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Abstract. We consider discretization on overlapping non-matching

grids for elliptic equations by using the Schwartz alternating (SA)

method. We investigate the dependence between the angle of parti-

tion of unity (PU) subspaces, the condition number of the stiffness

matrix, and the rate of convergence. The aim of the paper is to find

strategies to choose optimal or quasi-optimal partition of unity set

of functions for PU discretizaions for elliptic problems on overlap-

ping non-matching grids.
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1 Introduction

The partition of unity finite element method (PUFEM)
was first proposed by Melenk and Babuska [8]. As one
of the meshless method, the PUFEM has the ability to
include a prior knowledge and to construct finite element
spaces of any desired regularity. Since then, it has been
applied to treat various problems including the elastically
supported beam, bimaterial interface cracks, linear diffu-
sion and convection problems, etc. e.g., see [2, 10, 9].
Extension and analysis of the PUFEM can be found, but
not restrict to, in [5, 7]

In this paper we study the application of the Schwartz
alternating method to the PUFEM function spaces.
In particular, we present some preliminary study of
the strengthened Cauchy-Schwartz (SCS) constant be-
tween different PUFEM spaces, the condition number
of the global stiffness matrix and the convergence of the
Schwartz alternating method.

2 Preliminary

Definition 2.1 Let Ω ∈ Rn be an open set, {Ωi} be an
open cover of Ω satisfying a pointwise overlap condition:

∃M ∈ N ∀x ∈ Ω card{i|x ∈ Ωi} ≤M.

Let {φi} be a Lipschitz partition of unity subordinate to
the cover {Ωi} satisfying

suppφi ⊂ closure(Ωi) ∀i,
∑

i

φi ≡ 1 on Ω,

‖φi‖L∞(Rn) ≤ C∞,

‖∇φi‖L∞(Rn) ≤
CG

diamΩi

,

where C∞, CG are two constants. Then {φi} is called a
(M,C∞, CG) partition of unity subordinate to the cover
{Ωi}. The partition of unity {φi} is said to be of degree
m ∈ N0 if {φi} ⊂ Cm(Rn). The covering sets {Ωi} are
called patches.

Definition 2.2 Let {Ωi} be an open cover of Ω ⊂ Rn and
let {φi} be a (M,C∞, CG) partition of unity subordinate
to {Ωi}. Let Vi ⊂ H1(Ωi ∩ Ω) be given. Then the space

V :=
∑

i

φiVi = {
∑

i

φivi|vi ∈ Vi} ⊂ H1(Ω)

is called the PUFEM space. The PUFEM space V is said
to be of degree m ∈ N0 if V ⊂ Cm(Ω). The space Vi are
referred to as the local approximation spaces.

In [7], The authors consider the thin overlapping re-
gions. Let each Ωi is partitioned by quasi-uniform trian-
gulation τhi of maximal mesh size hi. With each triangu-
lation τhi , associate a finite element spaces Vi ⊂ Hr(Ωi).
Let u ∈ Hr(Ω), and let mi ≥ 1 denote the additional de-
gree of smoothness of u on Ωi. Assume optimal approxi-
mation property on subdomains: For any u ∈ Hmi+r(Ωi),
there exist a vh ∈ Vi such that

r
∑

k=0

hk
i |u− vh|k,Ωi

≤ chmi+r
i ‖u‖mi+r,Ωi

.

Also assume that

|∇kφi| ≤ cd−k
i , 1 ≤ k ≤ r

where di is the minimal overlapping size of Ωi with its
neighboring subdomains.

Theorem 2.1 (Huang-Xu, 2002) If the overlapping size
di ≥ chi, then for 0 ≤ k ≤ r,

inf
vh∈V

‖u− vh‖k,Ω ≤ C

p
∑

i=1

hmi+r−k
i ‖u‖mi+r,Ωi

,

for any u ∈ Hr(Ω) ∩p
i=1 H

mi+r(Ωi).

For u ∈ H2(Ω) andH1 conforming finite element space,
we have

inf
vh∈V

‖u− vh‖0,Ω ≤ C

p
∑

i=1

h2
i ‖u‖2,Ωi

,

inf
vh∈V

‖u− vh‖1,Ω ≤ C

p
∑

i=1

h1
i ‖u‖2,Ωi

,



where we set k = 0 and k = 1 in the above theorem and
mi = 1, r = 1.

