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Abstract

Recently the transmission eigenvalue problem has come to play an

important role and received a lot of attention in inverse scattering theory.

This is due to the fact that transmission eigenvalues can be determined

from the far field data of the scattered wave and used to obtain estimates

for the material properties of the scattering object. In this paper, we

show that transmission eigenvalues can also be obtained from the near

field Cauchy data. In particular, we use the gap reciprocity method to

estimate the lowest transmission eigenvalue. To determine the index of

refraction, we apply an optimization scheme based on a finite element

method for transmission eigenvalues. Numerical examples show that the

method is stable and effective.

1 Introduction

Recently a new qualitative method using transmission eigenvalues to estimate
the index of refraction of the non-absorbing inhomogeneous medium emerged
[11, 5, 4]. For the case of scattering of acoustic waves by an inhomogeneous
medium D ⊂ R2, the transmission eigenvalue problem is to find k ∈ C, w, v ∈
L2(D), w − v ∈ H2(D) such that

∆w + k2n(x)w = 0, in D,(1.1a)

∆v + k2v = 0, in D,(1.1b)

w − v = 0, on ∂D,(1.1c)

∂w

∂ν
− ∂v

∂ν
= 0, on ∂D,(1.1d)

where ν is the unit outward normal to the boundary ∂D and the index of re-
fraction n(x) is positive. Values of k 6= 0 such that there exists a nontrivial
solution to (1.1) are called transmission eigenvalues. The existence of trans-
mission eigenvalues has been studied by many researchers [17, 15, 7, 14] and
numerical methods have been developed as well [10, 18].

Since transmission eigenvalues can be determined from the far field data,
they have been used to estimate the material properties of the scattering object
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[2, 3, 6, 5, 4]. The process can be divided into two steps. Transmission eigenval-
ues are first computed from the far field data by solving linear ill-posed integral
equations. Then the estimation of index of refraction is computed from the
transmission eigenvalues using inequalities such as Faber-Krahn type inequality
[11, 6, 7, 4].

In this paper, we consider the estimation of the index of refraction of the
inhomogeneity with Cauchy data using the reciprocity gap (RG) method. The
RG method was proposed by Colton and Haddar [9] to obtain the support of
the scattering object using Cauchy data. The method was further developed to
treat other inverse problems by many researchers [12, 16, 13, 1]. Assuming that
the support of the inhomogeneity is determined by the RG method, we show
that the transmission eigenvalues can be computed from the near field data and
apply an optimization method to estimate the index of refraction based on a
continuous finite element method for transmission eigenvalues [10]. Numerical
examples show that the method is stable and provides useful information in
addition to the lower and/or upper bounds obtained from the inequalities such
as Faber-Krahn type inequality.

The rest of the paper is organized as the following. In Section 2, we present
the scattering problem of an inhomogeneous non-absorbing medium and the
reciprocity gap method. Then we show that the RG method can be used to
obtain transmission eigenvalues from near field Cauchy data in Section 3. In
Section 4, base on the numerical scheme developed in [10], we apply an op-
timization scheme to estimate the index of refraction. Finally we draw some
conclusions and discuss some future work in Section 5.

2 The reciprocity gap functional

We consider the scattering problem of an inhomogeneous non-absorbing medium
due to a point source. The direct problem is to find a solution u ∈ H1

loc(R
2r{z})

such that

∆u + k2n(x)u = 0 in R
2

r {z},(2.2a)

u = ui + us,(2.2b)

lim
r→∞

√
r

(

∂us

∂r
− ikus

)

= 0,(2.2c)

where k is the wavenumber, n(x) is the index of refraction, ui is the incident
field, and us is the scattered field. We assume that D := supp(n(x) − 1) has
finitely many components, each component having smooth boundary ∂D with
unit outward normal ν, and that the curves across which n(x) is discontinuous
are piecewise smooth. Domain D is contained in the interior of a second bounded
domain Ω whose boundary is denoted by Γ = ∂Ω (see Fig.1). Let ui be the
incident field due to a point source at z given by

(2.3) ui(x, z) = Φ(x, z)

where Φ(x, z) = i
4H

(0)
0 (k|x − z|). It can be shown that there exists a unique

solution to the direct scattering problem (2.2) [9].
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Figure 1: Explicative Example.

