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Transmission eigenvalue problem has important applications in inverse scattering. Since the problem is
not self-adjoint, the computation of transmission eigenvalues needs special treatment. Based on a fourth
order reformulation of the transmission eigenvalue problem, we choose a mixed finite element method. The
method has two major advantages: 1) the formulation leads to a generalized eigenvalue problems naturally
without the need to invert a related linear system, and 2) the non-physical zero transmission eigenvalue,
which has an infinitely dimensional eigenspace, is eliminated. To solve the resulting non-Hermitian eigen-
value problem, we propose an iterative algorithm using restarted Arnoldi method. To make the computation
efficient, the search interval is decided using a Fabra-Khan type inequality for transmission eignevalues
and the interval is updated at each iteration. The algorithm is implemented using Matlab. The code can
be easily used in the qualitative methods in inverse scattering and be modified to compute transmission
eigenvalues for other models such as elasticity problem.
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1. INTRODUCTION

Transmission eigenvalue problem has important applications in inverse scattering
theory and attracted attention of many researchers recently [Colton et al. 2007]
[Päivärinta and Sylvester 2008] [Cakoni and Haddar 2009] [Colton et al. 2010]. For
the case of scattering of time-harmonic acoustic waves by a bounded simply connected
inhomogeneous mediumD ⊂ R2, the transmission eigenvalue problem is to find k ∈ C,
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w, v ∈ L2(D), w − v ∈ H2(D) such that

∆u+ k2(1 + q(x))u = 0, in D, (1a)

∆v + k2v = 0, in D, (1b)

u− v = 0, on ∂D, (1c)

∂u

∂ν
−
∂v

∂ν
= 0, on ∂D. (1d)

where ν is the unit outward normal to the boundary ∂D. The index of refraction n(x) :=
1+q(x) is assumed to be positive. Values of k such that there exists a nontrivial solution
to (1) are called transmission eigenvalues.

Although stated in a simple form, the transmission eigenvalue problem is difficult.
It is non-standard and the classical theory can not be applied directly. Recent investi-
gation focuses on the existence of real transmission eigenvalues [Cakoni and Haddar
2009] [Kirsch 2009] [Cakoni and Gintides 2010]. It has been shown numerically that
there exist complex transmission eigenvalues [Colton et al. 2010]. However the exis-
tence of complex transmission eigenvalues is an open problem except for some very
special cases.

In this paper we will focus on the computation of a few lowest real transmission
eigenvalues which are of practical importance [Cakoni et al. 2010]. Numerical treat-
ment for transmission eigenvalues is quite limited so far. Computation of transmis-
sion eigenvalues faces two major difficulties. The first one is the infinite dimensional
eigenspace corresponding to the non-physical transmission eigenvalue k = 0. It is
readily seen that any harmonic function on D is an eigenfunction by setting k = 0
in (1) such that (1a) and (1b) become the same. The second difficulty is due to the
non-selfadjointness. The resulting matrix eigenvalue problem from standard finite el-
ement method is non-Hermitian. Moreover, the problem is in general large and sparse.
Thus there is a need for efficient eigensolvers. Note that the lowest real transmission
eigenvalue is of interest and it may not be the transmission eigenvalue of the smallest
norm due to the existence of complex transmission eigenvalues. This also generates
difficulty in computation. In [Colton et al. 2010], three finite element method are pro-
posed. However, two of them compute the zero transmission eigenvalues and one needs
to implement an H2 conforming finite element. All of them use the direct solver for the
resulting generalized eigenvalue problem which puts a strict limit on the size of the
problem. In [Sun 2010], Sun propose an iterative method based on the formulation of
transmission eigenvalues as the roots of a non-linear equation involving positive defi-
nite forth order eigenvalue problems. The convergence of the scheme is proved as well.
However, at each step, a forth order eigenvalue problem needs to be solved.

