u− curl uh‖+ ‖curl2u− φh‖
≤ ‖curl u− curl vh‖+ ‖curl2u−ψh‖

+(1 + C)
(
C1‖curl2u− µh‖H(curl) + ‖curl2u−ψh)‖

)
≤ ‖curl u− curl vh‖+ (2 + C)‖curl2u−ψh‖+ (1 + C)C1‖curl2 u− µh‖H(curl).

The proof is complete by taking the infimum of the right side over all (vh,ψh) ∈
Vh and µh ∈ Xh. ut

Theorem 4 Let (u,φ) and (uh,φh) solve (18) and (21), respectively. Let
α(h) = C1/h where C1 is the constant in Lemma 4. Then there exists a con-
stant C independent of the mesh size h such that

‖curl u− curl uh‖+ ‖curl2 u− φh‖

≤ C
{

(1 + α(h)) inf
vh∈Yh

‖curl u− curl vh‖+ inf
µh∈Xh

‖curl2 u + µh‖H(curl)

}
.

Proof Let (vh,ψh) ∈ Vh and µh ∈ Xh. Writing wh = µh +ψh, we have that
β((vh,ψh),wh) = 0, i.e.,∫

D

curl vh · curl wh dx−
∫
D

ψh ·wh dx = 0.

Using the fact that ν × curl u = 0 on ∂D, we obtain∫
D

curl curl u ·wh dx =

∫
D

curl u · curl wh dx.

Combining the above two equations, we have∫
D

(curl curl u−ψh) ·wh dx =

∫
D

curl(u− vh) · curl wh dx.
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Hence we have that∣∣∣∣∫
D

(curl curl u−ψh) ·wh dx

∣∣∣∣ ≤ ‖curl u− curl vh‖ ‖curl wh‖

≤ α(h)‖curl u− curl vh‖ ‖wh‖

and

‖wh‖2 =

∫
D

(µh + curl curl u) ·wh dx+

∫
D

(ψh − curl curl u) ·wh dx

≤ ‖µh + curl curl u‖ ‖wh‖+ α(h)‖curl u− curl vh‖ ‖wh‖.

From this inequality, we have that

‖curl curl u−ψh‖ ≤ ‖curl curl u + µh‖+ ‖wh‖
≤ 2‖curl curl u + µh‖+ α(h)‖curl u− curl vh‖,

and thus,

inf
(vh,ψh)∈Vh

(‖curl u− curl vh‖+ ‖curl curl u−ψh‖)

≤ (1 + α(h)) inf
vh∈Yh

‖curl u− curl vh‖+ 2 inf
µh∈Xh

‖curl curl u + µh‖.

Combination of this inequality and (23) completes the proof. ut

Theorem 5 Let (u,φ) and (uh,φh) be the solutions of (18) and (21), re-
spectively. Furthermore, assume that curliu ∈ Hs(D)3, i = 1, 2, 3 and s is the
same as in Lemma 3. Then there exists a constant C independent of the mesh
size h such that

‖curl u− curl uh‖+ ‖curl2 u− φh‖ ≤ Chs−1
(
‖u‖Hs(D)3 + ‖curl u‖Hs(D)3

)
.

(27)

Proof We define the Fortin operator Πh : Y → Yh such that Πhu is the first
component uh of (7) with (f ,φh) replaced by (curl u, curlφh) (see Sec. 3 of
[2]). According to Lemma 6, we have that

‖u−Πhu‖H(curl) ≤ C inf
vh∈U0,h

‖u− vh‖H(curl).

Using Lemma 3, we have that

‖curl u− curlΠhu‖ ≤ Chs
(
‖u‖Hs(D)3 + ‖curl u‖Hs(D)3

)
.

For w = curl curl u, we define the H(curl;D) orthogonal projection Ph :
H(curl;D)→ Uh such that

(curl (w − Phw), curlφh) + (w − Phw,φh) = 0 for all φh ∈ Uh.

Then Cea’s Lemma leads to the following estimate (see Sec. 7.2 of [12])

‖w − Phw‖H(curl) = inf
µh∈Uh

‖w − µh‖H(curl).
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Letting φh = grad ξh for ξh ∈ Sh, we find that Phw is discrete divergence-free,
i.e., Phw ∈ Xh. Thus we have that

inf
µh∈Xh

‖curl2 u− µh‖H(curl) ≤ inf
µh∈Uh

‖curl2 u− µh‖H(curl).

