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Abstract

The electromagnetic interior transmission problem is a boundary value prob-
lem which is neither elliptic nor self-adjoint. The associated transmission eigen-
value problem has important applications in the inverse electromagnetic scattering
theory for inhomogeneous media. In this paper, we show that in general there do
not exist purely imaginary electromagnetic transmission eigenvalues. For constant
index of refraction, we prove that it is uniquely determined by the smallest (real)
transmission eigenvalue. Finally, we show that complex transmission eigenvalues
must lie in a certain region in the complex plane. The result is verified by exam-
ples.

1 Introduction
The interior transmission problem arises in the study of inverse scattering theory for
inhomogeneous media [13, 19, 14]. Due to its importance in the study of the far field
pattern and reconstruction of the index of refraction [6, 8, 26], this problem received
significant attention recently in the inverse scattering community [16, 2, 3, 28]. Cakoni
et al. [2] show that transmission eigenvalues could be determined from scattering data
and used to give a lower bound for the index of refraction. A similar result of the
Maxwell’s equation is given in [8] for anisotropic media where the transmission eigen-
values are used to obtain upper and lower bounds on the norm of the index of refraction.
In [4], the authors show that transmission eigenvalues can be determined from scatter-
ing data and used to determine the presence of cavities in a dielectric. In fact, the
transmission eigenvalues can be determined from the near field data as well [26, 3]. In
particular, an optimization technique using a numerical method for transmission eigen-
values is used by Sun in [26] to estimate the index of refraction.

The existence of a finite number of (real) transmission eigenvalues in the general
case was first given by Päivärinta and Sylvester [25]. Cakoni and Haddar [11] and
Kirsch [20] proved the similar result for anisotropic media and Maxwell’s equations.
We refer the readers to [6, 9, 12] and references therein for recent results on the exis-
tence of (real) transmission eigenvalues. In [5], Cakoni et al. show that if the domain is
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a disk and the constant index refraction is small enough, complex transmission eigen-
values exist. However, to the authors’ knowledge, the existence of complex transmis-
sion eigenvalues for more general cases is an open problem.

Since the problem is neither elliptic nor self-adjoint, numerical computation of the
interior transmission problem and the associated eigenvalue problem is challenging.
Finite element methods for transmission eigenvalues were first proposed in Colton-
Monk-Sun 2010 [15]. Hsiao et al. 2011 [17] employed a coupled boundary element
method and finite element method for the interior transmission problem. In Sun 2011
[27], two iterative methods based on the fourth order reformulation of the transmission
eigenvalues were proposed. The convergence of the methods were also given. How-
ever, the H2 conforming Argyris elements were used for the fourth order problem. Ji
et al. [18] proposed a mixed finite element method where an iterative Arnoldi method
was used to search for the eigenvalues of the resulted non-Hermitian matrix problem.
The idea was further extended to the case of Maxwell’s equations by Monk and Sun
[22].

In this paper, we consider the transmission eigenvalue problem for Maxwell’s equa-
tions. Using results on Sobolev spaces related to Maxwell’s equations, we first show
that there does not exist purely imaginary transmission eigenvalues for general domain
and index of refraction. Then we consider the inverse scattering problem of determin-
ing the index of refraction using transmission eigenvalues. In particular, we show that
the constant index of refraction is uniquely determined by the lowest (real) transmis-
sion eigenvalue. In the last part of the paper, we determine regions in the complex
plane where transmission eigenvalues must lie in. Numerical examples are also pro-
vided. Note that the results in this paper for Maxwell’s transmission eigenvalues par-
allel to those in Colton-Monk-Sun 2010 [15] and Cakoni-Colton-Gintides 2010 [5] for
transmission eigenvalues of the Helmholtz equation.

2 Transmission Eigenvalue Problem
In this section, we give the definition of the transmission eigenvalue problem for Maxwell’s
equations and show that there are no purely imaginary transmission eigenvalues.

