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Abstract. We consider an interior inverse medium problem of reconstructing

the shape of a cavity. Both the measurement locations and point sources are

inside the cavity. Due to the lack of a priori knowledge of physical prosperities
of the medium inside the cavity and to avoid the computation of background

Green’s functions, the reciprocity gap method is employed. We prove the

related theory and present some numerical examples for validation.

1. Introduction. Inverse scattering problems have wide applications such as radar,
medical imaging, geophysical explorations, etc. In contrast to the typical exterior
scattering problem, we consider the interior inverse scattering problem of determin-
ing the shape of a cavity. Both measurements and point sources are distributed
inside the cavity. The study of such problems is motivated by non-destructive test-
ing in industrial applications such as monitoring the structural integrity of the fusion
reactor [12]. Interior inverse scattering problems have attracted many researchers
recently. In [12], Jakubik and Potthast used the solutions of the Cauchy problem
by potential methods and the range test to study the integrity of the boundary of
some cavity by acoustics. Later, the linear sampling method [21, 22, 25, 11, 3, 23],
the nonlinear integral equation method [19], the decomposition method [26], the
factorization method [15, 18], and the near-field imaging method [14] were applied.

2010 Mathematics Subject Classification. Primary: 78A46, 31A10; Secondary: 45Q05.
Key words and phrases. Interior inverse scattering problem, inhomogeneous medium, reci-

procity gap method.

1 c©2015 American Institute of Mathematical Sciences

http://dx.doi.org/10.3934/ipi.2015.4.291


2 Fang Zeng, Xiaodong Liu, Jiguang Sun and Liwei Xu

In this paper, we study the interior scattering problem of identifying an inho-
mogeneous cavity, which maybe anisotropic, embedded in a known background
medium using the reciprocity gap method due to Colton and Haddar [5], which has
been applied to many exterior inverse scattering problems (cf. [9, 16, 17]). For
the interior sound-soft obstacle scattering problem, we have shown in [27] that this
method is well suited to the case when there is a lack of information of the phys-
ical properties of the medium inside the cavity. Furthermore, there is no need to
consider the background Green’s functions which may penalize the efficiency or are
not even known. Here we extend the reciprocity gap method to penetrable obstacle
under appropriate transmission boundary condition. The extension of the result to
three dimension cases are straightforward and the reconstruction quality should be
similar.

Note that inverse scattering problems for anisotropic media are challenging and
many of them are not well-understood mathematically [24]. For example, it is
not possible to uniquely determine the constitutive parameters of an anisotropic
medium from the scattering data [4].

The rest of our paper is organized as the following. In Section 2, we consider the
direct and inverse medium problems of an penetrable cavity with inhomogeneous
medium. In Section 3, a reciprocity gap method based on a linear integral equa-
tion is introduced and the related theory is studied. We provide some preliminary
numerical examples to show the viability of the method in Section 4.

2. Direct and inverse problems. Let D be a simply connected bounded Lips-
chitz domain in R2 and B be a region inside D which is a piecewise inhomogeneous
medium with index of refraction n1(x). The medium in D\B is homogeneous with
the index of refraction 1. We denote by k the wave number. The medium outside D
is assumed to be inhomogeneous and possibly anisotropic such that outside a large
ball BR it is homogenous with the same wave number as the medium in D\B.

As in [3], the physical properties of the medium in R2\D are described by the
2× 2 symmetric matrix valued function A with L∞(R2\D) entries such that

ξ · Re(A)ξ ≥ α‖ξ‖2 and ξ · Im(A)ξ ≤ 0

for all ξ ∈ C and some α > 0, and the bounded function n2 ∈ L∞(R2\D) such that

Re(n2) ≥ n0 > 0 and Im(n2) ≥ 0

in BR\D. Furthermore, we assume that A ≡ I and n2 ≡ 1 in R2\BR where BR is
a large ball containing D.

