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Abstract

In this paper, we propose a Partition of Unity Refinement (PUR)
method to improve the local approximations of elliptic boundary value
problems in regions of interest. The PUR method only needs to refine the
local meshes and hanging nodes generate no difficulty. The mesh qualities
such as uniformity or quasi-uniformity are kept. The advantages of the
PUR include its effectiveness and relatively easy implementation. In this
paper, we present the basic ideas and implementation of the PUR method
on triangular meshes. Numerical results for elliptic Dirichlet boundary
value problem on an L-shaped domain are shown. The extensions of the
PUR method to multilevel and higher dimension are straightforward.

1 Introduction

In order to reduce the local approximation error of a finite element solution
to PDEs, mesh refinement is widely used [1, 3, 18]. Most classical techniques
need to refine beyond the local regions [1, 3] which leads to the mesh quality
degeneracy to some extent [14]. For quadrilateral and hexahedral meshes, it
is especially difficult to perform refinement which preserves compatibility and
mesh quality [10, 13]. For three dimensional problem, mesh refinement is still
a challenging topic [8, 18]. Moreover, the computational cost related to local
mesh refinement can not be ignored [8].

In this paper, we propose a Partition of Unity Refinement (PUR) method to
improve the local approximation of elliptic boundary value problems. Starting
with some initial mesh, this method only (uniformly) refines elements in the local
regions. Combining a subset of the initial mesh and the refined mesh, the PUR
method leads to a nonmatching overlapping grid. Then it constructs a global
conforming finite element space by using partition of unity finite element method
(PUFEM) [4, 12] (see [2, 11, 17, 19] and references therein for recent develop-
ments and applications of the PUFEM). The issues of inter-element continuity
and local approximability is separated. Since the method allows hanging nodes,
there is no need to refine elements outside the local regions. Typical problems in
classical local mesh refinement techniques such as refinement beyond the local
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regions and mesh quality degeneracy are avoided. Thus the related computation
cost of mesh refinement is minimized.

The advantages of the PUR include its effectiveness and relatively easy im-
plementation. It makes no difference for triangular, quadrilateral or hexahedral
meshes. In addition, the PUR can be applied recursively to generate a multi-
level version. Its extensions to higher dimensions are also straightforward. For
simplicity, we will restrict our presentation in two dimensions. The paper is
organized as follows. In Section 2, we describe the PUR method for local ap-
proximation in the context of finite element method for elliptic boundary value
problem, in particular, Dirichlet problem. Our presentation is based on triangu-
lar meshes. In Section 3, we discuss various implementation issues of the PUR
by using an L-shaped domain. In Section 4, we show some numerical examples.
Finally we draw some conclusions in Section 5.

2 Partition of unity refinement

In this section, we give a presentation of the PUR method in the frame work
of the finite element method for elliptic boundary value problems. The weak
formulation is given by: Find u ∈ U such that

(2.1) a(u, v) = f(v), ∀v ∈ V,

where a(·, ·) is a continuous bilinear form on U ×V and f(·) is continuous linear
functional on V . The corresponding discrete problem is: Find uh ∈ Uh such
that

(2.2) a(uh, v) = f(v), ∀v ∈ Vh,

where Uh and Vh are finite dimensional subspaces of Hilbert spaces U and V ,
respectively.

Assume that a computational domain Ω and an initial (triangular) mesh
T are given. Based on some a priori information or a posteriori estimation,
the solution on some disjoint local regions Ωi ( Ω, i = 1, . . . , N , needs to be
improved. Let Ti ⊂ T , i = 1, . . . , N be the corresponding triangulation on Ωi.
Choose a “boundary layer” close to ∂Ωi \ ∂Ω which is contained in Ωi and is
denoted by Ωo

i . More precisely, Ωo
i is a strip type region made up from triangles

of Ti which are close to ∂Ωi \ ∂Ω.
Let

Ω0 = Ω \ ∪N
i=1 (Ωi \ Ωo

i ) .