In this paper, we propose an efficient method to compute the lowest a few transmis-
sion eigenvalues based on a mixed finite element method. We first rewrite the problem
into a forth order problem which naturally eliminates the non-physical zero transmis-
sion eigenvalue. Then we use a mixed finite element method with additional advantage
as can be seen in Section 2. To compute eigenvalues of the non-Hermitian matrix prob-
lem resulted from the mixed finite element method, we resort to the Arnoldi method
[Golub and Von Loan 1989] [Saad 1980]. For efficient search, we would like to specify
an accurate interval which is relative small and contains the desired eigenvalues. This
is done by a combination of estimation of a lower bound for transmission eigenvalues
using the Fabra-Khran type inequality and adaptive update of the search interval.
The proposed method has been used in qualitative method in inverse scattering the-
ory and proved to be robust [Sun 2011b]. The code can be adapted to compute other
transmission eigenvalue problems such as elasticity.
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The rest of the paper is organized as follows. In Section 2, we describe the mixed
finite element method for the transmission eigenvalue problem and end up with a
large, sparse, non-Hermitian generalized matrix eigenvalue problem. In Section 3, we
propose an adaptive algorithm based on the Arnoldi method to efficiently compute the
lowest a few real transmission eigenvalues and briefly describe the implementation
of the method. We refer the reader to Appendix for mored details. Finally we provide
some numerical examples in Section 4.

2. A MIXED FINITE ELEMENT METHODS

We first rewrite the transmission eigenvalue problem into a fourth order equation. We
assume that D is a convex Lipschitz domain and q(x) ≥ δ > 0 on D. Let z = v − w ∈
H2

0 (D). Then we have

(△ + k2(1 + q))z = −k2qv.

Thus q−1(△+k2(1+ q))z = −k2v. We apply (△+k2) to both sides of the above equation
to obtain

(△ + k2)
1

q
(△ + k2(1 + q))z = 0.

The transmission eigenproblem can be stated as: Find (k2, z) ∈ C ×H2
0 (D) such that

(

1

q
(△ + k2(1 + q))z, (△ + k2)φ

)

= 0, ∀φ ∈ H2
0 (D). (2)

It is obvious that k = 0 is not a non-trivial eigenvalue any longer since
(

1
q
△z,△z

)

= 0

implies that z = 0 [Ciarlet 2002].
Before we move on to discuss the numerical method, we quote the existence results of

(real) transmission eigenvalues (Theorem 3.1 and 3.2 in [Cakoni and Gintides 2010]).
Again we denote the index of refraction n(x) := 1 + q(x). Let n∗ = infD(n(x)) and
n∗ = supD(n(x)) and assume that the origin of the coordinative system is inside D.
Then the following results hold.

THEOREM 2.1. Let n ∈ L∞(D) satisfying either one of the following assumptions

1) 1 + α ≤ n∗ ≤ n(x) ≤ n∗ <∞,

2) 0 < n∗ ≤ n(x) ≤ n∗ < 1 − β,

for some constant α > 0 or β > 0. Then there exists at least one transmission eigenvalue.

THEOREM 2.2. Assume that the index of refraction n > 0 is a positive constant such
that n 6= 1. Then there exists an infinite discrete set of transmission eigenvalues with
+∞ as accumulation point.

It is possible to use H2-conforming finite element such as Argyris element [Argyris
et al. 1968] or high regularity partition of unity element [Sun 2011a] to discretize the
above problem directly. In general, it will end up with additional programming effort.
Moreover, the problem becomes a quadratic eigenvalue problem which is difficult to
handle as well. In this paper, we follow the mixed finite element approach as in [Ciarlet
and Raviart 1974] [Monk 1987]. It will be seen an additional important advantage as
a byproduct of the mixed formulation.
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We shall use letters u and v for different unknowns. Let u = w and v = 1
q
(∆ + k2(1 +

q))w = 0. Thus we have

(∆ + k2)v = 0,

1

q
(∆ + k2(1 + q))u = v.

Following the mixed method approach [Ciarlet and Raviart 1974], [Monk 1987], we
obtain the following weak problem. Find (k2, u, v) ∈ C ×H1

0 (D) ×H1(D) such that

(∇v,∇φ) = k2(v, φ), ∀φ ∈ H1
0 (D),

(∇u,∇ϕ) + (qv, ϕ) = k2((1 + q)u, ϕ), ∀ϕ ∈ H1(D).