The Schwartz’s alternating method can be found in
most domain decomposition books or finite element books
(e.g., [6]). Consider the variational problem

a(u, v) =< f, v > ∀v ∈ H. (2.1)

Here a(·, ·) is the inner product of the Hilbert space H
and ‖ · ‖ is the corresponding norm. Let H be the direct
sum of two subspaces

H = V ⊕W, (2.2)

and the solving (2.1) on either V or W is assumed to be
easy. Let u0 ∈ H . When u2i is already determined, find
v2i ∈ V such that

a(u2i + v2i, v2i) =< f, v > ∀v ∈ V. (2.3)

Set u2i+1 = u2i + v2i. When u2i+1 is already determined,
find w2i+1 ∈ W such that

a(u2i+1, w2i+1) =< f,w > ∀w ∈ W. (2.4)

Then set u2i+2 = u2i+1 + w2i+1.
The so-called strengthened Cauchy inequality is crucial

in the analysis.

Theorem 2.2 Convergence Theorem. Assume that
there is a constant γ ≤ 1 such that for the inner product
in H

|a(v, w)| ≤ γ‖v‖‖w‖ for v ∈ V,w ∈ W. (2.5)

Then, for the Schwartz alternating iteration, we have that
the error reduction is given by

‖uk+1 − u‖ ≤ γ‖uk − u‖ for k ≥ 1. (2.6)

A proof of the theorem can be found in [6]. The constant
γ is often called the strengthened Cauchy-Schwartz (SCS)
constant (in the energy inner product).

3 The SCS Constant

In this section, we consider the SCS constant (in L2- inner
product) for two PU finite element spaces and investigate
its relation with the condition number of the global stiff-
ness matrix for the model elliptic problem. For simplicity,
we consider two overlapping subdomains Ω1 and Ω2. To
make our presentation more precise, we define the follow-
ing PUFEM subspace.

Definition 3.1 Let {Ωi}, i = 1, 2 be an open cover of
Ω ⊂ Rn and let {φi}, i = 1, 2 be a (M,C∞, CG) partition
of unity subordinate to {Ωi}, i = 1, 2. Let Vi ⊂ H(Ωi ∩
Ω), i = 1, 2 be given. Then the space

Vi := {φivj |vj ∈ Vi} ⊂ H(Ω), i = 1, 2

is called the PUFEM subspace. Note H(Ω) is a Hilbert
space of functions defined on Ω.

Remark 3.1 From the computational point of of view,
it is desirable to have the linearly independence of the
collection of all PU base functions associated with the
subdomains. It is easy to justify that, for thin overlap-
ping case when the boundary of one mesh lies inside the
other mesh (it is not aligned with the other mesh), that
φ1V1 ∩φ2V2 = {0}, which gives the linearly independence
of the entire collection of all PU base functions.

When the meshes are more regular on the overlapping
region, the linear independence property was studied in
[3]. Let Ω1, Ω2 be an overlapping covering of a two
dimensional polygonal domain (see Figure 1). We as-
sume that Ω1 and Ω2 are partitioned by quasi-uniform fi-
nite element triangulations of maximal mesh size h1 and
h2, and Ω0 = Ω1 ∩ Ω2 is a strip-type domain of width
d = O(h1). Let {φ1, φ2} be a PU subordinated to the
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Figure 1: Overlapping Meshes in Ω.

covering {Ω1,Ω2} of Ω, and assume that

φ1 + φ2 = 1, 0 ≤ φ1, φ2 ≤ 1, ‖∇φi‖L∞ = 1/d (3.7)

V :=
∑

i=1,2

φiVi = {
∑

i=1,2

φivi, vi ∈ Vi(Ωi)}.

The following result, proved in [3], justifies the construc-
tion of a global stiffness matrix for the PUFEM space.

Theorem 3.2 Suppose that Vk, k = 1, 2 are piecewise
linear finite element spaces of functions which are zero
on the boundary of Ω and φ1, φ2 are also piecewise linear
functions. Then,

φ1V1 ∩ φ2V2 = {0}

If {ψi} and {ηj} are bases for V1 and V2 respectively,
then {φ1ψi, φ2ηj} is a basis for V = φ1V1 + φ2V2.