The inverse problem we are interested in is to estimate n(x) from a knowledge
of the Cauchy data of the total field u on Γ. We assume that both u and ∂u

∂ν

are known on Γ for each source point z ∈ C where C is a simple closed curve
containing Ω. Denote by H(Ω) the set

H(Ω) = {v ∈ H1(Ω) : ∆v + k2n(x)v = 0 in Ω}

and by U the set of solutions to (2.2a)-(2.2c) for all z ∈ C. For v ∈ H(Ω) and
u ∈ U we define the reciprocity gap functional by

(2.4) R(u, v) =

∫

Γ

(

u
∂v

∂ν
− v

∂u

∂ν

)

ds.

Since u depends on the point z ∈ C, the reciprocity gap functional can be seen
as an operator

R : H(Ω) → L2(C),

defined by

(2.5) R(v)(z) = R(u(·, z), v).

The following theorems provide important properties of the reciprocity gap
operator [2].

Theorem 2.1. The reciprocity gap operator R : H(Ω) → L2(C) is injective if
and only if k is not a transmission eigenvalue.

Theorem 2.2. If k is not a transmission eigenvalue, then the reciprocity gap
operator R : H(Ω) → L2(C) has dense range.

To reconstruct D, the RG method computes the regularized solutions v ∈
H(Ω) to the integral equation

(2.6) R(u, v) = R(u, Φz) for all u ∈ U

where Φz := Φ(·, z) for sampling points z ∈ S, a domain inside Ω containing
D. When k is not a transmission eigenvalue, the reciprocity gap functional
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method characterizes D using the norm of vz, the regularized solution of (2.6),
for different sampling points z ∈ Ω. The following theorem in [9] justifies the
reconstruction of D using the RG method.

Theorem 2.3. Assume that k is not a transmission eigenvalue for D.

(a) If z ∈ D then there exist a sequence {vn}, such that

lim
n→∞

R(u, vn) = R(u, Φz) for all u ∈ U.

Furthermore, vn converges in L2(D).

(b) If z ∈ Ω \ D then for every sequence {vn}, such that

lim
n→∞

R(u, vn) = R(u, Φz) for all u ∈ U

we have that
lim

n→∞

‖vn‖L2(D) = ∞.

We refer the readers to [9] for more details on the RG method. In the rest
the paper we assume that D is obtained using the RG method and focus on the
computation of transmission eigenvalues from Cauchy data and estimation of
the index of refraction using transmission eigenvalues.

3 Computation of transmission eigenvalues from

Cauchy data

Now we consider the problem of computing transmission eigenvalues from Cauchy
data. The near field equation (2.6) can be written as

(3.7) R(v)(z) = l(z)

where l(z) := R(u, Φ(·, z)). To solve the above equation, we need to use a conve-
nient family of solutions in H(Ω) which satisfies appropriate density properties.
In particular, we use Herglotz wave functions defined as

v = Hg :=

∫

Ω

eikx·dg(d) dsd, g ∈ L2(S1),

where S1 = {x ∈ R2, |x| = 1}.
Let Rδ be the reciprocity gap operator corresponding to the noisy measure-

ment (uδ, ∂uδ

∂ν
). The Tikhonov regularized solution gδ

z,ǫ of the near field equation
is defined as the unique minimizer of the Tikhonov functional

(3.8) ‖Rδ(Hg) − l(z)‖2
L2(S1) + ǫ‖g‖2

L2(S1)

where ǫ is the regularization parameter. We denote gδ
z,ǫ(δ) by gz,δ when ǫ =

ǫ(δ) → 0 as δ → 0. It can be shown that if k is not a transmission eigenvalue
then Hgz,δ converges in the H1(D) norm as δ → 0 [9]. Now we consider the
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case when k is a transmission eigenvalue. We assume that, for all points z ∈ D,
the perturbed operator Rδ satisfies

(3.9) lim
δ→0

‖RδHgz,δ − Φ(·, z)‖L2(S1) = 0.