LetD ⊂ R3 be a bounded connected region with piece-wise smooth boundary ∂D.
Let ν be the unit outward normal to ∂D. We first introduce necessary functional spaces
to analyze the transmission eigenvalue problem. We refer the readers to [21] for more
details. The Hilbert space H(curl;D) is defined as

H (curl, D) :=
{
u ∈ L2 (D)

3
;∇× u ∈

(
L2 (D)

)3}
equipped with the scalar product

(u, v)curl = (u, v) + (∇× u,∇× v)

where (·, ·) is the L2 inner product on D. A subspace of H(curl;D) is given by

H0 (curl;D) := {u ∈ H (curlu;D) ; ν × u = 0 on ∂D} .
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We also define H(div;D) as

H (div;D) := {u ∈ L2 (D)
3
;∇ · u ∈ L2 (D)}

equipped with the scalar product

(u, v)div = (u, v) + (∇ · u,∇ · v) .

To analyze the transmission eigenvalue problem, we need a special functional space

H
(
curl2;D

)
:= {u ∈ H (curl;D) ;∇× u ∈ H (curl;D)}

equipped with the scalar product

(u, v)curl2 = (u, v) + (∇× u,∇× v) + (∇×∇× u,∇×∇× v) .

A useful subspace of H
(
curl2;D

)
is given by

H0

(
curl2;D

)
:= {u ∈ H0 (curl;D) ;∇× u ∈ H0 (curl;D)} .

Let N be a 3 × 3 matrix valued function defined on D with L∞(D) real valued
entries i.e. N ∈ L∞ (

D,R3×3
)
.

Definition 2.1. A real matrix field N ∈ L∞(D;R3×3) is said to be positive definite if
there exists a constant γ > 0 such that

ψ ·Nψ ≥ γ |ψ|2 ∀ψ ∈ C3 a.e. in D

We assume that N , N−1 and either (N − I)−1 or (I −N)−1 are bounded positive
definite real matrix fields on D. In terms of the electric field, the electromagnetic
transmission eigenvalue problem can be formulated as follows.

Definition 2.2. Find values of k2 ̸= 0 and E,E0 ∈ H(curl;D) such that

∇×∇× E − k2N(x)E = 0 in D, (2.1a)

∇×∇× E0 − k2E0 = 0 in D. (2.1b)

ν × E = ν × E0 on ∂D, (2.1c)

ν ×∇× E = ν ×∇× E0 on ∂D. (2.1d)

An equivalent fourth order problem can be obtained by introducing u = E − E0

(see [11]). Then we have that v = NE − E0 and

E = (N − I)−1(v − u), E0 = (I −N)−1(Nu− v).

Subtracting (2.1b) from (2.1a), we obtain

∇×∇× u = k2v,
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and therefore

E = (N − I)−1

(
1

k2
∇×∇× u− u

)
. (2.2)

Substituting for E in (2.1a) and taking the boundary conditions (2.1c) and (2.1d) into
account, we end up with a fourth order differential equation for u satisfying(

∇×∇×−k2N
)
(N − I)

−1 (∇×∇× u− k2u
)
= 0 (2.3)

Hence the variational formulation for the transmission eigenvalue problem can be
stated as: finding k2 ̸= 0 and u ∈ H0(curl2;D) such that(

(N − I)−1
(
∇×∇×−k2I

)
u, (∇×∇×−k2N)ϕ

)
= 0 (2.4)

for all ϕ in H0(curl2;D). Note that for electric fields, we also have the condition
∇ · E = ∇ · E0 = 0 which implies ∇ · u = 0. Similar to Theorem 2.2 in Colton-
Monk-Sun 2010 [15] for the Helmholtz equation, we show that there do not exist purely
imaginary transmission eigenvalues for Maxwell’s equations.

Theorem 2.3. We assume N, N−1 and either (N − I)−1 or (I −N)−1 are bounded
positive real matrices for x ∈ D̄. Then there are no purely imaginary transmission
eigenvalues.

Proof. We first assume that (N − I)−1 is a bounded positive real matrix. Following
Cakoni and Haddar 2009 [11], we define

Aτ (u, v) =
(
(N − I)−1(∇×∇× u− τu), (∇×∇× v − τv)

)
+ τ2(u, v),

B(u, v) = (∇× u,∇× v),

where we have set τ = k2. Then (2.4) can be written as

Aτ (u, v)− τB(u, v) = 0 ∀v ∈ V.

Due to the fact that ∇ · u = 0, we define

V :=
{
u ∈ H0(curl2;D) ∩H(div;D);∇ · u = 0

}
.