If ui is the Green’s function G(x, x0) due to a point source x0 on a smooth curve
C contained in D\B, we can formulate the direct scattering problem of finding the
total fields (u,w) ∈ H1(D\{x0})×H1

loc(R2\D) such that

4u+ k2n1(x)u = 0 in D\{x0},(1a)

∇ ·A∇w + k2n2(x)w = 0 in R2\D,(1b)

u = w and ∂νu = ∂νAw on ∂D,(1c)

lim
r→∞

r1/2(
∂w

∂r
− ikw) = 0,(1d)

where n1(x), n2(x) are piecewise continuous, ν is the unit outward normal to the
indicated curve, and ∂νAw := A∇w · ν. Furthermore, n1(x) ≡ 1 for x ∈ D\B and
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n2(x) ≡ 1 for x ∈ R2\BR. We assume that B has finitely many components and
the curves across which n1(x) is discontinuous are piecewise smooth. The total field
u = us + ui, where us is the scattered field. In a similar way as Theorem 5.1 in [3],
it is not difficult to show that ui and us satisfy the reciprocity relations

(2) us(x, x0) = us(x0, x) and ui(x, x0) = ui(x0, x),

for x and x0 in D\B. We note that ui can be written in the form

ui(x, x0) = Φ(x, x0) + Φs(x, x0) = G(x, x0) in R2

for x 6= x0, where

Φ(x, x0) =
i

4
H

(1)
0 (k|x− x0|).

Here H
(1)
0 is the Hankel function of the first kind of order zero. Using a variational

approach (see e.g. [2]), it can be shown that the direct problem (1) has a unique
solution.

In particular, the direct problem (1) can be formulated as the following general
form. Given f ∈ H1/2(∂D), h ∈ H−1/2(∂D), find (u,w) ∈ H1(D) × H1

loc(R2\D)
such that

4u+ k2n1(x)u = 0 in D,(3a)

∇ ·A∇w + k2n2(x)w = 0 in R2\D,(3b)

u− w = f and ∂νu− ∂νAw = h on ∂D,(3c)

lim
r→∞

r1/2(
∂w

∂r
− ikw) = 0.(3d)

It is obvious that the scattered field us and the exterior field w satisfying (1) solve
the general problem (3) with f = −G(·, x0) and h = −∂νG(·, x0).

Note that the exterior transmission problem plays an important role in the inverse
problem of (3). Given f ∈ H1/2(∂D), h ∈ H−1/2(∂D), find (u,w) ∈ H1(D) ×
H1
loc(R2\D) such that

4v + k2v = 0 in R2\D,(4a)

∇ ·A∇w + k2n2(x)w = 0 in R2\D,(4b)

v − w = f and ∂νv − ∂νAw = h on ∂D,(4c)

lim
r→∞

r1/2(
∂w

∂r
− ikw) = 0 and lim

r→∞
r1/2(

∂v

∂r
− ikv) = 0.(4d)

We remark here that in [3] it was shown that problems (3) and (4) are well-posed.
Now let Ω be a bounded Lipschitz domain in D such that Dc ⊂ Ω ⊂ D (see
Figure 1), where Dc is the interior of C. The inverse problem we are interested in is
to determine the shape of the scattering object from the knowledge of Cauchy data of
the total field u on ∂Ω for fixed (but not necessarily known) n1, n2 and A satisfying
the above assumptions. In [3], it is proved that the boundary of a homogeneous
cavity is uniquely determined from a knowledge of the scattered field us(x, y) for
all x, y ∈ C. The argument can be carried over in a straightforward manner to our
case. In some special cases, the shape of the targets can be determined even using
a single point source [10].
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Figure 1. Explicative picture. The cavity is denoted by D. The
domains Dc and Ω are contained in D and Dc ⊂ Ω. Point sources
and measurements are distributed on the boundaries C and ∂Ω,
respectively.

Definition 2.1. A non-zero value k2 ∈ C is called a generalized Dirichlet eigenvalue
of −4 in D if there exists a non-trivial solution u ∈ H1(D) satisfying

4u+ k2n1(x)u = 0 in D,

u = 0 on ∂D.

Definition 2.2. A value of k ∈ C with R(k) > 0 is called an exterior transmission
eigenvalue if the homogeneous exterior transmission problem, i.e. (4) with f = h =
0, admits a nontrivial solution.

In this paper, we always assume that k2 is not a generalized Dirichlet eigenvalue
in Dc and k is not an exterior transmission eigenvalue.

