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Abstract

In this paper, we propose a new family of high regularity finite element

spaces. The global approximation spaces are obtained in two steps. We

first build an open cover of the computational domain and local approxi-

mation spaces on each patch of the cover. Then we construct partition of

unity functions subordinate to the open cover depending on the regularity

requirement. The basis functions of the global space is given by the prod-

ucts of the local basis functions and the corresponding partition of unity

functions. The method can be used to construct finite element spaces

of any desired regularity. Approximation properties and implementation

details are discussed. Numerical examples for the biharmonic equation

are presented to show the effectiveness of the proposed method.

Keywords: high regularity finite element, partition of unity, biharmonic
equation

1 Introduction

High regularity finite element spaces are of central importance for the approxi-
mation of partial differential equations of higher order, for example, the Argyris
triangle [1] and the Bogner-Fox-Schmit rectangle [10] for the biharmonic equa-
tion. However, classical conforming finite element spaces are rarely used in
practice because they are difficult to construct in general. We refer the read-
ers to [1, 16, 10, 20, 24, 25] for some efforts to construct high regularity finite
element spaces, in particular, C1 elements. Alternative methods, such as non-
conforming finite element methods [10, 8, 17, 18, 11] and mixed finite element
methods [7, 15, 9], are also proposed to treat higher order problems.

In this paper, we propose a new family of high regularity finite element
spaces. The main components are local approximation spaces on each patch of
an open cover of the computational domain and the partition of unity functions.
The global finite element spaces inherit the approximation properties of the local
spaces and the smoothness of the partition of unity functions. The technique we
used is the so-called partition of unity finite element method (PUFEM) [14, 4].
We refer the readers to [21, 19, 2, 3] and references therein for recent develop-
ments and applications of the PUFEM. Although pointed out in the fundamental
paper of Melenk and Babuška [14], the ability of the PUFEM to construct finite
element spaces of high regularity has not been fully explored to date. This is
the motivation of this paper. To be precise, we apply a thin overlapping ver-
sion of the PUFEM (see [12, 5, 6, 7]) to construct high regularity finite element
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spaces. The major advantages of the proposed method include (i) the simple
choices of the local basis functions, for example, biquadratic polynomials in two
dimension, (ii) the ability to construct higher regularity finite element spaces
by choosing adequate partition of unity functions, and (iii) the easy extension
to higher dimensions, for example, three dimensional C1 elements.

The paper is organized as follows. In Section 2, we first introduce funda-
mental concepts and theories of the partition of unity method [14, 4]. Then we
make necessary extensions in order to construct H2 conforming finite element
spaces. In Section 3, we show examples of how to construct high regularity
spaces in detail in one, two and three dimensions. Then we use these spaces to
solve the biharmonic equation in Section 4. In Section 5, we make conclusions
and mention some future work.

2 Partition of unity method

In this section, we introduce the concept of the partition of unity finite element
method [14, 4] and make necessary extensions to facilitate the construction of
H2 conforming finite element spaces. We will also remark on higher regularity
finite element spaces.

Definition 2.1. Let Ω ∈ Rd be an open set, {Ωi} be an open cover of Ω satis-
fying a pointwise overlap condition:

∃M ∈ N ∀x ∈ Ω card {i|x ∈ Ωi} ≤ M.

Let {φi} be a partition of unity subordinate to the cover {Ωi} satisfying

supp φi ⊂ closure (Ωi), ∀ i,
∑

i

φi ≡ 1 on Ω,

‖φi‖L∞(Rn) ≤ C∞,

‖∇φi‖L∞(Rn) ≤
C1

di
, di = diam Ωi,

∥

∥

∥

∥

∂αφi

∂xα

∥

∥

∥

∥

L∞(Rn)

≤ C2

d2
i

, |α| = 2,

where C∞, C1, C2 are constants. Then {φi} is called an (M, C∞, C1, C2) parti-
tion of unity subordinate to the cover {Ωi}. The partition of unity {φi} is said
to be of degree m ∈ N if {φi} ⊂ Cm(Rn). The covering sets Ωi’s are called
patches.

Remark 2.1. The above conditions on the partition of unity functions are suf-
ficient to construct H2 conforming finite element spaces. To obtain higher regu-
larity finite element spaces, we will need additional conditions on ‖∂α

xαφi‖L∞(Rn)

for |α| > 2.