From Lemma 3, we have that

inf
µh∈Uh

‖curl2u− µh‖H(curl) ≤ Chs
(
‖curl2 u‖Hs(D)3 + ‖curl3 u‖Hs(D)3

)
for some constants C independent of h. Using Theorem 4, we obtain that

‖curl u− curl uh‖+ ‖curl2 u− φh‖

≤ C

(
1 +

C1

h

)
hs
(
‖u‖Hs(D)3 + ‖curl u‖Hs(D)3

)
+Chs

(
‖curl2 u‖Hs(D)3 + ‖curl3 u‖Hs(D)3

)
≤ Chs−1

(
‖u‖Hs(D)3 + ‖curl u‖Hs(D)3

)
+Chs

(
‖curl2 u‖Hs(D)3 + ‖curl3 u‖Hs(D)3

)
≤ Chs−1

(
‖u‖Hs(D)3 + ‖curl u‖Hs(D)3

)
.

ut

We now use the theory from Section 2.3 to prove an L2-norm convergence
result for u − uh. Of course, since we are using edge elements of the first
kind [14], the convergence rate in L2 cannot be better than the convergence
rate in H(curl). So nothing would be gained from a duality argument.

Theorem 6 Under the conditions of Theorem 5, there exists a constant C
independent of u, uh and h such that

‖u− uh‖ ≤ Chs−1
(
‖u‖Hs(D)3 + ‖curl u‖Hs(D)3

)
.

Proof Let vh ∈ Yh be the first component of the solution of (7) with f =
curl curl u so that u is the exact solution. By Lemma 6 and Lemma 3, we have
that

‖u− vh‖H(curl;D) ≤ Chs
(
‖u‖Hs(D)3 + ‖curl u‖Hs(D)3

)
. (28)

Then, using the triangle inequality and the discrete Friedrichs inequality in
Lemma 5, we have that

‖u− uh‖ ≤ ‖u− vh‖+ ‖vh − uh‖
≤ ‖u− vh‖+ C‖curl(vh − uh)‖
≤ C(‖u− vh‖H(curl;D) + ‖curl(u− uh)‖).

Combination of Theorem 5 and (28) completes the proof. ut
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4 The Quad-curl Eigenvalue Problem

The quad-curl eigenvalue problem is to find λ and u such that

(curl)4 u = λu in D, (29a)

divu = 0 in D, (29b)

u× ν = 0 on ∂D, (29c)

(curl u)× ν = 0 on ∂D. (29d)

We call λ a quad-curl eigenvalue and u the associated eigenfunction. Due
to the well-posedness of the quad-curl problem, we can define an operator
T : L2(D)3 → L2(D)3 such that T f = u for (12). It is obvious that T is self-
adjoint. Furthermore, because of the compact imbedding of V into L2(D)3, T
is a compact operator.

The weak formulation is to find (λ,u) ∈ R× V such that

C(u,q) = λ(u,q) for all q ∈ V. (30)

It is clear that λ is an eigenvalue satisfying (30) if and only if µ = 1/λ is an
eigenvalue of T .

Lemma 8 There is an infinite discrete set of quad-curl eigenvalues λj >
0, j = 1, 2, . . . and corresponding eigenfunctions uj ∈ V , uj 6= 0 such that
(30) is satisfied and 0 < λ1 ≤ λ2 ≤ . . . Furthermore

lim
j→∞

λj =∞.

The eigenfunctions satisfy (uj ,ul)L2(D)3 = 0 if j 6= l.

Proof Applying the Hilbert-Schmidt theory (see, for example, Theorem 2.36
of [12]), we immediately have the above theorem. ut

Using the Helmholtz decomposition, we can easily obtain the following
result. Thus we omit its proof.