If the operator R has dense range, the above assumption is true [3]. It is well-
known that R has dense range except when k is a transmission eigenvalue asso-
ciated with non-trivial solutions (w0, v0) of (1.1) such that v0 can be represented
as a Herglotz wave function.

The following theorem shows the behavior of the solution of (3.8) when k
is a transmission eigenvalue. Its proof is similar to the Theorem 3.2 in [3] and
thus is omitted here.

Theorem 3.1. Let k be a transmission eigenvalue and assume that (3.9) is
verified. Then for almost every z ∈ D, ‖gz,δ‖L2(S1) cannot be bounded in D as
δ → 0.

Combining Theorems 3.1 and 2.3, if we choose a point z inside D and plot
the norms of the kernels of the Tikhonov regularized solutions against k, we
would expect the norms are relatively large when k is a transmission eigenvalue
and relatively small when k is not a transmission eigenvalue.

Now we show numerically that transmission eigenvalues can be obtained
from Cauchy data. We assume that D is reconstructed by the reciprocity gap
method [9]. Note that if we only need to estimate transmission eigenvalues
we do not need precise reconstruction of ∂D. A knowledge of a point z in D
would suffice. For simplicity, we will use the exact shape of D in our numerical
examples. We use a finite element method to solve the scattering problem on a
mesh fine enough for all wavenumbers in the region I = [1, 4]. We put 40 point
sources on the curve C which is the boundary of the circle with radius 4. We
record the Cauchy data on ∂Ω, the boundary of the circle with radius 3, and
add 3% noise. Then we choose a point inside D and solve the ill-posed integral
equation (2.6) using Tikhonov regularization with Morozov discrepancy. Finally
we plot the norm of the Herglotz kernel g against the wavenumber k.

Let D be a disk with radius 1/2 centered at (0, 0) and the index of refraction
n(x) = 16. The exact lowest transmission eigenvalue is 1.99 given in [10]. We
choose a point (0.2, 0.2) inside D and solve (2.6) using Tikhonov regularization
for all wavenumbers in I. In Fig. 2 we show the plot of ‖gz‖L2(S1) against k. It
can be seen that roughly around 2.00 the norm of g is significantly larger. There
are other locations where the norms are larger indicating the possibility of other
transmission eigenvalues. Note that to improve the estimation, it is possible to
choose a collection of points inside D and take the average of ‖gz‖L2(S1) for all
these points [4]. Next, let D be the unit square and everything else keeps the
same as the above example. We plot ‖gz‖L2(S1) against k in Fig. 3. This time
we have the estimated lowest transmission eigenvalues as 1.76 comparing to the
value 1.89 given in [10].

Now we consider the case when n(x) is a function. Let D be a disk cen-
tered at (0, 0) with radius 1/2. The index of refraction n(x) = 8 + 4|x|. The
lowest transmission eigenvalue is 2.83. We repeat the above procedure and plot
‖gz‖L2(S1) against k (Fig. 4). The computation gives kδ

1 = 2.78. Next let D
be the unit square given by (−1/2, 1/2)× (−1/2, 1/2). The index of refraction
n(x) = 8 + x1 − x2. The lowest transmission eigenvalue is 2.88. We repeat the
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Figure 2: The plot of ‖gz‖L2(S1) against k for a point (0.2, 0.2) inside the D.
Here D is a disk with radius 1/2 and the index of refraction n(x) = 16. The
exact lowest transmission eigenvalue is 1.99.
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Figure 3: The plot of ‖gz‖L2(S1) against k for a point (0.2, 0.2) inside the D.
Here D is the unit square and the index of refraction n(x) = 16. The exact
lowest transmission eigenvalue is 1.89.
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Figure 4: The plot of ‖gz‖L2(S1) against k. Here D is a disk with radius 1/2
centered at (0, 0) and the index of refraction n(x) = 8 + 4|x|. The exact lowest
transmission eigenvalue is 2.83.