Given finite dimensional spaces Sh ⊂ H1(D) and S0
h ⊂ H

(
0D) such that S0

h ⊂ Sh, the
discrete problem is to find (k2

h, uh, vh) ∈ C × S0
h × Sh such that

(∇vh,∇φh) = k2
h(vh, φh), ∀φh ∈ S0

h,

(∇uh,∇ϕh) + (qvh, ϕh) = k2
h((1 + q)uh, ϕh), ∀ϕ ∈ Sh.

In our , we can use standard piecewise linear finite elements to discretize the problem

Sh = the space of continuous piecewise linear finite elements on D,

S0
h = Sh ∩H1

0 (D)

= the subspace of functions in Sh that have vanishing DoF on ∂D

where DoF stands for degree of freedom. Let ψ1, . . . , ψK be a basis for S0
h and

ψ1, . . . , ψK , ψK+1, . . . , ψT be a basis for Sh. Let uh =
∑K

i=1 uiψi and vh =
∑T

i=1 uiψi.
Furthermore, let u = (u1, . . . , uK)T and v = (v1, . . . , vT )T . Then matrix problem corre-
sponding to the above problem is

SK×Tv = k2
hMK×Tv,

ST×Ku +M q
T×Tv = k2

hM
1+q
T×Ku,

where the matrices are defined as the following

Matrix Dimension Definition

SK×T K × T Si,j
K×T = (∇ψi,∇ψj), 1 ≤ i ≤ K, 1 ≤ j ≤ T

ST×K T ×K Si,j
K×T = (∇ψi,∇ψj), 1 ≤ i ≤ T, 1 ≤ j ≤ K

MK×T K × T M i,j
K×T = (ψi, ψj), 1 ≤ i ≤ K, 1 ≤ j ≤ T

M1+q
T×K T ×K (M1+q

T×K)i,j = ((1 + q)ψi, ψj), 1 ≤ i ≤ T, 1 ≤ j ≤ K
M q

T×T T × T (M q
T×T )i,j = (qψi, ψj), 1 ≤ i ≤ T, 1 ≤ j ≤ T

The generalized eigenvalue problem we need to solve is
(

SK×T 0K×K

M q
T×T ST×K

) (

v

u

)

= k2
h

(

MK×T 0K×K

0T×T M1+q
T×K

) (

v

u

)

.

In contrast to mixed methods for bi-harmonic or Dirichlet eigenvalue problem which
need the inversion of certain matrix, here we have the general eigenvalue problem
directly. This is certainly an advantage thanks to the property of the original problem.

For simplicity, we shall write the above problem as

Ax = λBx (3)
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where

A =

(

SK×T 0K×K

M q
T×T ST×K

)

, B =

(

MK×T 0K×K

0T×T M1+q
T×K

)

, x =

(

v

u

)

.

3. AN ADAPTIVE ARNOLDI METHOD AND IMPLEMENTATION

The generalized eigenvalue problem obtained in last section is large, sparse and non-
Hermitian. Direct method is prohibitive even on a rather coarse mesh [Colton et al.
2010]. Since we only need a few lowest real transmission eigenvalues in inverse scat-
tering theory, iterative methods become the apparent choice. For this purpose we will
devise an adaptive algorithm using Arnoldi method [Golub and Von Loan 1989] [Saad
1980] to compute the transmission eigenvalues. This is mainly due to the fact that
Matlab has an implemented Arnoldi solver named ’sptarn’ which can be integrated
into our finite element code easily.

Sptarn uses Arnoldi with spectral transformation. To guarantee efficiency, we need
to specify a small interval, i.e., to accurately estimate an interval contains desired
lowest a few transmission eigenvalues. In [Colton et al. 2007] Colton et. al have proved
the following Faber-Krahn type inequality.

THEOREM 3.1. Let k1,n(x) be the lowest transmission eigenvalue and let λ0 be the

first Dirichlet eigenvalue for −∆ in D. If n(x) > α > 1 for x ∈ D. Then

k2
1,n(x) ≥

λ0

supDn
.

The above theorem provides a lower bound for transmission eigenvalues as long as
we have the first Dirichlet eigenvalue. In fact, this can be done easily since we have
the necessary matrices for the mixed finite element already. The discrete Dirichlet
eigenvalue problem is simply the following generalized eigenvalue problem

SK×Kx = λMK×Kx (4)

where SK×K and MK×K are the stiffness matrix and the mass matrix defined in Sec-
tion 2.