Lemma 9 The quad-curl eigenvalues coincide with the non-zero eigenvalues
of the following problem. Find (λ,u) ∈ R×H2

0 (curl;D) such that

C(u,q) = λ(u,q) for all q ∈ H2
0 (curl;D). (31)

Then the quad-curl eigenvalue problem in mixed form can be written as:
Find λ ∈ R, (0,0) 6= (u,φ) ∈W ×X satisfying

a(φ,v) + b(v,u) = 0, for all v ∈ X, (32a)

b(φ,q) = −λ(u,q), for all q ∈ Y. (32b)

It is easy to see that if (λ, (u,φ)) is an eigenpair of (32), then λBu = u,u 6= 0,
i.e., (λ,u) is a quad-curl eigenpair. If λBu = u,u 6= 0, then there exists φ ∈ X
such that (λ, (u,φ)) is an eigenpair of (32).
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The mixed finite element method for the quad-curl problem can be stated
as follows. For f ∈ H(div0;D), find Ahf ∈ Yh, Bhf ∈ Xh such that

a(Ahf ,vh) + b(vh, Bhf) = 0, for all vh ∈ Xh, (33a)

b(Ahf ,qh) = −(f ,qh), for all qh ∈ Yh. (33b)

From Theorems 5 and 6, we have that

‖(B −Bh)f‖ ≤ Chs−1 (‖Bf‖s + ‖curlBf‖s) , (34)

‖(A−Ah)f‖ ≤ Chs−1 (‖Bf‖s + ‖curlBf‖s) . (35)

In the following, we assume that ‖u‖s ≤ C‖f‖ and ‖curl u‖s ≤ C‖f‖ holds
for the quad-curl problem and some constant C. Note that when s = 2, the
above regularity results are a consequence of Lemma 1 and the fact that u is
the solution of the quad-curl problem. Thus we have the norm convergence

lim
h→0
‖B −Bh‖ = 0 and lim

h→0
‖A−Ah‖ = 0.

The discrete eigenvalue problem is to find λh ∈ R, (uh,φh) ∈ Yh×Xh such
that

a(φh,vh) + b(vh,uh) = 0, for all vh ∈ Xh, (36a)

b(φh,qh) = −λh(uh,qh), for all qh ∈ Yh. (36b)

Theorem 7 The discrete quad-curl eigenvalues of (36) coincide with the non-
zero eigenvalues of the following problem. Find λh ∈ R and uh ∈ U0,h,φh ∈ Uh
such that

(φh,vh)− (curl vh, curl uh) = 0, for all vh ∈ Uh, (37a)

(curlφh, curl qh) = −λh(uh,qh), for all qh ∈ U0,h. (37b)

Proof We write
uh = u0

h +∇ϕh, u0
h ∈ Yh, ϕh ∈ Sh.

Letting qh = ∇ξh in (37b), we have that

0 = (φh, curl∇ξh) = −λh(uh,∇ξh) = λh(∇ϕh,∇ξh) for all ξh ∈ Sh.

Then either λh = 0 or (∇ϕh,∇ξh) = 0 for all ξh ∈ Sh. It is clear that if
λh 6= 0, we have (∇ϕh,∇ξh) = 0 for all ξh ∈ Sh, which implies ∇ϕh = 0. Thus
uh = u0

h, which is discrete divergence-free. ut

Let µ be a non-zero eigenvalue of B. The ascent α of µ − B is defined
as the smallest integer such that N((µ − B)α) = N((µ − B)α+1), where N
denotes the null space. Let m = dimN((µ−B)α) be the algebraic multiplicity
of µ. The geometric multiplicity of µ is dimN(µ − B). Note that since B is
self-adjoint, the two multiplicities are same. Then there are m eigenvalues of
Bh, µ1(h), . . . , µm(h) such that

lim
h→0

µj(h) = µ, for j = 1, . . . ,m. (38)
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Theorem 8 Let λ = 1/µ be an exact quad-curl eigenvalue with multiplicity
m and λj,h, j = 1, . . . ,m be the corresponding computed eigenvalues. Then we
have that

|λ− λj,h| ≤ Ch2s−2 (39)

for some constant C.

Proof From (34) and (35), we have that

‖(B −Bh)‖ ≤ Chs−1 and ‖(A−Ah)‖ ≤ Chs−1.

Then the theorem is verified using Theorem 11.1 of [1]. ut
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