If the spaces Vk do not have zero boundary conditions,
it is enough to take φ1, φ2 to be piecewise quadratic. To
estimate the condition number of the PUFEM space de-
scribed in the above theorem we need to introduce the
SCS angle γ in the L2 inner product of φ1V1 and φ2V2.
Let γ ∈ (0, 1) be the SCS constant (the cosine of the an-
gle between the subspaces φ1V1 and φ2V2) in the L2 inner
product, i.e.,

γ := sup ui∈φiVi

|(u1, u2)|

‖u1‖‖u2‖
≤ 1.



Theorem 3.3 Suppose that Vk, k = 1, 2 are finite el-
ement spaces of continuous piecewise linear functions
which are zero on the boundary of Ω ∩ Ωk and φ1, φ2

are piecewise linear partition of unity functions subordi-
nated to the covering Ω1 ∪Ω2 = Ω, and satisfy (3.7). Let
V = φ1V1 + φ2V2 and consider the problem: Find u ∈ V
such that

a(u, v) = (f, v) for all v ∈ V, (3.8)

where

a(u, v) :=

∫

Ω

∇u · ∇v dx,

(f, v) :=

∫

Ω

f v dx.

Let A be the stiffness matrix associated with form a(·, ·)
and the PU nodal basis functions of Theorem 3.2. Assume
that h1, h2 are the mesh sizes for T1 on Ω1 and T2 on Ω2,
respectively, and that h1 ≥ h2. Then,

c1
1

h2
1

≤ K(A) ≤ c2
1

1 − γ

1

h2
2

, (3.9)

where K(A) is the condition number of the matrix A, and
c1, c2 are two constants independent of γ, h1, h2.

Proof First we notice that, by using the CS and the
SCS inequalities, we have

(1−γ)(‖u1‖
2 +‖u2‖

2) ≤ ‖u1 +u2‖
2 ≤ 2 (‖u1‖

2 +‖u2‖
2),

(3.10)
for all uk ∈ φkVk, k = 1, 2, where ‖ · ‖ denotes the
standard L2 inner product. To estimate the condi-
tion number we follow the same ideas presented in [4],
Chapter 2. Let {φ1ψi}i=1,...,n1

and {φ2ηj}j=1,...,n2
be

bases for φ1V1 and φ2V2, respectively. Then, accord-
ing to Theorem 3.2, we have that {ϕk}k=1,...,n1+n2

:=
{φ1ψi}i=1,...,n1

∪ {φ2ηj}j=1,...,n2
is a basis for V =

φ1V1 + φ2V2 and the entries of the stiffness matrix A
are Ai,j = a(ϕi, ϕj), i, j = 1, . . . , n, where n = n1 + n2,
ϕi = φ1ψi for i = 1, . . . , n1 and ϕn1+j = φ2ηj for
j = 1, . . . , n2. Thus, if u =

∑n
k=1 ckϕk ∈ V , and

c := (c1, c2, . . . , cn)T ∈ Rn, then K(A) = λmax(A)
λmin(A) , where

λmin(A) = inf
c∈Rn

(Ac, c)

(c, c)
= inf

u=
P

n

k=1
ckϕk∈V

a(u, u)

(c, c)
(3.11)

and

λmax(A) = sup
c∈Rn

(Ac, c)

(c, c)
= sup

u=
P

n

k=1
ckϕk∈V

a(u, u)

(c, c)
.

(3.12)
Here (·, ·) is the standard Euclidian inner product and the
inf and the sup are taken over non-zero vectors. In what
follows, C,C1, C2 are constants independent of γ, h1 and
h2 and might be different at different occurrences. Using
that φ1 can be taken identical 1 on Ω1 ∩ Ωc

2, and that
on the overlapping region above any triangle T1 ∈ T1 the
function φ1 is a linear combination of the nodal func-
tions associated with the vertices of T1 (with coefficients

“independent” of T1) we have that there are constants
C,C1, C2 such that

C1 ‖u1‖
2 ≤ h2

1

n1
∑

i=1

α2
i ≤ C2 ‖u1‖

2 (3.13)

for all u1 = φ1

∑n1

i=1 αiψi ∈ φ1V1 and

a(φ1ψi, φ1ψi) ≤ C, i = 1, . . . , n1. (3.14)