3. The reciprocity gap method. In this section, we apply the reciprocity gap
method to reconstruct the shape of the target. We first define two spaces [5].

• For an unbounded open domain R2\Ω, we denote

H(R2\Ω) :=

{
v ∈ H1

loc(R2\Ω) : ∆v + k2v = 0 in R2\Ω, lim
r→∞

r1/2(
∂v

∂r
− ikv) = 0

}
.

• We denote

U := {u : (u,w) solves (1) with ui = G(·, x0), x0 ∈ C}.
For v ∈ H(R2\Ω) and u ∈ U we define the reciprocity gap functional by

(5) R(u, v) =

∫
∂Ω

(v∂νu− u∂νv) ds,

where ν is the unit outward normal to ∂Ω. The functional R(u, v) can be viewed
as an operator R : H(R2\Ω)→ L2(C) given by

(6) R(v)(x0) = R(u, v)

for all point sources x0 ∈ C since u depends on x0.
For the following discussion, we introduce the single layer potential vg

(7) vg(x) =

∫
C

Φ(x, y)g(y)ds(y), g ∈ L2(C).
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We also define the exterior DtN map ΛD : H1/2(∂D)→ H−1/2(∂D) as f 7→ ∂νv|∂D,
where v satisfies

4v + k2v = 0 in R2\D,(8a)

v = f on ∂D,(8b)

lim
r→∞

r1/2(
∂v

∂r
− ikv) = 0.(8c)

And the exterior NtD map is given by ΛN : H−1/2(∂D)→ H1/2(∂D) as h 7→ v|∂D,
where v is a solution of

4v + k2v = 0 in R2\D,(9a)

∂νv = h on ∂D,(9b)

lim
r→∞

r1/2(
∂v

∂r
− ikv) = 0.(9c)

From Rellich’s Lemma, the operators ΛD and ΛN are well defined and bounded.
Clearly, ΛDΛN = I in H−1/2(∂D) and ΛNΛD = I in H1/2(∂D). Moreover, Green’s
formula implies that ΛD = Λ∗D and ΛN = Λ∗N in the sense that 〈ΛDf1, f2〉 =

〈f1,ΛDf2〉 for all f1, f2 ∈ H1/2(∂D) and 〈ΛNh1, h2〉 = 〈h1,ΛNh2〉 for all h1, h2 ∈
H−1/2(∂D).

Lemma 3.1. If k2 is not a Dirichlet eigenvalue in Dc, then (vg|∂D, ∂νvg|∂D) is

complete in H1/2(∂D)×H−1/2(∂D).

Proof. Define operator H : L2(C)→ H1/2(∂D)×H−1/2(∂D) as Hg = (H1g,H2g),
where

H1g = vg and H2g = ∂νvg.

Note that H1g = ΛNH2g and H2g = ΛDH1g.
Now we just need to show that H has dense range. To this end it suffices to

show that the corresponding dual operator H∗ : H−1/2(∂D)×H1/2(∂D)→ L2(C)
defined by

(10) 〈H1g, ϕ〉+ 〈H2g, ψ〉 = 〈g,H∗(ϕ,ψ)〉

for all g ∈ L2(C), ϕ ∈ H−1/2(∂D), ψ ∈ H1/2(∂D) is injective. By interchanging
the order of integration, one can show that

(11) H∗(ϕ,ψ)(x) =

∫
∂D

Φ(x, y)ϕ(y)ds(y) +

∫
∂D

∂Φ(x, y)

∂ν
ψ(y)ds(y).

Using the properties of operators ΛD and ΛN , by Green’s formula, we can deduce
that H∗ have the forms of

H∗(ϕ,ψ)(x) =
∫
∂D

Φ(x, y)(ϕ(y) + ΛDψ(y))ds(y),(12)

H∗(ϕ,ψ)(x) =
∫
∂D

∂Φ(x,y)
∂ν (ΛNϕ(y) + ψ(y))ds(y).(13)

Now assume that H∗(ϕ,ψ) = 0 on C. Since H∗(ϕ,ψ) satisfies the Helmholtz
equation in Dc, k

2 is not a Dirichlet eigenvalue in Dc yields that H∗(ϕ,ψ) = 0 in
Dc. From the unique continuation principle, we have H∗(ϕ,ψ) = 0 in D which

indicates that H∗− = 0 and
∂H∗

−
∂ν = 0. Using the jump relations [7], we conclude

from (12) that

(14) H∗+ = H∗− = 0,
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and from (13) that

(15)
∂H∗+
∂ν

=
∂H∗−
∂ν

= 0.