Definition 2.2. Let {Ωi} be an open cover of Ω ⊂ Rd and let {φi} be a
(M, C∞, C1, C2) partition of unity subordinate to {Ωi}. Let Vi be the approxi-
mation space on Ωi. Then the space

(2.1) V :=
∑

i

φiVi =

{

∑

i

φivi

∣

∣vi ∈ Vi

}
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is called the global approximation space. The space V is said to be of degree m
if V ⊂ Cm(Ω). The space Vi are referred to as the local approximation spaces.

The approximation properties of V depends on the local approximation
spaces Vi and the partition of unity functions as we can see in the following
theorem.

Theorem 2.2. Let Ω ∈ Rd be given, and {φi}, {Ωi}, {Vi} be as in the defi-
nitions above. Let u be the function to be approximated. Assume that the local
approximation spaces Vi have the following approximation properties: on each
patch Ωi ∩ Ω, u can be approximated by a function vi ∈ Vi such that

‖u − vi‖L2(Ωi∩Ω) ≤ ǫ1(i),

‖∇(u − vi)‖L2(Ωi∩Ω) ≤ ǫ2(i),
∥

∥

∥

∥

∥

∥

∑

|α|=2

Dα(u − vi)

∥

∥

∥

∥

∥

∥

L2(Ωi∩Ω)

≤ ǫ3(i).

Then the function

(2.2) uap =
∑

i

φivi

satisfies

‖u − uap‖L2(Ω) ≤
√

MC∞

(

∑

i

ǫ21(i)

)1/2

(2.3)

‖∇(u − uap)‖L2(Ω) ≤
√

2M

(

∑

i

[

C1

di

]2

ǫ21(i) + C2
∞ǫ22(i)

)1/2

(2.4)

∥

∥

∥

∥

∥

∥

∑

|α|=2

Dα(u − uap)

∥

∥

∥

∥

∥

∥

L2(Ω)

(2.5)

≤
√

MN0

(

∑

i

[

C2

d2
i

]2

ǫ21(i) +

[

C1

di

]2

ǫ22(i) + C∞
2ǫ23(i)

)1/2

where N0 is a constant depending on the dimension d.

Proof. We will show the proof of (2.5). The proof of (2.3) and (2.4) can be found
in [14]. Since the functions φi form a partition of unity, we have u =

∑

i φiu.
Let x1 be the first component of x ∈ Rd. We have

∥

∥

∥

∥

∂2

x2
1

(u − v)

∥

∥

∥

∥

2

L2(Ω)

=

∥

∥

∥

∥

∥

∂2

x2
1

∑

i

φi(u − vi)

∥

∥

∥

∥

∥

2

L2(Ω)

≤ 3

∥

∥

∥

∥

∥

∑

i

∂2φi

∂x2
1

(u − vi)

∥

∥

∥

∥

∥

2

L2(Ω)

+ 12

∥

∥

∥

∥

∥

∑

i

∂φi

∂x1

∂(u − vi)

∂x1

∥

∥

∥

∥

∥

2

L2(Ω)

+ 3

∥

∥

∥

∥

∥

∑

i

φi
∂2(u − vi)

∂x2
1

∥

∥

∥

∥

∥

2

L2(Ω)

.
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For any given x ∈ Ω, there are at most M patches covering it. Thus the sums

∑

i

∂2φi

∂x2
1

(u − vi),
∑

i

∂φi

∂x1

∂(u − vi)

∂x1
, and

∑

i

φi
∂2(u − vi)

∂x2
1

contain at most M terms for any fixed x ∈ Ω. We obtain

3

∥

∥

∥

∥

∥

∑

i

∂2φi

∂x2
1

(u − vi)

∥

∥

∥

∥

∥

2

L2(Ω)

+ 12

∥

∥

∥

∥

∥

∑

i

∂φi

∂x1

∂(u − vi)

∂x1

∥

∥

∥

∥

∥

2

L2(Ω)

+ 3

∥

∥

∥

∥

∥

∑

i

φi
∂2(u − vi)

∂x2
1

∥

∥

∥

∥

∥

2

L2(Ω)

≤ 3M
∑

i

∥

∥

∥

∥

∂2φi

∂x2
1

(u − vi)

∥

∥

∥

∥

2

L2(Ω)