If k is purely imaginary, then τ = −σ < δ for some δ > 0. We have

0 = Aτ (u, u) + σB(u, u).

On the other hand

Aτ (u, u) + σB(u, u) ≥ σ2(u, u) + σ(∇× u,∇× u).

This implies u = 0.
When (I −N)−1 is a bounded positive real matrix, we define

Ãτ (u, v) =
(
(I −N)−1(∇×∇× u− τNu), (∇×∇× v − τNv)

)
+ τ2(Nu, v)

=
(
N(I −N)−1(∇×∇× u− τu), (∇×∇× v − τv)

)
+(∇×∇× u,∇×∇× v).

4



Again, we assume that k is purely imaginary. Letting τ = −σ < δ for δ > 0 and
setting v = u, we have

Ãτ (u, u) + σB(u, u) = 0.

On the other hand, noting that ∇ · u = 0, we have

Ãτ (u, u) + σB(u, u) ≥ (∇×∇× u,∇×∇× u) + σ(∇× u,∇× u)

≥ C ∥u∥H(curl2;D)

due to the Friedrichs inequality (see Corollary 3.51 of Monk 2003 [21]). Thus we
have u = 0. Hence, for both cases, there do not exist purely imaginary transmission
eigenvalues.

3 A Uniqueness Theorem
Now we consider an inverse problem of determining the index of refraction using
transmission eigenvalues. For spherically stratified media, this problem was studied in
[24, 23, 5]. In this section, we will show that the lowest (real) transmission eigenvalue
uniquely determines the constant index of refraction, i.e., when N = nI for some
constant n. The result we obtain here parallels the uniqueness theorem in Cakoni-
Colton-Gintides 2010 [5] for the case of Helmholtz equation.

To this end, we define

λ(τ, n) = inf
u∈V,∥∇×u∥=1

{
(N − I)−1 ∥∇ ×∇× u− τu∥2 + τ2 ∥u∥2

}
(3.5)

or

λ(τ, n) = inf
u∈V,∥∇×u∥=1

{
N(I −N)−1 ∥∇ ×∇× u− τu∥2 + ∥∇ ×∇× u∥2

}
(3.6)

corresponding to the cases of γ > 1 and 0 < γ < 1 in Definition 2.1, respectively.
From (2.3), we have that(

∇×∇×−k2nI
) 1

n− 1

(
∇×∇×−k2

)
u = 0 (3.7)

From the proof of Theorem 2.3 we see that transmission eigenvalues satisfy

Aτ (u, v)− τB(u, v) = 0 (3.8)

or
Ãτ (u, v)− τB(u, v) = 0 (3.9)

corresponding to the cases of n > 1 and 0 < n < 1, respectively. Thus the first
transmission eigenvalue k1 is the smallest zero of (see [10])

λ(τ, n)− τ = 0. (3.10)

It is easy to see that λ(τ, n) is a continuous function of τ ∈ (0,+∞). In the follow-
ing, we show that n can be uniquely determined from the smallest (real) transmission
eigenvalue.
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Theorem 3.1. The constant index of refraction n is uniquely determined from a knowl-
edge of the smallest transmission eigenvalue k1,n > 0, provided that it is known a
priori that either n > 1 or 0 < n < 1.

Proof. We first assume that ni > 1, i = 1, 2 with 1 < n1 < n2. It is easy to see that
λ(τ, n2) ≤ λ(τ, n1). Let k1,n1 be the smallest transmission eigenvalue for (2.1) with
n1, and let u1 = E1 − E0,1 where E1, E0,1 are the corresponding non-zero solutions.
We normalize u1 such that

∥∇ × u1∥ = 1.

Setting τ1 = k21 , we have

1

n1 − 1
∥∇ ×∇× u1 − τ1u1∥2 + τ21 ∥u1∥2 − τ1 = 0.

Furthermore, we have

1

n2 − 1
∥∇ ×∇× u− τu∥2 + τ2 ∥∇ × u∥2

≤ 1

n1 − 1
∥∇ ×∇× u− τu∥2 + τ2 ∥∇ × u∥2

for all u ∈ V such that ∥∇ × u∥ = 1 and τ > 0. Now for u = u1 and τ = τ1 we have
that

1

n2 − 1
∥∇ ×∇× u1 − τ1u1∥2 + τ21 ∥u1∥2

<
1

n1 − 1
∥∇ ×∇× u1 − τ1u1∥2 + τ21 ∥u1∥2

= λ(τ1, n1).