Table 1: The lowest transmission eigenvalues k1 and the estimated lowest trans-
mission eigenvalues kδ

1 using Cauchy data.
domain D index of refraction n k1 kδ

1

disk r = 1/2 centered at (0, 0) 16 1.99 2.00
unit square (−1/2, 1/2)× (−1/2, 1/2) 16 1.89 1.76

disk r = 1/2 centered at (0, 0) 8 + 4|x| 2.83 2.78
unit square (−1/2, 1/2)× (−1/2, 1/2) 8 + x1 − x2 2.88 2.90

above procedure and plot ‖gz‖L2(S1) against k (Fig. 5). The computation gives

kδ
1 = 2.90 for this case.

In Table 2, we summarize the results. Considering the noise and the ill-
posedness of the problem, the RG method provide excellent estimations for the
lowest transmission eigenvalue using Cauchy data.

4 Estimation of the index of refraction

In the previous section, we obtain an approximation kδ
1(D) of the lowest trans-

mission eigenvalue k1(D). Now we turn to the problem of estimating the index
of refraction using kδ

1(D). In [11] Colton et al. applied the Faber-Krahn type
inequality to obtain a lower bound for supD n(x).

(4.10) k2
1(D) >

λ0(D)

supD n(x)

where λ0(D) is the first Dirichlet eigenvalue.
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Figure 5: The plot of ‖gz‖L2(S1) against k. Here D is the unit square
(−1/2, 1/2)× (−1/2, 1/2) and the index of refraction n(x) = 8 + x1 − x2. The
exact lowest transmission eigenvalue is 2.88.

Based on the continuous finite element method for transmission eigenvalues
presented in [10] and the result in [4], we apply an optimization method to
estimate the index of refraction n(x). The result will provide information of
n(x) in addition to its upper or lower bounds using methods such as the Faber-
Krahn type inequality.

Let µD : L∞(D) → R which maps a given index of refraction n to the lowest
transmission eigenvalue of D, i.e.,

(4.11) µD(n) = k1(D).

Assuming kδ
1(D) is obtained as in the previous section, we seek a constant n0

minimizing the difference between µD(n) and kδ
1(D), i.e.,

(4.12) n0 = argmin
n

|µD(n) − kδ
1(D)|.

When the index of refraction is constant, the following lemma holds (see [4] for
its proof).

Lemma 4.1. The function µD is a differentiable function of n. Moreover,
denoting τ := k2, if f(τ, n) := µ1(nτ2) − (n + 1)τ , then ∂f

∂τ
< 0 when τ <

n+1
2n

λ0(D) where λ0(D) is the first Dirichlet eigenvalue of the negative Laplacian
in D.

We show a plot of the lowest transmission eigenvalue against the constant
index of refraction in Fig. 6. Since k1(D) is a continuous function of n for n > 1,
we can look for n0 such that the computed lowest transmission eigenvalue µ(D)
coincides with the value kδ

1(D) obtained from the near field data using the
following AlgorithmN. In each step, the transmission eigenvalues are computed
using the continuous finite element method proposed in [10]. Note that the
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Figure 6: The lowest transmission eigenvalue v.s. the index of refraction for the
disk with radius 1/2 and the unit square. For both cases, µ(D) is a decreasing
function of n in the domain studied.

proposed method could also be used for the far field case since the algorithm
only use the lowest transmission eigenvalue.