+ 12M
∑

i

∥

∥

∥

∥

∂φi

∂x1

∂(u − vi)

∂x1

∥

∥

∥

∥

2

L2(Ω)

+3M
∑

i

∥

∥

∥

∥

φi
∂2(u − vi)

∂x2
1

∥

∥

∥

∥

2

L2(Ω)

,

= 3M
∑

i

∥

∥

∥

∥

∂2φi

∂x2
1

(u − vi)

∥

∥

∥

∥

2

L2(Ωi∩Ω)

+ 12M
∑

i

∥

∥

∥

∥

∂φi

∂x1

∂(u − vi)

∂x1

∥

∥

∥

∥

2

L2(Ωi∩Ω)

+3M
∑

i

∥

∥

∥

∥

φi
∂2(u − vi)

∂x2
1

∥

∥

∥

∥

2

L2(Ωi∩Ω)

,

≤ M
∑

i

(

3

[

C2

d2
i

]2

ǫ21(i) + 12

[

C1

di

]2

ǫ22(i) + 3C∞
2ǫ23(i)

)

.

Then there exist a constat N0 depending on the dimension d and |α|(= 2) such
that
∥

∥

∥

∥

∥

∥

∑

|α|=2

Dα(u − uap)

∥

∥

∥

∥

∥

∥

L2(Ω)

≤
√

MN0

(

∑

i

[

C2

d2
i

]2

ǫ21(i) +

[

C1

di

]2

ǫ22(i) + C∞
2ǫ23(i)

)1/2

.

Combining the results in the above theorem, we obtain the following estimate
in H2 norm. Let u ∈ H2(Ω) and uap be defined as in (2.2) above. Then there
exists a constant C depending on M, C∞, C1, C2, N0 such that
(2.6)

‖u − uap‖2
H2(Ω) ≤ C

(

∑

i

{

1

d4
i

+
1

d2
i

+ 1

}

ǫ21(i) +

{

1

d2
i

+ 1

}

ǫ22(i) + ǫ23(i)

)

.

In order to obtain a conforming H2 finite element space, we need more
restrictions on the open cover {Ωi} and the local approximation spaces Vi’s.
Let u ∈ Hk(Ω), k ≥ 2. We assume that

(H1) There exist two constants C, c > 0 such that

ch ≤ diamΩi ≤ Ch, for all i,

where h = maxi diamΩi.
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(H2) Each Vi has the following approximation properties:

ǫ1(i) ≤ Cdµ+2
i ‖u‖Hk(Ω∩Ωi),

ǫ2(i) ≤ Cdµ+1
i ‖u‖Hk(Ω∩Ωi),

ǫ3(i) ≤ Cdµ
i ‖u‖Hk(Ω∩Ωi),

for some µ > 0, the local approximation order.

Using the previous theorem, it is straightforward to show the following theorem.

Theorem 2.3. Assume the conditions in Theorem 2.2 and (H1-H2) hold. Then
there exist constants C depending on M , C∞, C1 and C2 such that

‖u − uap‖L2(Ω) ≤ Chµ+2‖u‖Hk(Ω),(2.7)

‖∇(u − uap)‖L2(Ω) ≤ Chµ+1‖u‖Hk(Ω),(2.8)
∥

∥

∥

∥

∥

∥

∑

|α|=2

Dα(u − uap)

∥

∥

∥

∥

∥

∥

L2(Ω)

≤ Chµ‖u‖Hk(Ω).(2.9)

3 Construction of global approximation spaces

Now we discuss the detail of how to construct the high regularity conforming
spaces. In particular, we will construct H2 conforming spaces. We will also
remark on the higher regularity spaces.

3.1 One dimension case

Let Ω = (0, 1), n ∈ N, h = 1/n and define xi = ih, i = −1, 0, . . . , n, n + 1.
Let Ωi = (xi−1, xi+1) ∩ Ω. Obviously {Ωi} is an open cover of Ω corresponding
M = 2 in Definition 2.1.

On each patch Ωi, we need to define a local space Vi. In view of Theorem
2.3, it is necessary to use at least quadratic basis functions for Vi if we try to
solve fourth order problems, e.g., the biharmonic equation. A quadratic basis
on the reference element Ω̂ = (0, 1) is given by (see Fig. 1)

v1 = 2x2 − 3x + 1,

v2 = −4x2 + 4x,

v3 = 2x2 − x.