Since ’sptarn’ might compute complex transmission eigenvalues, we need to exclude
them as well. Assuming a triangular mesh T is already generated for D, the follow-
ing adaptive algorithm computes the desired lowest a few transmission eigenvalues
efficiently.

Algorithm: Mixed FEM for TEs
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0:6 X. Ji et al.

input a regular triangular mesh for D

input the index of refraction n(x) and n∗ supD(n(x))

input the number of transmission eigenvalues noe to be computed

construct matrices S,M,Mn

construct matrices A, B from S,M,Mn

compute λ0 from S and M

set TE = ∅, lb =
λ0

supD n
, rb = lb+ 1

while length(TE) < noe

it = it+ 1,

[V,D] = sptarn(A,B, lb, rb)

delete complex values in D

TE = TE ∪D

lb = rb, rb = lb+ it+ 1

end

The algorithm is implemented using Matlab. The input are a triangular mesh T for
domainD, the supreme of the index of refraction n(x), and the number of transmission
eigenvalues to be computed. The function for index of refraction n(x) needs to be pre-
defined in the file (see Appendix). The mesh are assumed to obey the Matlab PDEtool
format, i.e., including the vertex matrix mesh.p, the triangle matrix mesh.t and the
boundary edge matrix mesh.e. The construction of the stiffness and mass matrix is
standard. Then the matrices are used to compute the lowest Dirichlet eigenvalue and
set up the matrices A and B in (3).

These matrices are sent to the adaptive Arnoldi method to search for a few lowest
transmission eigenvalue. This is done by first compute the left bound lb of an interval
using Theorem 3.1 and set the right bound of the search interval rb = lb+ 1. We would
to keep this interval small since a larger interval might contains many transmission
eigenvalues and keeps ’sptarn’ searching forever. In fact, the distribution of real trans-
mission eigenvalue are quite complicate [Colton et al. 2010]. Then we use ’sptarn’ to
search for real transmission eigenvalues. The search interval is moved to right by one
unit until all desired transmission eigenvalues are found. The detail documentation
can be found in the Appendix.

4. NUMERICAL EXAMPLES

Now we provide some numerical examples to show the effectiveness of our algorithm.
We first consider the case when the index of refraction is constant. Here we choose
n(x) = 16. We choose two geometries for D: a disk centered at (0, 0) with radius 1/2
and a unit square given by [−1/2, 1/2]× [−1/2, 1/2].

Note that for the case of disk, using Bessel’s functions, the transmission eigenvalues
can be found analytically. In fact they are the roots k of dm defined by (see [Colton et
al. 2010])

dm(k) = J1(k/2)J0(2k) − 4J0(k/2)J1(2k), m = 0, (5)

dm(k) = Jm−1(k/2)Jm(2k) − 4Jm(k/2)Jm−1(2k), m = 1, 2, 3, . . . (6)

The computed transmission eigenvalues are shown in Table I which are consistent
with the values in [Colton et al. 2010].
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Table I.

domain index of refraction n 1st 2nd 3rd 4th
disk (r = 1/2) 16 1.9986 2.6334 2.6343 3.2641
unit square 16 1.8873 2.4596 2.4599 2.8928

1.2 1.4 1.6 1.8 2 2.2 2.4
−3.5

−3

−2.5

−2

−1.5

−1

lo
g 10

(R
.E

.)
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(1/h)

 

 
disk with r=1/2
unit square

Fig. 1. The plot of log10(R.E.) against log10(1/h) for the lowest transmission eigenvalue.

Table II.

domain index of refraction n 1st 2nd 3rd 4th
disk (r = 1/2) 8 + 4|x| 2.7770 3.5571 3.5584 4.3605
unit square 8 + x1 − x2 2.8373 3.5632 3.5642 4.1582

Next we check the convergence numerically. We start with a quasi-uniform triangu-
lar mesh T for D with h ≈ 0.1. Then we uniformly refine the mesh a couple of times. In
Figure 1, we plot the convergence of the relative error of the computed lowest trans-
mission eigenvalues on a series of uniformly refined meshes. It is clearly we obtain a
second order convergence rate numerically.