Similar arguments for the subspace V2 lead to

C1 ‖u2‖
2 ≤ h2

2

n2
∑

j=1

β2
j ≤ C2 ‖u2‖

2 (3.15)

for all u2 = φ2

∑n2

j=1 βjηj ∈ φ2V2 and

a(φ2ηj , φ2ηj) ≤ C, j = 1, . . . , n2. (3.16)

Let u = u1 + u2 ∈ V , where u1 = φ1

∑n1

i=1 αiψi ∈ φ1V1

and u2 = φ2

∑n2

j=1 βjηj ∈ φ2V2. Then, using (3.14),
(3.16) and the finite interaction of the nodal functions,
we get

a(u, u) ≤ 2(a(u1, u1) + a(u2, u2))

≤ C(

n1
∑

i=1

α2
i a(φ1ψi, φ1ψi) +

n2
∑

j=1

β2
j a(φ2ηj , φ2ηj)

≤ C(

n1
∑

i=1

α2
i +

n2
∑

j=1

β2
j ).

From the above estimate and (3.12) we get that

λmax(A) ≤ C.

On the other hand, from the Poincare’s inequality, (3.13),
and (3.15) we have

a(u, u) ≥ C ‖u‖2 ≥ C (1 − γ)‖u1‖
2 + ‖u2‖

2)

≥ C (1 − γ)(h2
1

n1
∑

i=1

α2
i + h2

2

n2
∑

j=1

β2
j )

≥ C (1 − γ)h2
2(

n1
∑

i=1

α2
i +

n2
∑

j=1

β2
j ).

From (3.11) we get that

λmin(A) ≥ C (1 − γ)h2
2.

Hence, we have proved the left side of (3.9). Next, we
prove the right side of (3.9). Let u = φ1ψ1. The coeffi-
cient vector associated with u is e1 = (1, 0...., 0)T ∈ Rn,
and using the locality of ψ1 and the properties of φ1 we
get

a(u, u)

(e1, e1)
= C.

From (3.12) we get that

λmax(A) ≥ C. (3.17)



To find an upper bound for λmin(A) we fix a non-zero
function u ∈ H1

0 . According with Theorem 2.1 there ex-
ists uh ∈ V such that

‖u− uh‖ ≤ C(h1|u|H1(Ω1) + h2|u|H1(Ω2)), (3.18)

and

a(uh, uh) ≤ C a(u, u). (3.19)

From (3.18) we get

‖uh‖ ≥ ‖u‖ − ‖u− uh‖ ≥ 1/2‖u‖ = C1, (3.20)

if h = h1 is small enough. Assume that uh =
u1 + u2, where u1 = φ1

∑n1

i=1 αiψi ∈ φ1V1 and u2 =
φ2

∑n2

j=1 βjηj ∈ φ2V2. Then we have

C2
1 ≤ ‖uh‖

2 ≤ 2(‖u1‖
2 + ‖u2‖

2)

≤ C (h2
1

n1
∑

i=1

α2
i + h2

2

n2
∑

j=1

β2
j )

≤ C h2
1(

n1
∑

i=1

α2
i +

n2
∑

j=1

β2
j ).

Combining (3.19) and the above estimate we have

λmin(A) ≤
a(uh, uh)

∑n1

i=1 α
2
i +

∑n2

j=1 β
2
j

≤
C a(u, u)

∑n1

i=1 α
2
i +

∑n2

j=1 β
2
j

≤ Ch2
1. (3.21)

The right side of (3.9) follows now from (3.17) and
(3.21).

Remark 3.4 The SCS constant γ in the above theorem
depends on r = h2

h1

. We have that γ ր 1 for r → 0.
A justification for this statement is that for r → 0, the
function in φ1V1 supported on Ω1∩Ω2 can be well approx-
imated by functions in φ2V2 supported on Ω1 ∩ Ω2. The
above theorem still holds if the PU functions φ1 and φ2

are chosen to be piecewise polynomials of degree n. Nu-
merical computations show that γ increases (to one) as h
decreases, and (on the good side) γ decreases as the degree
of PU functions n increases.