For better approximation, we can choose higher order polynomial basis, for
example, the cubic basis or the Hermite basis on the reference element Ω̂0 =
(0, 1), i.e.,

v1 = −9

2
x3 + 9x2 − 11

2
x + 1,

v2 =
27

2
x3 − 45

2
x2 + 9x,

v3 =
27

2
x3 + 18x2 − 9

2
x,

v4 =
9

2
x3 − 9

2
x2 + x,

5



or

v1 = 2x3 − 3x2 + 1,

v2 = −2x3 + 3x2,

v3 = x3 − 2x2 + x,

v4 = x3 − x2.

Next we consider the partition of unity functions subordinate to {Ωi}. The
simplest choice of partition of unity functions might be φ1

i (x) = φ1(x−xi) where

(3.10) φ1(x) =
1

h3







(x + h)2(h − 2x), x ∈ (−h, 0],
(h − x)2(h + 2x), x ∈ (0, h),
0, elsewhere.

Other choices of partition of unity functions are possible, for example,

(3.11) φ2(x) =
1 + cos(πx/h)

2
, x ∈ (−h, h)

and

(3.12) φ3(x) =
1

h5







(h + x)3(h2 − 3hx + 6x2), x ∈ (−h, 0],
(h − x)3(h2 + 3hx + 6x2), x ∈ (0, h),
0, elsewhere.

Assume that the local approximation spaces Vi’s are given by

span {vi,j , j = 1, . . . , Ni}.

Also assume that the partition of unity functions are given as above. Then
the following theorem shows that the global approximation space V is H2(0, 1)
conforming.

Theorem 3.1. Let V be the global approximation space constructed using the
local approximation spaces and partition of unity functions given above. Then
V ⊂ H2(0, 1).

Proof. Let v ∈ Vi. Then φiv can be viewed as a function defined on the whole
domain Ω which is a piecewise polynomial and a C1(0, 1) function. Hence any
linear combination of these functions is also a C1(0, 1) function which implies
V ⊂ C1(0, 1). By Theorem 2.1.2 in [10], we have that V ⊂ H2(0, 1).

Remark 3.2. To obtain higher regularity global approximation spaces, we need
to put more restrictions on the partition of unity functions and local approxima-
tion spaces. For example, to construct an H3 conforming space, one could use
the cubic basis or the Hermite basis for Vi (for convergence, we need polynomial
basis of order 3 or higher) and partition of unity functions φ3 defined in (3.12)
(for regularity, we need that ‖∂α

xαφi‖L∞(Rn) ≤ C3/d3
i for some constant C3 and

|α| = 3. See Remark 2.1.).
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Figure 1: Left: Quadratic basis functions on Ω0. Middle: The partition of unity
function φ2 on Ω0. Right: The H2 conforming basis functions on Ω0.

3.2 Two dimensional rectangular meshes

The above construction can be extended to two and three dimension cases eas-
ily. For simplicity, let Ω = (0, 1) × (0, 1). We consider a uniform overlapping
rectangular mesh on Ω. Let n ∈ N, h = 1/n and define

xi = ih, i = −1, 0, . . . , n, n + 1,

yj = jh, j = −1, 0, . . . , n, n + 1.

Let
Ωi,j = (xi−1, xi+1) × (yj−1, yj+1) ∩ Ω.

Obviously {Ωi,j} is an open cover of Ω.
On each Ωi,j , we need a local approximation space Vi,j . The choice of the

local space is quite flexible as long as it can provide necessary local approxima-
tion ability. For example, one may use the biquadratic basis functions for H2

conforming spaces.
For the partition of unity functions in two dimension, one can use the product

of the partition of unity functions in the one dimension case. For example, the
partition of unity functions can be defined by φi,j(x, y) = φ1

i (x− xi)φ
1
j (y − yj),

i.e., (see Fig. 2)

φ(x, y) =
1

h6























(x + h)2(h − 2x)(y + h)2(h − 2y), (x, y) ∈ (−h, 0] × (−h, 0],
(x + h)2(h − 2x)(h − y)2(h + 2y), (x, y) ∈ (−h, 0] × (0, h),
(h − x)2(h + 2x)(y + h)2(h − 2y), (x, y) ∈ (0, h) × (−h, 0],
(h − x)2(h + 2x)(h − y)2(h + 2y), (x, y) ∈ (0, h) × (0, h),
0, elsewhere.