Finally, we compute the transmission eigenvalues when the index of refraction is a
function. We set n(x) = 8 + 4|x| for the disk and 8 + x1 − x2 for the unit square. The
lowest a few transmission eigenvalues are shown in Table II. The computed values are
consistent with the results in [Sun 2010] and [Colton et al. 2010]. In particular, the
lowest transmission eigenvalues are consistent with the values in [Sun 2011b] which
are computed from the near field data using inverse scattering algorithm.
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Online Appendix to:
A mixed finite element method for Helmholtz transmission
eigenvalues

Xia Ji, Chinese Academy of Sciences

Jiguang Sun, Delaware State University

Tiara Turner, Delaware State University

mixFemTE.m

The main m-file is ’mixFemTE.m’. To compute transmission eigenvalues, first type
’mixFemTE’ in Matlab Command Window. The program first asks the user to input
the mesh file by display

Input name of the mesh file -->

The user types the mesh file name, for example,

’halfcircle’

Then the program asks the user to input the supreme of index of refraction by display

Input the supreme of index of refraction -->

The user could type, for example,

16

Note that the actual definition for the index of refraction n(x) is defined in ’Rindex.m’.
Finally the program asks how many transmission eigenvalues to be computed by dis-
playing

Input the number of transmission eigenvalues -->

The user could type, for example,

16

Taking all above input, the program does the following

1. Construct the stiffness matrix S, mass matrix M and weighted mass matrix Mn (by
calling subroutine ’assemble’).

2. Identify the interior and boundary nodes and store them in ’Inode’ and ’Bnode’ (by
calling subroutine ’intnode’).

3. Compute the first Dirichlet eigenvalue (by calling subroutine ’DirichletEig’).
4. Construct the matrices A and B for the generalized eigenvalue problem (by calling

subroutine ’MixMethod’).
5. Compute transmission eigenvalues (by calling subroutine ’sptranite’).

function [Smat, Mmat, Mnmat] = assemble(mesh)

The following illustrates the data structure of triangular mesh from Matlab PDE tool:

— In the Point matrix p, the first and second rows contain x- and y-coordinates of the
points in the mesh.

c© 0000 ACM 0098-3500/0000/-ART0 $10.00
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— In the Edge matrix e, the first and second rows contain indices of the starting and
ending point, the third and fourth rows contain the starting and ending parameter
values, the fifth row contains the edge segment number, and the sixth and seventh
row contain the left- and right-hand side subdomain numbers.

— In the Triangle matrix t, the first three rows contain indices to the corner points,
given in counter clockwise order, and the fourth row contains the subdomain number.

The construction of stiffness matrix S, mass matrix M and weighted mass matrix
Mn is fairly standard. It uses 3 points quadrature rule for linear finite element.

function [Inode,Bnode]=intnode(mesh)

This subroutine takes the mesh and find the interior and boundary nodes and store
them in ’Inode’ and ’Bnode’ respectively.

function lambda=DirichletEig(A, M)

This subroutine takes the stiff and mass matrices and compute the first Dirichlet
eigenvalue by calling Matlab command ’eigs’. Note that this problem need zero bound-
ary values.

function [A,B]=MixMethod(S, Ma, Mn, Inode, Bnode)

This subroutine takes the matrices S, Ma, Mn and constructs the matrices A and B
described in Section 2.

function k=sptranite(A,B,lb,noe)

This subroutine takes the matrices A and B and compute transmission eigenvalues us-
ing Matlab command ’sptarn’. At beginning, the left bound is given by lb = λ0/ supD(n)
and the right bound is given by rb = lb + 1. It calls ’sptarn’ to compute generalized
eigenvalues. Complex eigenvalues are excluded and real eigenvalues are stored. Then
the interval is shifted to right by one unit and ’sptarn’ is called again until ’noe’ eigen-
values are found.

function n=Rindex(x,index)

The actual index of refraction needs to be defined here. The coordinate is x and ’index’
is the index of the medium containing x. This index is related to the mesh construction
phase. For example, the whole domain can be divided into three regions with index 1,
2 and 3 respectively.
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