Remark 3.5 It is straightforward to apply the Schwartz’
alternating method to the variational problem (3.8). To
obtain the solution in each step in the Schwartz’ alternat-
ing method, it is necessary to evaluate the following terms
in the overlapping region

a(φ1vi, φ2wj) vi ∈ V1, wj ∈ V2

which is not trivial in general case, because the topology
of the intersection of the two meshes on the overlapping
region has to be considered for computations.

4 Numerical Results

In this section, we carry out some numerical tests in one
dimension. Consider the following Poisson equation

u′′ = 1 on (0, 1), (4.22)

u(0) = u(1) = 0. (4.23)

We consider two kinds of the overlapping region. The
first kind is called thin overlapping because the width of
the overlapping region is of the same order of a grid. To
be precise, let Ω = (0, 1). Let Ω1 = (0, 1/2) and divide
it into N intervals uniformly. The width of the interval
is simply h = 1

2N
. The second region is given by Ω2 =

(1/2−h, 1) which is divided into N+1 intervals uniformly
(see Fig. 2). Hence the overlapping region is (1/2−h, 1/2).
This is an example of thin overlapping region. The second
kind is called fixed overlapping because the width of the
overlapping is fixed and does not change when the grid is
refined. To be precise, Ω1 = (0, 1/2), Ω2 = (1/4, 1) and
the overlapping region is always Ωo = (1/4, 1/2). We use
linear finite element basis functions and choose nonlinear
polynomials for PU functions. Note that a simple choice
of φ1 = 1 − x and φ2 = x (scaled to [0, 1]) does not work
since {φ1v, φ2w} are linearly dependent.

Ω
1

Ω
2

φ
1

φ
2

Figure 2: Explicative Mesh and PU Functions.

We choose four pairs of PU functions.

φa
1 = 1 − x2, φa

2 = x2,

φb
1 = 1 − x3, φb

2 = x3,

φc
1 = 1 + 2x3 − 3x2, φc

2 = −2x3 + 3x2,

φd
1 = 6x2 − 7x+ 1, φd

2 = −4x2 + 5x.

4.1 Error in L
2 norm and H

1 semi-norm

for thin overlapping

For convergence of the SA method for PUFEM, it is rea-
sonable to look at the error in L2 norm and H1 semi-
norm. We fix the PU functions φa

1 and φa
2 in this sub-

section. Note that the overlapping region is one element
wide, i.e., if the interval [0, 1] is divided into M = 2N
subinterval uniformly,

0 = x0 < x1 < . . . < xM = 1,

xj = jh, h = 1/M, j = 0, . . . ,M,

the overlapping region is Io = [xN−1, xN ]



Table 1: The error of the PUFEM.

N ‖eN‖L2 Ratio |eN |H1 Ratio
8 1.334E-3 - 3.375E-2 -
16 3.453E-4 3.864 1.746E-2 1.932
32 8.774E-5 3.935 8.879E-3 1.967
64 2.211E-5 3.968 4.475E-3 1.984

Table 2: The error of the SA method for PUFEM.

N ‖eN‖L2 |eN |H1

8 1.340E-3 3.375E-2
16 4.064E-4 1.747E-2
32 1.171E-3 9.893E-3
64 7.601E-3 2.781E-2

The errors are shown in Table 1. We obtain O(h2) in
L2 norm and O(h) in H1 semi-norm. The results are
consistent with the theory in [8] (c.f. Definition 2.1, 2.2
and Theorem 2.1 there). The estimate in [8] predicts the
O(h2) convergence L2 norm. Since the overlapping region
Io changes (same as h) as N changes, our case is slightly
different. Instead, for the PU function we choose, we have
the following estimate

‖∇φi‖L∞(Rn) ≤
CG

diamΩi

1

h2

where CG is a constant. For the thin overlapping region
we consider, taking into account diamΩi = 1/h, we will
still have the O(h) convergence in H1 semi-norm.

Remark 4.1 The overlapping region we consider is dif-
ferent than that considered in [8]. Theorem 2.1 in [8]
is not optimal for our case. Thus, our numerical re-
sults show an improvement for the approximation result
of Theorem 2.1 for the special case of thin overlapping.

Next we shall look at the convergence of the SA
method. We fix the number of iteration with 50 and
record the error for different N in Table 2. Note that
when N increases, the width of the overlapping region Io
decreases. When N is small, the errors in Table 2 match
those in Table 1 well. This indicates that the convergence
of the SA method is better. As we increase N , the width
of the overlapping region decreases and the convergence
is worse. This is an indicator that the SCS constant is
getting larger as the overlapping region is smaller.