Finally from (11) and the results in (14) and (15), we get

ψ(y) = H∗+ −H∗− = 0, and ϕ(y) =
∂H∗−
∂ν
−
∂H∗+
∂ν

.

Thus H∗ is injective, i.e., H has dense range. The proof is complete.

Theorem 3.2. The operator R : H(R2\Ω)→ L2(C) defined by (6) is injective.

Proof. Let v ∈ H(R2\Ω) be such that Rv = 0, i.e.,

R(u, v) = 0 for all u ∈ U.

Let (ũs, w̃) be the solution of the following transmission problem

4ũs + k2n1ũ
s = 0 in D,(16a)

∇ ·A∇w̃ + k2n2(x)w̃ = 0 in R2\D,(16b)

w̃ − ũs = v and ∂νAw̃ − ∂ν ũs = ∂νv on ∂D,(16c)

lim
r→∞

r1/2(
∂w̃

∂r
− ikw̃) = 0.(16d)

Recalling that u = us+G(·, x0), integrating by parts, using the transmission condi-
tions for u and v, together with that facts that ũs and us satisfy the same equation
in D and that w and w̃ are radiating solutions to the same equation outside D, we
have that

R(u, v) =

∫
∂Ω

{v∂νu− u∂νv}ds =

∫
∂D

{v∂νu− u∂νv}ds

=

∫
∂D

{(w̃ − ũs)∂νu− u(∂νAw̃ − ∂ν ũs)}ds

=

∫
∂D

{w̃∂νAw − w∂νAw̃}ds

−
∫
∂D

{ũs∂ν(us + G(·, x0))− (us + G(·, x0))∂ν ũ
s}ds

=

∫
∂D

{w̃∂νAw − w∂νAw̃}ds−
∫
∂D

{ũs∂νus − us∂ν ũs}ds

−
∫
∂D

{ũsG(·, x0)−G(·, x0)∂ν ũ
s}ds

= ũs(x0).

Thus ũs(x0) = 0 for all x0 ∈ C. Since k is not a generalized Dirichlet eigenvalue
in Dc, it deduce that ũs(x0) = 0 in Dc. Then ũs(x0) = 0 in D by the unique
continuation principle. And from the trace theorem we have that

ũs(x0)|∂D = 0 and ∂ν ũ
s(x0)|∂D = 0.

Now since v ∈ H(R2\Ω), we have that 4v + k2v = 0 and v satisfies the Som-
merfeld radiation condition. Thus we can conclude that (v, w̃) solves the following
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The Reciprocity Gap Method for a cavity in an inhomogeneous medium 7

exterior transmission problem

4v + k2v = 0 in R2\D,(17a)

∇ ·A∇w̃ + k2n2(x)w̃ = 0 in R2\D,(17b)

w̃ − v = 0 and ∂νAw̃ − ∂νv = 0 on ∂D,(17c)

lim
r→∞

r1/2(
∂w̃

∂r
− ikw̃) = 0 and lim

r→∞
r1/2(

∂v

∂r
− ikv) = 0.(17d)

Since k is not a transmission eigenvalue, we conclude that v = 0 in R2\D. Thus
v = 0 in R2\Ω from the unique continuation principle.

Theorem 3.3. The operator R : H(R2\Ω)→ L2(C) defined by (6) has dense range.

Proof. Let ϕ ∈ L2(C) be such that

(Rv, ϕ) = 0 for all v ∈ H(R2\Ω).

Then from (5) and the bi-linearity of R we have

(Rv, ϕ) =

∫
C

R(u, v)ϕ(x0)ds(x0) = R(h, v),

where

h(x) =

∫
C

u(x, x0)ϕ(x0)ds(x0) for x ∈ D\C.