On the other hand, we have that

λ(τ1, n2) ≤
1

n2 − 1
∥∇ ×∇× u1 − τ1u1∥2 + τ21 ∥u1∥2 < λ(τ1, n1).

Hence we obtain
λ(τ1, n2) < λ(τ1, n1).

Now we look at λ(τ, n2) − τ = 0. Let λ(D) be the smallest Maxwell’s eigenvalue in
D. For all τ > 0 small enough such that τ ∈ (0, λ(D)/n2), we have that (see Lemma
2.9 of [9])

λ(τ , n2)− τ > 0. (3.11)

Meanwhile
λ(τ1, n2)− τ1 < λ(τ1, n1)− τ1 = 0 (3.12)

Since λ is continuous, from (3.11) and (3.12) there exists τ2, 0 < τ2 < τ1, such that

λ(τ2, n2)− τ2 = 0

i.e. τ2 is a transmission eigenvalue when N = n2I . In summary, if n1 ̸= n2, we have
τ1 ̸= τ2 and the unique determination is established. The case for 0 < n < 1 can be
proved similarly.
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Remark 3.2. It was proved in [8] that the function f(τ) := λ(τ, n)−τ is differentiable.
Furthermore, f(τ) is monotonically decreasing on the interval (0, n+1

2n λ(D)) [8, 27].
This property is used in [26] in an optimization technique to find a constant estimation
for the index of refraction.

4 Eigenvalue free zones in the Complex Plane
In the following, we will investigate the eigenvalue free zone in the complex plane for
the Maxwell’s transmission eigenvalues defined in (2.1). It turns out that the result for
the Maxwell’s equations is similar to that for the Helmholtz equation (Section 3.2 of
[5]). Note that the result in this section and that in [5] are under the assumption that the
index of refraction is constant while Theorem 2.3 holds for general cases.

We first assume that N = nI for some n > 1. Let k := x+ iy. Thus k2 := τ + iµ
for τ = x2 − y2, µ = 2xy. Since we consider the complex eigenvalues, we will use
the notation ū for the conjugate of u explicitly. Recall that the transmission eigenvalue
problem can be written as: find (k, u) ∈ C×H0(curl2, D) such that∫

D

1

n− 1
(∇×∇× u− k2u) · (∇×∇× v̄ − k2nv̄) dx = 0 (4.13)

for all v ∈ H0(curl2, D). Letting v = u in the above equation, we obtain

0 =

∫
D

1

n− 1
(∇×∇× u− k2u) · (∇×∇× ū− k2nū)dx

=

∫
D

1

n− 1
(∇×∇× u− k2nu+ k2(n− 1)u) · (∇×∇× ū− k̄2nū+ (k̄2 − k2)nū) dx

=

∫
D

1

n− 1

∣∣∇×∇× u− k2nu
∣∣2 dx+

∫
D

1

n− 1
(∇×∇× u− k2nu)(k̄2 − k2)nū dx

+

∫
D

k2u · (∇×∇× ū− k2nū)dx

=

∫
D

1

n− 1

∣∣∇×∇× u− k2nu
∣∣2 dx+

∫
D

(k̄2 − k2)
n

n− 1
|∇ × u|2 dx

−
∫
D

k2(k̄2 − k2) · n2

n− 1
|u|2 dx+

∫
D

k2 |∇ × u|2 dx−
∫
D

k4n |u|2 dx.
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Setting k2 := τ + iµ, we have

0 =

∫
D

1

n− 1
|∇ ×∇× u− (τ + iµ)nu|2 dx

+

∫
D

[
(τ + iµ) · 2iµ · n2

n− 1
− (τ2 − µ2 + 2iµτ)n

]
|u|2 dx

+

∫
D

[
−2µi

n

n− 1
+ τ + iµ

]
|∇ × u|2 dx

=

∫
D

1

n− 1
|∇ ×∇× u− (τ + iµ)nu|2 dx

+

∫
D

[
−2µ2 n2

n− 1
− (τ2 − µ2)n

]
|u|2 dx+

∫
D

τ |∇ × u|2 dx

+ i

{∫
D

[
2µτ

n2

n− 1
− 2τµn

]
|u|2 dx+

∫
D

[
µ− 2µ

n

n− 1

]
|∇ × u|2 dx

}
.