AlgorithmN n0 = algorithmN(D, kδ
1, tol)

generate a regular triangular mesh for D

estimate an interval a and b based on the Fraba-Krahn type inequality

compute ka
1 and kb

1 using the continuous the finite element method

while abs(a − b) > tol

c = (a + b)/2 and compute kc
1

if |kc
1 − kδ

1| < |ka
1 − kδ

1 |

a = c

else

b=c

end

end

n0 = c
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Table 2: Estimation of the index of refraction. The last column is the lower
bound for

∑

D n computed using the Faber-Krahn type inequality.

domain D exact n n0 supD n
disk r = 1/2 centered at (0, 0) 16 16.40 5.80

unit square (−1/2, 1/2)× (−1/2, 1/2) 16 18.30 6.37
disk r = 1/2 centered at (0, 0) 8 + 4|x| 9.33 3.00

unit square (−1/2, 1/2)× (−1/2, 1/2) 8 + x1 − x2 7.87 2.35

We now show some numerical examples. We first choose D to be the circle
with radius 1/2 and n = 16. From last section using noisy Cauchy data, we
have kδ

1 = 2.00. Since λ0(D) = 23.21, inequality (4.10) gives a lower bound for
supD n(x) as 5.80. The above algorithm gives n0 = 16.40. Next we let D be the
unit square and thus λ0(D) = 2π2. Let n(x) = 16. From last section, we have
kδ
1 = 1.76. Using (4.10), we obtain a lower bound for supD n(x) given by 6.37.

The above algorithm gives n0 = 18.30.
When n is a function, we can still seek a constant estimation. Let D be a

disk centered at (0, 0) with radius 1/2. The index of refraction n(x) = 8 + 4|x|.
The computed lowest transmission eigenvalue is kδ

1 = 2.78. The algorithm gives
n0 = 9.33. Using (4.10), we obtain a lower bound for supD n(x) given by 3.00.
Next let D be the unit square given by (−1/2, 1/2)× (−1/2, 1/2). The index of
refraction n(x) = 8 + x1 − x2. The lowest transmission eigenvalue is kδ

1 = 2.90.
The algorithm gives n0 = 7.87. Using (4.10), we obtain a lower bound for
supD n(x) given by 2.35.

We summarize the results in Table 2 together with the estimation of the lower
bound of supD(n) using the Faber-Krahn inequality (4.10). The algorithm gives
a stable estimation of the index of refraction accurately. It is easy to see that
the algorithm depends on how well we can estimate the lowest transmission
eigenvalue from Cauchy data.

Finally we consider the case when the shape of the target is not known
exactly. Again let D be the unit square. We first use the reciprocity gap
method to obtain the reconstruction of ∂D. We choose the wavenumber k = 3
and compute the Cauchy data on ∂Ω for all point sources on the curve C. The
sampling domain is the square given by (−1, 1) × (−1, 1). For each sampling
point z, we solve the ill-posed integral equation (2.6) by Tikhonov regularization
with Morozov discrepancy. For better visualization, we plot the contour of
1/‖gz‖ and choose a cut off value by ”Calibration” [8] to obtain a reconstruction
contour of ∂D (see Fig. 7). Then this contour is used as the boundary for D to
compute the lowest transmission eigenvalue in AlgorithmN. When the index of
refraction is n = 16, we obtain an estimation n0 = 18.90. The same procedure
is carried out for n = 8 + x1 − x2. The reconstruction of ∂D is shown in Fig. 8
and the estimation is n0 = 8.55. It can be seen that when reconstruction is
close to ∂D the estimation of the index of refraction is good. In fact, instead
of the reciprocity gap method, any other method can be used as long as a good
reconstruction of ∂D can be obtained.
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Figure 7: Reconstruction of the unit square when n = 16. Left: contour plot
of 1/‖gz‖L2(S1) in the sampling domain. Right: the reconstruction (solid line)
and the exact boundary (dashed line) of D.
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Figure 8: Reconstruction of the unit square when n = 8+x1−x2. Left: contour
plot of 1/‖gz‖L2(S1) in the sampling domain. Right: the reconstruction (solid
line) and the exact boundary (dashed line) of D.

5 Conclusion and future works

In this paper, we show that transmission eigenvalues can be computed from
the near field Cauchy data. In addition, we apply an optimization method to
estimate the index of refraction based on the lowest transmission eigenvalue.
The numerical results validate the effectiveness of the method. The case for
Maxwell’s equations is under investigation.
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