Since u = w and ∂νu = ∂νAw on ∂D, h can be continuously extended to R2\C as

h̃(x) =

{ ∫
C
u(x, x0)ϕ(x0)ds(x0) for x ∈ D\C,∫

C
w(x, x0)ϕ(x0)ds(x0) for x ∈ R2\D.

Therefore, we have

(18) R(h̃, v) =

∫
∂D

v∂ν h̃− h̃∂νvdx = 0

for all v ∈ H(R2\Ω). And from Lemma 3.1, we get that

h̃(x) = 0 and ∂ν h̃ = 0 on ∂D.

At the same time, we have

∇ ·A∇h̃+ k2n2(x)h̃ = 0 in R2\D,

lim
r→∞

√
r(∂rh̃− ikh̃) = 0.

If h̃ 6= 0 in R2\D, then (h̃, 0) is a non-trivial solution of the homogeneous problem
(4), which contradicts the fact that k is not an exterior transmission eigenvalue.

Thus h̃ ≡ 0 in R2\D. From analytic continuation argument we get that h̃(x) = 0

in R2\Dc, and so that h̃(x)|c = 0. Since 4h̃ + k2n1(x)h̃ = 0 in Dc and k2 is not

a generalized Dirichlet eigenvalue, h̃(x) = 0 in Dc. Thus the jump relation shows
that

ϕ =
∂h̃−

∂ν
− ∂h̃+

∂ν
= 0,

and the proof is complete.
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For the rest of the paper, we set v to be the single layer potential vg defined

by (7). It is clear that vg ∈ H(R\Ω). The reciprocity gap method is to find an
approximate solution g ∈ L2(C) to

(20) R(u, vg) = R(u,Φz) for all u ∈ U,
where Φz := Φ(·, z) for z in the exterior of Ω. In particular, we will show how such
a function g can be used to characterize ∂D. The advantage of the reciprocity gap
method is that, for inhomogeneous cavities, only fundamental solutions are needed.
In contrast, other qualitative methods, e.g., the linear sampling method, need the
background Green’s functions, which are either unknown or difficult to compute.

In general, the integral equation (20) does not have solution. Fortunately, it is
possible to prove the existence of an approximate solution, which can be used to
characterize the cavity D.

Remark 1. The linear sampling method can be viewed as a regularization strategy
[1]. Unfortunately, to the authors’ knowledge, similar result is not available to date
for the reciprocity gap method.

Theorem 3.4. Assume that k2 is not a Dirichlet eigenvalue in Dc. Then we have

(a): If z ∈ R2\D, then there exists a sequence {gn}, gn ∈ L2(C), such that

lim
n→∞

R(u, vgn) = R(u, φz) for all u ∈ U.

Furthermore, vgn converges in H1
loc(R2\D) and vgn → Φz in H

1
2 (∂D).

(b): If z ∈ D\Ω, then for every sequence {gn}, gn ∈ L2(C), such that

lim
n→∞

R(u, vgn) = R(u, φz) for all u ∈ U,

we have that limn→∞ ‖vgn‖H1
loc(R2\D) =∞.

Proof. (a) Suppose z ∈ R2\D. Let v be a radiating solution of Helmholtz equation
in R2\D with v = Φz ∈ H1/2(∂D). Then from [3], we see that there exists a
sequence {vgn} given by (7) such that vgn → v in H1

loc(R2\D). Furthermore, the

trace theorem and Lemma 3.1 show us that (vgn , ∂νvgn)→ (Φz, ∂νΦz) in H
1
2 (∂D)×

H−
1
2 (∂D) which indicates

lim
n→∞

R(u, vgn) = lim
n→∞

∫
∂D

{vgn∂νu− u∂νvgn}ds

=

∫
∂D

{Φz∂νu− u∂νΦz}ds

= R(u,Φz) for all u ∈ U.