As in one dimensional case, the high regularity of the space can be achieved
by a proper choice of the partition unity functions while the approximation
property relies on the local approximation spaces. For example, the global
space V constructed from the bi-quadratic local basis and the partition of unity
function φi,j given above is H2 conforming. The proof is a straightforward
generalization of the one dimensional case.

3.3 Three dimensional rectangular meshes

The construction of V for three dimension case is similar. Let Ω = (0, 1) ×
(0, 1) × (0, 1). We consider a uniform rectangular mesh on Ω. Let n ∈ N,

7



Ω
i,j

Ω
i+1,j

Ω
i,j+1

Ω
i+1,j+1

Ωo

Figure 2: Left: Overlapping rectangular mesh in 2D. Ωo = Ωi,j∩Ωi,j+1∩Ωi+1,j∩
Ωi+1,j+1. Note that every point x in the domain is covered by 4 patches, i.e.,
M = 4 in Definition 2.1). Right: The partition of unity functions on Ωo.

h = 1/n and define

xi = ih, i = −1, 0, . . . , n, n + 1,

yj = jh, j = −1, 0, . . . , n, n + 1,

zk = kh, k = −1, 0, . . . , n, n + 1.

Let
Ωi,j,k = (xi−1, xi+1) × (yj−1, yj+1) × (zk−1, zk+1) ∩ Ω.

Then {Ωi,j,k} is an open cover of Ω. As above, one may use the simple tri-
quadratic polynomials as local basis.

For the partition of unity functions, one can simply use

φi,j,k(x, y, z) = φ(x − xi, y − yj, z − zk)

where

φ =
1

h9























































(x + h)2(h − 2x)(y + h)2(h − 2y)(z + h)2(h − 2z), (−h, 0]× (−h, 0] × (−h, 0],
(x + h)2(h − 2x)(y + h)2(h − 2y)(h − z)2(h + 2z), (−h, 0]× (−h, 0] × (0, h),
(x + h)2(h − 2x)(h − y)2(h + 2y)(z + h)2(h − 2z), (−h, 0]× (0, h) × (−h, 0],
(x + h)2(h − 2x)(h − y)2(h + 2y)(h − z)2(h + 2z), (−h, 0]× (0, h) × (0, h),
(h − x)2(h + 2x)(y + h)2(h − 2y)(z + h)2(h − 2z), (0, h) × (−h, 0] × (−h, 0],
(h − x)2(h + 2x)(y + h)2(h − 2y)(h − z)2(h + 2z), (0, h) × (−h, 0] × (0, h),
(h − x)2(h + 2x)(h − y)2(h + 2y)(z + h)2(h − 2z), (0, h) × (0, h) × (−h, 0],
(h − x)2(h + 2x)(h − y)2(h + 2y)(h − z)2(h + 2z), (0, h) × (0, h) × (0, h),
0, elsewhere.

As above, one can easily construct a H2 conforming global space using the above
partition of unity functions and the tri-quadratic polynomial local basis.

3.4 Two dimensional case on triangular meshes

Now we discuss how to construct H2 conforming spaces based on given trian-
gular meshes. Let T be a triangular mesh for Ω. We first construct an open
cover {Ωi}. Our construction is associated to the nodes of T . Let i be a node of
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Figure 3: Left: A triangular mesh of Ω. Right: A polygon patch Ω2 associated
with vertex 2.

T . The union of all triangles whose vertices include i gives a polygon, denoted
by Ωi. Let N be the index set of all nodes in T . Then {Ωi}, i ∈ N is an open
cover of Ω.

For example, Fig. 3 shows a triangular mesh. Then Ω2 is the polygon which
is the union of triangles (2, 1, 5), (2, 5, 4), (2, 4, 6), (2, 6, 3), (2, 3, 1). It is obvious
that {Ωi}, i = 1, . . . , 10 is an open cover of Ω.

Remark 3.3. Other types of construction are possible. For example, we can
associate the open cover with triangles in the original mesh. The patch Ωi is the
union of a triangle and all other triangles surrounding it.

Now we need to define a local approximation space Vi on Ωi. Since Ωi is
the union of triangles, one may choose Vi as the space of continuous piecewise
quadratic functions with respect to the triangulation of Ωi.