Taking the imaginary part of the equation and dividing by µ ̸= 0, we obtain

0 = −
∫
D

n+ 1

n− 1
|∇ × u|2 dx+ 2τ

∫
D

n

n− 1
|u|2 dx.

Since n > 1, the above equation implies u = 0 if τ ≤ 0. Again we have employed
the Friedrichs inequality when τ = 0. In terms of x and y, it implies that u is trivial if
x2 ≤ y2. Thus a complex eigenvalue must line in the region x2 > y2.

Taking the real part, we have

0 =

∫
D

1

n− 1
|∇ ×∇× u− (τ + iµ)nu|2 dx

+τ

∫
D

|∇ × u|2 dx−
∫
D

[
(τ2 − µ2)n+ 2µ2 n2

n− 1

]
|u|2 dx.

But we have that

τ

∫
D

|∇ × u|2 dx−
∫
D

(τ2 − µ2)n+ 2µ2 n2

n− 1
|u|2 dx

≥
(
τλ(D)− (τ2 − µ2)n− 2µ2 n2

n− 1

)
∥u∥2L2(D)

where λ(D) is the smallest Maxwell’s eigenvalue. Thus the real and imaginary part of
a complex eigenvalue k2 must satisfy

τλ(D)− (τ2 − µ2)n− 2µ2 n2

n− 1
< 0.

We can write it as

τ2 − τ
λ(D)

n
+ µ2n+ 1

n− 1
> 0. (4.14)
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Note that for the case of real transmission eigenvalues, i.e., µ = 0, we have

τ2 − τ
λ(D)

n
> 0

which recovers the well-known Faber-Krahn estimate for the case of Maxwell’s equa-
tions (see Section 4.4 of Cakoni-Colton-Monk 2011 [7])

k2 >
λ(D)

n
.

The relation (4.14) in terms of the real and imaginary part of k, x and y, can be
written as

x4 + y4 + x2y2
2n+ 6

n− 1
− (x2 − y2)

λ(D)

n
> 0. (4.15)

Combining both conditions we can conclude that complex transmission eigenvalues
k = x+ iy (if they exist) lie in the region Σ of the complex plane defined by

Σ :=

 x4 + y4 + x2y2 2n+6
n−1 − (x2 − y2)λ(D)

n > 0,

x2 > y2.

(4.16)

Next we consider the case when n < 1. Letting v = u and dropping the constant
1

n−1 , we have

0 =

∫
D

(∇×∇× u− k2u) · (∇×∇× ū− k2nū)dx

=

∫
D

(∇×∇× u− k2u) · (∇×∇× ū− k̄2ū+ k̄2ū− k2nū)dx

=

∫
D

|∇ ×∇× u− k2u|2dx+

∫
D

(k̄2 − k2n)|∇ × u|2dx+

∫
D

k2(k2n− k̄2)|u|2dx

Setting k2 = τ + iµ, we obtain

0 = ∥∇ ×∇× u− k2u∥2 + {(τ − iµ)− (τ + iµ)n}∥∇ × u∥2

+ {(τ2 − µ2 + 2τµi)n− τ2 − µ2}∥u∥2

= ∥∇ ×∇× u− k2u∥2 + (1− n)τ∥∇ × u∥2 + (nτ2 − nµ2 − τ2 − µ2)∥u∥2

+ i
{
−(n+ 1)µ∥∇ × u∥2 + 2nτµ∥u∥2

}
We take the imaginary part to obtain

0 = −(n+ 1)µ∥∇ × u∥2 + 2nτµ∥u∥2.

Hence if u ̸= 0, we have that

−(n+ 1)∥∇ × u∥2 + 2nτ∥u∥2 = 0

which implies that τ > 0, i.e., x2 > y2.
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Taking the real part, we have

0 = ∥∇ ×∇× u− k2u∥2 + (1− n)τ∥∇ × u∥2 + (nτ2 − nµ2 − τ2 − µ2)∥u∥2.

In order to have non-trivial u, we need to have that

(1− n)τ∥∇ × u∥2 + (nτ2 − nµ2 − τ2 − µ2)∥u∥2 < 0.