(b) Now suppose that z ∈ D\Ω. For u(·, x0) ∈ U , setting ũs(x, x0) = us(x, x0)+
Φs(x, x0), one has

R(u(·, x0),Φz) =

∫
∂Ω

Φ(x, z)∂νu(x, x0)− u(x, x0)∂νΦ(x, z)ds(x)(21a)

=

∫
∂Ω

Φ(x, z)∂ν ũ
s(x, x0)− ũs(x, x0)∂νΦ(x, z)ds(x)

+

∫
∂Ω

Φ(x, z)∂νΦ(x, x0)− Φ(x, x0)∂νΦ(x, z)ds(x).(21b)

Since both us and Φs satisfy the Helmholtz equation and the reciprocity relation in
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D\B, it is also true for ũs(x, x0). Therefore, by reciprocity, ũs(x0, x) and ∂ν ũ
s(x0, x)

are solutions of the Helmholtz equation with respect to x0 for x0 ∈ D\B. Denote
by v(x0) that

v(x0) =

∫
∂Ω

Φ(x, z)∂ν ũ
s(x, x0)− ũs(x, x0)∂νΦ(x, z)ds(x).

From above argument, one has that v(x0) is a solution of the Helmholtz equation
in D\B. From (21b) we can conclude that, for every x0 ∈ C, R(u(·, x0),Φz) is of
the form

(22) R(u(·, x0),Φz) = v(x0)− Φ(z, x0)

and in view of (21a), v(x0)−Φ(z, x0) can be continued as a solution of4u+k2n1u =
0 in Dc.

On the other hand,

(23) R(u(·, x0), vg) =

∫
∂D

(vg∂νu(·, x0)− u(·, x0)∂νvg)ds.

Assume that there exists a sequence {gn}, gn ∈ L2(C), such that for all u ∈ U ,

(24) R(u(·, x0), vgn)→ R(u(·, x0),Φz) as n→∞.

Suppose on the contrary that ‖vgn‖H1
loc(R2\D) is bounded. Then there exists a

weakly convergent subsequence {vgn} in H1
loc(R2\D) converging to f ∈ H1

loc(R2\D).
By the trace theorem, (vgn , ∂νvgn)|∂D → (f, ∂νf)|∂D as n→∞, which shows

(25) R(u(·, x0), vgn)→ V (x0) as n→∞,

for all x0 ∈ C with

V (x0) =

∫
∂D

(f∂νu(·, x0)− u(·, x0)∂νf)ds for x0 ∈ D\B,

which can also be continued as a solution of 4u+ k2n1u = 0 in Dc.
From the above argument, we have V (x0) coincides with v(x0) − Φ(z, x0) for

x0 ∈ C. In particular, v0 = V (x0)− [v(x0)− Φ(z, x0)] satisfies

4v0 + k2n1v0 = 0 in Dc,

v0 = 0 on C.

Since k2 is not a generalized Dirichlet eigenvalue in Dc, v0 = 0 in Dc. By the unique
continuation principle, v0 = 0 in D\{z}. Thus we conclude that V (x0) coincides
with v(x0)−Φ(z, x0) for x0 ∈ D\{z}. However, the right-hand side is singular when
x0 = z due to the term Φ(z, x0). We arrive at a contradiction by letting x0 → z.
Hence ‖vgn‖H1

loc(R2\D) is unbounded.

4. Numerical examples. We present some numerical examples to verify the the-
ory developed above. We choose the cavity D to be one of the following:

1. a square given by (−2, 2)× (−2, 2).
2. a triangle whose vertices are

(3,−
√

3), (0, 2
√

3), (−3,
√

3).

3. an ellipse given by
x2

2.52
+

y2

1.52
= 1.

Inverse Problems and Imaging Volume ?, No. ? (2015), xxx-xxx
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4. a kite given by

x = 2 cos θ + 1.3 cos 2θ − 0.8, y = 3 sin θ, 0 ≤ θ < 2π.

Inside D, there is an inhomogeneous medium occupying the disc B with radius 0.5
and the index of refraction n(x) = n1(x). There are 40 point sources distributed
uniformly on a circle C with radius 0.6 such that B is contained in Dc. We choose
Ω to be the disc with radius 1.0 and the measurements located uniformly on ∂Ω.
Outside D, the inhomogeneous medium has physical properties A(x) and n2(x).

To obtain Cauchy data on ∂Ω, we use a finite element solver to compute the
direct scattering problem. Then we record the total fields u and approximate normal
derivatives on ∂Ω. We use a very fine mesh for the finite element solver such that
the numerical error can be ignored. Then we add 3% noises to the data.