Remark 3.4. Polygonal finite element interpolants using rational polynomials
for convex polygons was discussed by Wachspress [23]. We refer the readers to
[22] and references therein for recent developments in the construction of finite
element interpolants on polygonal domains.

The partition of unity functions on Ωi can be defined similarly. We first con-
struct a ”proper” function on each triangle and the union of all these functions
will give the corresponding partition of unity functions. For example, on the
reference triangle K̂ = {(0, 0), (0, 1), (1, 0)}, the ”proper” function for Ω(0,0) can
be defined as

φK̂ = 1 − 10x3 − 10y3 + 15x4 − 30x2y2 + 15y4 − 6x5 + 30x3y2 + 30x2y3 − 6y5.

The node (0, 0) is the center of Ω(0,0) and {(0, 1), (1, 0)} is one edge of it. At
(0, 0), φ{(0,0),(0,1),(1,0)} is one and all its first order and second order partial
derivatives vanish. At (0, 1) and (0, 1), the value and all first order and second
order partial derivatives of φ{(0,0),(0,1),(1,0)} vanish. Fig. 4 shows the partition
of unity function on the patch Ω2 shown in Fig. 3.
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Figure 4: The partition of unity function on the polygonal patch Ω2.

4 Application to the biharmonic equation

We consider the following homogeneous Dirichlet problem for the biharmonic
equation

∆2u = f in Ω,(4.13a)

u = ∂νu = 0 on Γ,(4.13b)

where Γ = ∂Ω and ν is the unit outward normal to Γ. The weak formulation is
to find u ∈ H2

0 (Ω) such that

(4.14) a(u, v) :=

∫

Ω

△u△v dx =

∫

Ω

fv dx =: (f, v), ∀v ∈ H2
0 (Ω).

Since the bilinear form a(u, v) is H2
0 (Ω)-elliptic, there exists a unique solution

to (4.14) [10]. The corresponding discrete problem can be stated as to find
uh ∈ V ⊂ H2

0 (Ω) such that

(4.15)

∫

Ω

△uh△v dx =

∫

Ω

fv dx, ∀v ∈ V

where V is the global approximation space constructed in the previous section.

Theorem 4.1. Assume that V is the global approximation space obtained as in
(2.1) and conditions in Theorem 2.2 hold. Let u ∈ H2

0 (Ω) and uh ∈ V be the
solutions of (4.14) and (4.15), respectively. Then there exists a constant C such
that
(4.16)

‖u − uh‖2,Ω ≤ C

(

∑

i

{

1

d4
i

+
1

d2
i

+ 1

}

ǫ21(i) +

{

1

d2
i

+ 1

}

ǫ22(i) + ǫ23(i)

)1/2

Proof. Since the bilinear form a is elliptic, we have, by Céa’s lemma,

‖u − uh‖2,Ω ≤ C inf
vh∈V

‖u − vh‖H2(Ω).

Now uap ∈ V and it is obvious that

inf
vh∈V

‖u − vh‖H2(Ω) ≤ ‖u − uap‖H2(Ω).

Thus (4.16) holds.
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Combining Theorem 2.3 with Theorem 4.1, we obtain the following theorem
for one dimension case corresponding to the example we discuss above.

Theorem 4.2. Assume that u ∈ H2
0 (Ω) and (H2) holds for µ ≥ 1 and k ≥ 3.

Then there exists a constant C such that

(4.17) ‖u − uh‖2,Ω ≤ Chµ−1/2‖u‖Hk(Ω).

The following theorem gives the L2 estimate.

Theorem 4.3. Assume that u ∈ H2
0 (Ω) and (H2) holds for µ ≥ 1 and k ≥ 3.

Then there exists a constant C such that

(4.18) ‖u − uh‖0,Ω ≤ Ch2µ−1‖u‖Hk(Ω).

Proof. The theorem can be proved using Nitsche’s trick which is similar to the L2

estimate for Poisson equation with homogeneous Dirichlet boundary condition
(for example, see [13]). Thus we omit the details.