Then {Ωi}, i = 0, . . . , N is an open cover (patches) of Ω such that

∀x ∈ Ω, card{i|x ∈ Ωi} ≤ 2.

We define a Lipschitz partition of unity {φi} subordinate to {Ωi}:

suppφi ⊂ closure(Ωi) i = 0, . . . , N,

φi(x) =

{

0 on Ω \ Ωi,
1 on Ωi \ Ωo

i ,

φ0(x) + φi(x) = 1 on Ωo
i .
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To improve the approximation in local regions Ωi, i = 1, . . . , N , the corre-
sponding mesh Ti is refined to obtain mesh T f

i , i = 1, . . . , N . In general, T f
i is

chosen to be a uniform refinement of Ti. Let T0 denote the set of triangles in
T covering Ω0. Thus {T0, T

f
i , i = 1, . . . , N} gives an overlapping non-matching

mesh on Ω. To minimize the computation effort, the size of overlapping region
Ωo

i , i = 1, . . . , N , is the size of a few grids in the initial mesh. Thus we end up
with thin overlapping and non-matching grids [6, 11]. A schematic is shown in
Fig. 2 for two overlapping regions Ω0 and Ω1 for an L-shaped domain.

Remark 2.1. The simplest choice of the partition of unity function is piece-
wise linear functions. Note that the choices of partition of unity functions have
impact on the condition number of the stiffness matrix, for example, see [5] .

Remark 2.2. Since the PUR method involves uniform refinement in local re-
gions, the refinement cost is minimized.

Remark 2.3. The refinement on each patch Ωi, i = 1, . . . , N needs not to be
same. For instance, we can uniformly divide the triangles in T1 into 4 triangles
and divide the triangles in T2 into 9 triangles.

Remark 2.4. Since hanging nodes are allowed, the PUR for quadrilateral and
hexahedral meshes can be done similarly to triangular meshes. Note that clas-
sical techniques for refinement of quadrilateral and hexahedral meshes are more
difficult [10, 13].

On each patch Ωi, i = 1, . . . , N , we build a local approximation space Vi

corresponding to the mesh Ti. Note that the mesh on Ω0, which occupies most
portion of Ω, does not change. Thus the corresponding approximation space V0

does not need to change. Now we can define the following global approximation
space as in [12].

Definition 2.1. Let {Ωi} be an open cover of Ω ⊂ Rn constructed as above
and let {φi} be a partition of unity subordinate to {Ωi}. Let Vi ⊂ H1(Ωi ∩ Ω)
be given. Then the space

V :=
∑

i

φiVi = {
∑

i

φivi|vi ∈ Vi} ⊂ H1(Ω)

is called the global approximation space. The space Vi are referred to as the local
approximation spaces.

In this paper, we will simply consider linear finite element for Vi’s, i =
0, . . . , N . The approximation property of V is stated in the following theorem
which can be proved similarly as [12] (also see [11]).

Theorem 2.5. Let Ω ∈ Rn be given. Let {φi}, {Ωi} and {Vi} be as in the
definitions above and hi the maximal mesh size of the triangulation on Ωi. Let
u ∈ H2(Ω) be the function to be approximated and h = maxi hi. Assume that
the local approximation spaces Vi have the following approximation properties:
On each patch Ωi ∩ Ω, u can be approximated by a function vi ∈ Vi such that

‖u − vi‖L2(Ωi∩Ω) ≤ ch2
i |u|2,

‖∇(u − vi)‖L2(Ωi∩Ω) ≤ chi|u|2.
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Then the function

v =
∑

i

φivi ∈ V ⊂ H1(Ω)

satisfies

‖u − v‖L2(Ω) ≤ ch2|u|2,(2.3)

‖∇(u − v)‖L2(Ω) ≤ ch|u|2.(2.4)

Proof. We will prove (2.4) and (2.3) can be shown similarly. Since the functions

φi form a partition of unity, we have u =
∑N

i=0 φiu and thus

‖∇(u − v)‖2
L2(Ω) ≤ ‖∇

N
∑

i=0

φi(u − vi)‖
2
L2(Ω)

≤ 2‖

N
∑

i=0

∇φi(u − vi)‖
2
L2(Ω) + 2‖

N
∑

i−0

φi∇(u − vi)‖
2
L2(Ω).