We discretize (20) to obtain the following ill-posed system

A~g(·, z) = ~b(z),(26)

where A represents the matrix from the left hand side of (20) and~b(z) is the discrete
form for R(u,Φ(·, z)). Here z is a sampling point. The boundary of the cavity is
outside the measurement locations ∂Ω. Hence we choose a sampling region to be a
domain outside the circle with radius 1.1. In all examples, we choose the sampling
region to be

S =
{

(x, y) ∈ R2|
√
x2 + y2 > 1.1,−4 < x, y < 4

}
.

For each sampling point, we employ the Tikhonov regularization to solve (26).
For simplicity, we use the L2 norm of g instead of H1

loc norm of vg, which does
not make significant difference according to our experience. The regularization
parameter is 10−3 obtained by test and error.

4.1. Homogeneous cavities. We consider the case when the index of refraction
inside B is 1, i.e., the cavity D is homogeneous. Note that linear sampling method
can be used to reconstruct the shape of the cavity as well. For simplicity, we first
set A = I for the medium outside D. The index of refraction is n(x) = 4 + i. We
show the results in Fig. 2 obtained by the reciprocity gap method. To get a better
visualization, we take the indicator function as I(z) = 1/‖g(·, z)‖L2(C) at z in the
sampling region.

Remark 2. Due to Theorem 3.4, ‖vgn‖H1
loc(R2\D) cannot be bounded for sampling

points outside the cavity. For single layer potential, under suitable conditions on
D, ‖vgn‖H1

loc(R2\D) is bounded by C‖g(·, z)‖L2(C) (see, for example, Ch. 3 of [7]).

Remark 3. In general, for sampling type methods, a cut-off value needs to be
chosen such that the corresponding level curve can be taken as the reconstruction
of the cavity. However, it is difficult to choose the cut-off value. Most existing works
use test and error. Li, Liu, and Zou [13] proposed a strengthened linear sampling
method with a reference ball.

Next we choose the medium outside the cavity D with the following properties

A = diag(2/3, 4/5), n(x) = 4 + i.

The construction is shown in Fig. 3.
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Figure 2. The reconstructions for homogeneous cavities. The ex-
act boundaries are the solid lines.
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Figure 3. Reconstruction for the homogeneous triangle with A =
diag(2/3, 4/5) and n(x) = 4 + i outside the cavity. The solid line
is the exact boundary.

4.2. Inhomogeneous cavities. Now we consider the case when the cavity is inho-
mogeneous, i.e., the index of refraction of B is not 1. Note that for this case, other
qualitative methods such as the linear sampling method cannot be applied directly.
We first consider the case when A = I and the media inside B and outside D have
index of refraction n(x) = 4. The reconstruction of the four objects are shown in
Fig. 4. The solid lines are the exact boundaries.
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Figure 4. The reconstructions for non-absorbing media. The ex-
act boundaries are the solid lines.

Next we consider the absorbing medium. The media inside B and outside D
have index of refraction n(x) = 4 + i. We show the reconstructions in Fig. 5.

For the last example, we choose the

A = diag(2/3, 4/5), n(x) = 4 + i

outside the cavity D and n(x) = 3 for the disc B. The construction is shown in
Fig. 6.

For the exterior inverse scattering problems, the reciprocity gap method performs
well over an interval of wave numbers. In contrast, for the interior scattering prob-
lems, numerical examples indicates that this admissible interval for wave numbers is
significantly smaller. This could be caused by the ”trapped” scattered fields inside
the cavity, which bring extra difficulty for inverse problems.

Remark 4. The linear sampling type methods for interior inverse scattering prob-
lems do not perform as well as for exterior inverse scattering problems [21, 22, 25].
In some ways the interior inverse scattering problem is physically more complicated
since the scattered waves are ”trapped” inside the cavity [25]. The inhomogeneous
background makes the scattering even more complicate. It is not clear at this point
if this is intrinsic to the method or due to the inhomogeneous background. It would
be interesting to develop other methods and compare the reconstructions with those
for exterior problems.
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Figure 5. The reconstructions for absorbing media. The exact
boundaries are the solid lines.
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Figure 6. Reconstruction for the last example. The solid line is
the exact boundary.
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