4.2 Error in L
2 norm and H

1 semi-norm

for fixed overlapping

In this section, we will consider the case when the over-
lapping region is fixed. For the same problem above, we
have Io = [1/4, 1/2] fixed. In Table 3, we give the error
in L2 norm and H1 semi-norm. The order of convergence
is consistent with the results in [8].

Note that when N = 4, the case we consider here is the
same as the one we consider in the previous subsection.

Table 3: The error of the PUFEM for fixed overlapping
region.

N ‖eN‖L2 Ratio |eN |H1 Ratio
8 1.235E-3 - 3.125E-2 -
16 3.088E-4 4.000 1.563E-2 2.000
32 7.720E-5 4.000 7.813E-3 2.000
64 1.930E-5 4.000 3.906E-3 2.000

Table 4: The error of the SA method for PUFEM for
fixed overlapping region.

N ‖eN‖L2 |eN |H1

8 1.318E-3 3.140E-2
16 5.032E-4 1.855E-2
32 1.611E-4 1.109E-2
64 7.008E-5 6.081E-3

The errors are identical which are not shown. Next we
look at the convergence of the SA method. Again, we
fix the number of iteration at 50 and record the error for
differentN in Table 4. The errors do not become worse as
we increase the number of elements as we expected since
the overlapping region is fixed.

4.3 The SCS constant

Since the convergence rate of the SA method is decided
by the the SCS constant, it would be plausible to look
at the constants when the meshes are refined. Following
[1], Let u ∈ V = X ⊕ Y with X and Y being PUFEM
subspaces. If we partition the stiffness matrix into blocks

B =

[

BXX BXY

BY X BY Y

]

,

then γ2 is the maximum eigenvalue of the problem

BXY B−1
Y Y BY Xx = µBXXx.

Table 5 shows the results for thin overlapping region and
fixed overlapping region. Note that the error is in H1

semi-norm.
One observation is that from Theorem 2.2 the SCS con-

stant γ ≈ ‖u − uk‖/‖u − uk−1‖ for k sufficiently large.
Fig. 3 shows the relative errors of SA method for both

Table 5: The CSC constants γ2.

N fixedOverlapping ThinOverlapping
4 0.8571 0.8571
8 0.9489 0.8658
16 0.9870 0.8869
32 0.9969 0.9239
64 0.9993 0.9572



Table 6: The SCS constants γ2 v.s. the partition of unity
functions.

N = 32 ThinOverlapping fixedOverlapping
φa 0.9239 0.9969
φb 0.9388 0.9990
φc 0.9005 0.9764
φd 0.9883 0.9999

Table 7: The SCS constants γ2 for fixed overlapping.

N φa φb φc φd

4 0.8571 0.7995 0.5530 0.8813
8 0.9489 0.9504 0.7669 0.9888
16 0.9870 0.9924 0.9122 0.9986
32 0.9969 0.9990 0.9764 0.9998
64 0.9990 0.9999 0.9941 0.9999

thin and fixed overlapping regions. As the iteration num-
ber getting large, the relative errors approach the corre-
sponding γ in both cases. We also look at the relation
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Figure 3: Relative erorrs of the SA method (N = 32).

between γ and the PU functions. In Table 6, we calcu-
late γ for thin overlapping and fixed overlapping. We fix
N = 32. For both cases, φc’s give the smallest γ and φd’s
give the largest γ. Finally we look the effect of the mesh
refinement on γ. Each time we cut the mesh size by half
and calculate the SCS constant. For both thin and fixed
overlapping, the constant is getting larger (closer to 1) as
the mesh size decreases (see Table 7 and Table 8). Again,
the PU functions φc’s are the best in the sense that they
give the smallest γ among all the test PU functions at the
same mesh refinement level.
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Table 8: The SCS constants γ2 for thin overlapping.

N φa φb φc φd

4 0.8571 0.7995 0.5530 0.8813
8 0.8657 0.8398 0.6488 0.9502
16 0.8868 0.8936 0.8096 0.9763
32 0.9239 0.9388 0.9005 0.9883
64 0.9572 0.9674 0.9491 0.9942
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