For any given x ∈ Ω, there are at most two patches cover it. Thus the sums
∑N

i=0 ∇φi(u− vi) and
∑N

i−0 φi∇(u− vi) contains at most 2 terms for any fixed
x ∈ Ω. For any x ∈ Ω,

|

N
∑

i=0

∇φi(u − vi)|
2 ≤ 2

N
∑

i=0

|∇φi(u − vi)|
2,

|

N
∑

i=0

φi∇(u − vi)|
2 ≤ 2

N
∑

i=0

|φi∇(u − vi)|
2.

We obtain

2‖

N
∑

i=0

∇φi(u − vi)‖
2
L2(Ω) + 2‖

N
∑

i−0

φi∇(u − vi)‖
2
L2(Ω)

≤ 4

N
∑

i=0

‖∇φi(u − vi)‖
2
L2(Ω) + 4

N
∑

i=0

‖φi∇(u − vi)‖
2
L2(Ω)

= 4

N
∑

i=0

‖∇φi(u − vi)‖
2
L2(Ωi∩Ω) + 4

N
∑

i=0

‖φi∇(u − vi)‖
2
L2(Ωi∩Ω)

≤ 4

N
∑

i=0

c

h2
i

h4
i |u|

2
2 + 4

N
∑

i=0

ch2
i |u|

2
2

≤ ch2|u|22.

Hence (2.4) follows immediately.

A major advantage of the PUR method is that local mesh generation (re-
finement) only involves uniform refinement and thus the mesh quality is kept.
No mesh optimization is needed. The mesh in Ω0 is untouched and there is no
need to reconstruct the stiffness matrix corresponding to this part. Note that
in general, the region Ω0 occupies a large portion of the whole domain. The
actual work involved is to construct a partition of unity function.
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The choice of the overlapping region and the partition of unity functions
affect the properties of the global approximation space. If we keep the mesh
ratio between neighboring subdomains constant, then the condition number of
the global stiffness matrix is bounded by Ch−2 , where h is the mesh size of the
finest meshed region (see [5] for some discussion).

The hanging nodes from local refinement are taken care of by the partition of
unity functions. The local spaces are glued by PU functions to produce a global
conforming approximation space [12]. This is our conforming space for the PUR
method. It is obvious that the extension of the PUR method to higher dimension
is straightforward. Moreover, the PUR method can be extended to multilevel
by applying the PUR around the local region iteratively when necessary.

3 Implementation of the PUR

Now we illustrate the implementation of the PUR by using an L-shaped domain.
Suppose we have an initial quasi-uniform mesh (see Fig. 1). We would like to
improve the approximation in a local region around the reentrant angle (blue
region in Fig. 1). We will refine the mesh in the local region uniformly and end

Figure 1: An L-shaped domain and the initial mesh. The region around (0, 0)
(the blue region around the re-entrant corner) is chosen for more accurate ap-
proximation.

up with overlapping regions covering the whole domain.
To get a better visualization, in Fig. 2, we make refinement region larger

than necessary. Let Ωa denote the (green) region outside the banded (light
blue) region, Ωo

1 the banded (light blue) region, and Ωb the region inside the
banded region Ωo

1. Then Ω0 = Ωa ∪ Ωo
1 and Ω1 = Ωb ∪ Ωo

1 give a cover of the
L-shaped domain.
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Figure 2: An example of the PUR method for the L-shaped domain. Left:
A schematic figure for the PUR. Ω0 = Ωa ∪ Ωo

1, Ω1 = Ωb ∪ Ωo
1. Right: The

overlapping mesh for the L-shaped domain. The coarse mesh in Ωa outside
the banded region (light blue) is kept. The coarse mesh in Ω1 is refined. The
banded region Ωo

1 (light blue) is the overlapping region where partition of unity
functions needs to be defined. The region closely surrounding the re-entrant
corner (0, 0) is also highlighted (blue).