Applying the Friedrichs inequality, we have

(1− n)τλ(D) + (nτ2 − nµ2 − τ2 − µ2) < 0.

Thus we obtain
−τ2 + λ(D)τ − 1 + n

1− n
µ2 < 0.

In terms of x and y we have that

−x4 − y4 + λ(D)(x2 − y2)− 6n+ 2

1− n
x2y2 < 0. (4.17)

Hence for 0 < n < 1, complex transmission eigenvalues k = x+ iy (if they exist) lie
in the region Σ of the complex plane defined by

Σ :=


−x4 − y4 + λ(D)(x2 − y2)− 6n+2

1−n x
2y2 < 0,

x2 > y2.
(4.18)

The regions (4.16) and (4.18) defines the possible location of transmission eigen-
values for n > 1 and 0 < n < 1, respectively. This is similar to the case for the
Helmholtz equation [5]. However, we need to compute the smallest Maxwell’s eigen-
value which itself has been an interesting research topic [21, 1]. In the following we
show two examples to verify the above result.

Example 1. Let D be the unit ball. The smallest Maxwell’s eigenvalue is λ(D) ≈
7.53 (see Bramble-Kolev-Pasciak 2005 [1]). We first let n = 4. Then the region Σ is
given by

Σ :=

 x4 + y4 + 14
3 x

2y2 − 1.88(x2 − y2) > 0,

x2 > y2.
(4.19)

For constant index of refractionN = nI , we can write down the transmission eigenval-
ues using separation of variables (see Monk-Sun 2011 [22]). In fact, the transmission
eigenvalues are given by the wave number k2’s satisfying∣∣∣∣ jm(kρ) jm(k

√
nρ)

1
ρ

∂
∂ρ (ρjm(kρ)) 1

ρ
∂
∂ρ (ρjm(k

√
nρ))

∣∣∣∣ = 0, m ≥ 1 (4.20)

corresponding to the TE mode (see also [12]) and∣∣∣∣ 1
ρ

∂
∂ρ (ρjm(kρ)) 1

ρ
∂
∂ρ (ρjm(k

√
nρ))

k2jm(kρ) k2njm(k
√
nρ)

∣∣∣∣ = 0, m ≥ 1. (4.21)
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Figure 1: The distribution of transmission eigenvalues for the unit ball when n = 4. Σ
defined in (4.19) is the unshaded region. We also plot contours of absolute values of
the determinants given in (4.20) and (4.21) for m = 1. The transmission eigenvalues
are at the positions where the values are zeros (the centers of small circular contours).

corresponding to the TM mode. Here jm is the spherical Bessel’s function of order m.
In Figure 1, we plot the region Σ given in (4.19) (unshaded part). For verification,

we also give the contour plot of the absolute values of the determinants given in (4.20)
and (4.21) form = 1. The analytical transmission eigenvalues are corresponding to the
positions where the absolute values are zeros (the centers of small circular contours).
We see that these transmission eigenvalues lie in the region Σ defined in (4.19).

Example 2. The second example is the unit cube. In this case, the Maxwell’s
eigenvalue can be derived exactly. In fact, they are given by k2π2 where k2 = k21 +
k22+k

2
3 and ki, i = 1, 2, 3 are non-negative integers satisfying k1k2+k2k3+k3k1 > 0

(see also Bramble-Kolev-Pasciak 2005 [1]). Thus λ(D) = 2π2. Letting n = 6, the
region Σ is given by

Σ :=

 x4 + y4 + 18
5 x

2y2 − π2

3 (x2 − y2),

x2 > y2.

(4.22)

For this case, there is no analytic way to derive the transmission eigenvalues and we
employ the mixed finite element method to compute a few of them (see Monk-Sun
2011 [22]).

In Figure 2, we plot the region Σ given in (4.22) (unshaded part). For verification,
we plot a few computed transmission eigenvalues (denoted by ’*’ in the figure). We see
that these transmission eigenvalues, both real and complex, lie in the region Σ defined
in (4.22).
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Figure 2: The distribution of transmission eigenvalues for the unit cube when n = 6.
Σ defined in (4.22) is the unshaded region. In the figure, ’*’ denotes the computed
transmission eigenvalues.
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