4.1 One dimensional examples

In the following we will show some numerical results for the one dimensional
case. Let Ω = (0, 1), we have

u(4) = f, on (0, 1)(4.19)

u(0) = u(1) = u′(0) = u′(1) = 0.(4.20)

Let u = sin2(πx) which satisfies the biharmonic equation (4.19) and (4.20)
with f(x) = −8π4 cos(2πx). We use quadratic local basis and partition of unity
functions given by (3.10), (3.11) and (3.12). The errors of the numerical solution
are shown in Fig. 5, Fig. 6 and Fig. 7, respectively. All these three examples, the
error convergence rate is O(h) in L2 norm and O(h1/2) in the H2 semi-norm.

Next we let u(x) = x6 − 3x5 + 3x4 − x3. It is easy to check that u satisfies
the biharmonic equation (4.19) and (4.20) with f(x) = 360x2 − 360x + 72. We
first use the quadratic basis function on each Ωi. The partition of unity function
is given by (3.12). We show the error in the L2 norm and the H2 semi-norm
of the numerical solution in Fig. 8. It can be seen that the convergence rate is
O(h2) in the L2 norm and O(h) in the H2 semi-norm. Then we use Hermite
basis functions on each Ωi and keep the same partition of unity functions. The
numerical results are shown in Fig. 9. The error convergence rate is O(h4) in
the L2 norm and O(h2) in the H2 semi-norm. For this particular example, we
obtain better convergence rates.

4.2 A two dimensional example

Now we consider a two dimensional example on a rectangular mesh. We choose
u = sin2(πx) sin2(πy) such that

f(x, y) = 24π4 − 40π4 cos2(πy) − 40π4 cos2(πx) + 64π4 cos2(πx) cos2(πy).

We use the H2 conforming finite element space described in Section 3.2. In
Fig. 10, we plot the numerical result. The error convergence rate is O(h2) in
the L2 norm and O(h) in the H2 semi-norm.
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Figure 5: The error of the numerical solution in log scale. The exact solution
is given by u(x) = sin2(πx). Local basis are quadratic basis functions and the
partition of unity functions are given by (3.10). The error convergence rate is
O(h) in the L2 norm and O(h1/2) in the H2 semi-norm.
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Figure 6: The error of the numerical solution of in log scale. The exact solution
is given by u(x) = sin2(πx). Local basis are quadratic basis functions and the
partition of unity functions are given by (3.11). The error convergence rate is
O(h) in the L2 norm and O(h1/2) in the H2 semi-norm.

5 Conclusions and future work

In this paper, we propose a new family of high regularity finite element spaces.
Based on an overlapping mesh of the computation domain, the global approx-
imation spaces are obtained by choosing the local approximations spaces and
the partition of unity functions appropriately. The major advantage lies in the
simplicity and efficiency of the method for higher dimensional problems. For
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Figure 7: The error of the numerical solution of uh in log scale. The exact
solution is given by u(x) = sin2(πx). Local basis are quadratic basis functions
and the partition of unity functions are given by (3.12). The error convergence
rate is O(h) in the L2 norm and O(h1/2) in the H2 semi-norm.
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Figure 8: The error of the numerical solution of uh in log scale. The exact
solution is given by u(x) = x6 − 3x5 + 3x4 − x3. Local basis are quadratic
functions and the partition of unity functions are given by (3.12). The error
convergence rate is O(h2) in the L2 norm and O(h) in the H2 semi-norm.

example, in the 2D case of rectangular meshes, the local degree of freedom is 9
for the proposed method comparing to 16 for the Bogner-Fox-Schmit rectangle.
While this does not necessarily implies less degrees of freedom globally since
we use an overlapping mesh, the proposed method lead simple implementation
and potential savings for higher dimensional problems. For higher regularity el-
ements (Hk, k ≥ 3, conforming elements), the proposed method is simpler and
will lead much less degrees of freedom since the possible use of normal vectors
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Figure 9: The error of the numerical solution of uh in log scale. The exact
solution is given by u(x) = x6 − 3x5 + 3x4 − x3. Local basis are Hermite basis
functions and the partition of unity functions are given by (3.12). The error
convergence rate is O(h4) in the L2 norm and O(h2) in the H2 semi-norm.

to define degrees of freedom is avoided. Note that the degrees of freedom for
normal vectors are not respected by affine transformations in general. Further-
more, the proposed method inherited the major advantages of the PUFEM such
as the ability to use different local basis functions to address local behavior of
the solution which is known as an a priori.

Future work includes the application of the method on triangle and tetrahe-
dron meshes in two and three dimension, and the implementation of essential
boundary conditions.
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