3.1 Data Structure

The data structure related to the PUR method is rather simple. Suppose the
initial mesh is given by a series of triangles {Ki, i = 1, . . . , M}. The local mesh
on Ω1 is given by ∪jKj , j ∈ R, where R ⊂ {1, . . . , M} is the index set. Then we
choose a boundary region Ωo

1 of Ω1. Assume the mesh on Ωo
1 is ∪jKj , j ∈ O ⊂ R

where O is the corresponding index set. Now the triangles in ∪jKj, j ∈ R, are
refined to obtain a finer mesh {ki}. The mesh {ki} and {Ki}, i ∈ {1, . . .M}\R,
give an overlapping mesh for Ω.

What we need is the mapping between the triangles Kj, j ∈ O and ki. This
can be done by constructing a simple o× n matrix C2F where o is the number
of triangles in Ωo

1 and n is the number of triangles each Kj is divided into. For
example, if each Kj is divided uniformly into 4 congruent triangles, the jth row
of the matrix is given by

p, q, r, s

which indicates that triangle Kj is divided into four small triangles and their
indices in the refined mesh {ki} is p, q, r, s. The data structure C2F is used
together with the partition of unity functions to construct the global stiffness
matrix.

3.2 Partition of Unity function in the overlapping region

The choices of the partition of unity function in the overlapping region are
flexible. However, it does have an impact on the condition number of the global
stiffness matrix. In our implement, we choose piecewise linear functions, i.e.,
the partition of unity functions are linear on each triangle.

Partition of unity functions φ0 and φ1 associated with {Ω0, Ω1} for the L-
shaped domain are shown in Fig. 3.
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Figure 3: Piecewise linear partition of unity functions corresponding to Fig. 2.
Left: φ0. Right: φ1. Note that φ0 is 1 on Ω0 \ Ωo and 0 on Ω1 \ Ωo while φ1 is
0 on Ω0 \ Ωo and 1 on Ω1 \ Ωo. On the overlapping region Ωo, the partition of
unity functions are piecewise linear.

3.3 The global approximation space

The global approximation space V for the PUR method is constructed from the
partition of unity function φi’s, i = 0, 1, and the local approximation spaces
Vi’s. One expects that the functions in the form of

{φivi,m} where {vi,m} are basis functions of Vi

are the basis functions for V . Unfortunately, {φivi,m} might be linearly de-
pendent. For example, if we choose linear basis function in each Vi and linear
partition of unity functions in the overlapping region, the set {φivi,m} is lin-
early dependent (see the discussion on basis functions on the reference triangle
in Section 3.4). However, by forcing the Dirichlet boundary condition, we can
show that the set {φivi,m} is indeed linearly independent.

Theorem 3.1. Assume that the boundary condition is Dirichlet and the over-
lapping meshes for Ω0 and Ω1 are obtained as above. If Vk, k = 0, 1 are linear
finite element spaces with basis functions {vi} and {wj}, then the basis functions
of V are exactly

{φ1vi, φ2wj}.

We refer the readers to [6] for the proof of the theorem.

3.4 Basis functions in the overlapping region

In the overlapping region, the basis functions from two patches lead to more
degrees of freedom. Thus we have an enriched basis. We will use the reference
triangle K̂ to illustrate this.

Assume that we use linear finite element basis functions. On the reference
triangle, the basis functions are given by

v1 = 1 − x − y,(3.5a)

v2 = x,(3.5b)

v3 = y.(3.5c)
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Figure 4: The reference triangle K̂ are divided into four triangles in the overlap-
ping region. Basis functions on the reference triangle and four small triangles are
multiplied by partition of unity functions respectively to form an approximation
space.

Suppose a uniform refinement leads to four congruent small triangles. On the
small triangle k̂ whose vertices are given by (0, 0), (1/2, 0) and (0, 1/2), the basis
functions are given by

w1 = 1 −
x

2
−

y

2
,(3.6a)

w2 =
x

2
,(3.6b)

w3 =
y

2
.(3.6c)

Suppose that the partition of unity functions are given by

φ1 = 1 − x − y,

φ2 = x + y,

such that φ1 + φ2 = 1 on the reference triangle. The induced functions on the
small triangles k̂ are given by

U = {φ1vi, i = 1, 2, 3}
⋃

{φ2wi, i = 1, 2, 3}.

The approximation by U is better than linear. To be precise, U contains the
following functions

(1 − x − y)(1 − x − y),(3.7a)

x(1 − x − y),(3.7b)

y(1 − x − y),(3.7c)

(1 −
x

2
−

y

2
)(x + y),(3.7d)

x

2
(x + y),(3.7e)

y

2
(x + y).(3.7f)
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The above functions are linearly dependent. After simple calculation we can
show that a basis for spanU is given by

{1, x, y, x2 + xy, y2 + xy}.

This is better than linear approximation but not a complete quadratic finite
element basis.

3.5 The PUR algorithm

Now we give the major steps of the PUR method.

1. Start with some initial mesh on the domain.

2. Identify the local regions where improvement of approximation are needed.

3. Uniformly refine the local regions identified in Step 2.

4. Construct adequate partition of unity functions and the finite element
approximation space.

5. Construct the stiffness matrix and right hand side.

6. Solve the matrix problem.

If further improvement of local approximations is necessary, it is easy to define
a multilevel PUR method similarly to the above algorithm. We will present a
two level example in the next section.

4 Numerical Examples

Now we show some numerical examples which are implemented using Matlab.
We use the following model problem:

(4.8) −△u = 0

on an L-shaped domain (−1, 1)×(−1, 1)\([0, 1]×[−1, 0]) with a reentrant corner
at (0, 0). Dirichlet boundary condition is specified such that the exact solution
reads

u(r, θ) = r2/3 sin

(

2

3
θ

)

in polar coordinates.

4.1 Improvement of local approximation

For a linear finite element solution on uniform triangular mesh, a residual type a
posteriori estimator indicates the local refinement is needed around the reentrant
corner at (0, 0) (see Fig.5) .

Remark 4.1. In Fig. 5, we apply a residual type a posteriori error estimator
for illustration. Posteriori error estimates are of central importance for adap-
tive finite element and numerous paper have been devoted to them. We simply
refer readers to [3, 15], and [16] which gives an excellent introduction on the
derivation of an explicit residual-based a posteriori error estimates for Galerkin
finite element discretizations of general linear elliptic operators.
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Figure 5: A residual type a posteriori error estimator shows that the error
around the corner (0, 0) is significantly larger than that away from the corner.

For comparision, we first use the linear finite element solver and the exact
solution to calculate the local error (the blue region in Fig. 1) on a series of
uniformly refined meshes. Fig.1 shows a rather coarse initial mesh and a region
of interest around the origin. The mesh size is h = 1/4. The total degree of
freedom (Dof) is 33. The L2 error for a linear finite element method on the
whole domain is 0.0213. While the L2 error on the small shaded region, 1/32
of the total area, is 0.0180, contributing around 85% of the global error and
indicating a local refinement is necessary. Similarly, the local H1 error is 0.1215
while the global H1 error is 0.1451. A global uniform refinement reduces the
local L2 error to 0.0066, the local H1 error to 0.0849 (h = 1/8, DoF: 144).
Another level of global uniform refinement reduces the local L2 error to 0.0025,
the local H1 error to 0.0563 (h = 1/16, DoF: 705).

Now we apply the PUR method. We first refine local mesh in the shaded
region. Away from the shaded region, the mesh keeps unchanged. In Fig. 2, we
show a locally refined mesh. Hanging nodes can be seen easily. Note that the
banded region is the overlapping region. It is where the partition of unity takes
effect. In this case, the local L2 error is 0.0066, which is close to the local L2

error of the global uniform refinement. The local H1 error is 0.0852. Note that
the total degrees of freedom are 148 and hl = 1/8 in the region of interest.

If we take the refinement as shown Fig.6, the local L2 error is 0.0066, which
is close to the local L2 error of the global uniform refinement. The local H1

error is 0.0851. Note that the total degrees of freedom are 89, which is much
less than that of the uniform refinement (DoF: 144).

To obtain a finer local refinement, we might divide a triangle from the initial
mesh into more (9, 16, . . .) triangles uniformly. In Fig. 7 we divide the initial
triangle from the coarse mesh into 16 triangles uniformly. The L2 error is 0.0040,
the local L2 error is 0.0026, the local H1 error is 0.0564. The total degree of
freedom is 241.

The results are summarized in Table. 1. It can be seen that using consid-
erably small number of degree of freedoms, the PUR obtain local errors similar
to those of uniform finite element method.
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Figure 6: Another locally refined mesh. Note that the refined region is chosen
closely surrounded the interested area around (0, 0).

Figure 7: The finer local refinement. Each triangle in the initial mesh around
the interested region is uniformly divided into 16 small triangles.

4.1.1 A two level example

The PUR method can be easily taken to multilevel. Suppose we have done one
level PUR as in Fig.2. In the refinement region, we can carry another level of
partition of unity finite element around (0, 0). The sizes of triangles in each
level are h = 1/4, h = 1/8 and h = 1/16, respectively. The local L2 error is
0.0026 and the local H1 error is 0.0563. The extension of the PUR method to
multilevel is similar.
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h = 1/8 locally local L2 error local H1 error DoF
FEM on uniform mesh 0.0066 0.0851 144

PUR 0.0068 0.0852 89

h = 1/16 locally local L2 error local H1 error DoF
FEM on uniform mesh 0.0025 0.0563 705

PUR 0.0026 0.0564 241

Table 1: Local L2 and H1 errors of the PUR and classical finite element method.
It can be seen that using considerably small number of degree of freedoms, the
PUR obtain local errors similar.

Figure 8: An example of two level PUR method. The first level PUR is the
same as in Fig. 2. A second level refinement is performed to obtain finer mesh
around (0, 0).

4.2 Use the PUR method to obtain optimal convergence

Again we use model problem (4.8). Due the singularity around (0, 0), the L2

norm of the error for linear finite element method on uniform mesh is worse
than O(DoF−2). This is verified by the numerical results in Fig. 9 where we
plot the L2 norm of the error against the number of degree of freedom in log
scale. Similarly, the H1 norm of the error for linear finite element is worse than
O(DoF−1) (see Fig. 10).

Now we apply the PUR method. We choose a small region around the
singularity (0, 0) and uniformly refine the mesh in the selected region. We do
this for several initial meshes.

In Fig. 9, we plot the L2 norm of the error of the PUR method. We can see
that the global convergence is almost O(DoF−2). The H1 norm of the error of
the PUR method is almost O(DoF−1).

Remark 4.2. In our implementation, we divide each triangle into 16 small
triangles in the local region. The ratio needed to achieve optimal convergence
for a general elliptic problem depends on the singularities of the solution. An
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Figure 9: The L2 error order of PUR method for linear element. It can be seen
that the global convergence order of L2 error is close to M := O(DoF−2).
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Figure 10: The global H1 error order of the PUR method. The global conver-
gence order is almost M := O(DoF−1).

optimal strategy of refinement for elliptic problems on polygonal domains can be
based on the equi-distribution principle presented in [9] or on the graded meshes
strategy as presented e.g., in [3, 7, 15].

Remark 4.3. Multilevel PUR can be applied to obtain optimal convergence.
Based on the discussion in [9], it is possible to find out the number of levels
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needed, the thickness of each layer and the size of triangulation in each layer.
It is currently under investigation.

5 Conclusions

In this paper, we propose a PUR method to improve local approximations for
finite element method of PDEs. Since the method only (uniformly) refine the
elements in the local regions, it minimizes the refinement cost. Moreover, the
proposed method does not depend on the shape of the elements (triangular,
quadrilateral or hexahedral meshes). Future works include application of the
PUR method to three dimension large scale problems and the multilevel exten-
sion to obtain optimal convergence.
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