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Abstract

Reconstruction of obstacles embedded in a periodic waveguide with arbitrary geometry is
considered in this paper. The measurement is on a line segment of the scattered field due to
point sources inside the waveguide. A linear sampling type method is proposed to characterize
the obstacles by using the solutions of the near field equations. Due to the fact that the Green
function cannot be written down analytically for periodic waveguide with arbitrary geometry,
we employ a method based on the limiting absorption principle and the recursive doubling
technique. Furthermore, we devise an algorithm to speed up the sampling procedure. Numerical
examples are presented to demonstrate the performance of the proposed method.
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iting absorption principle

1 Introduction

Inverse problems for periodic structures have a long history and have been investigated by
many researchers, for example [15, 13, 16, 14, 17, 19, 20, ?, 18, 1]. Most of these works address
the reconstruction of structure profiles. In this paper, we consider the reconstruction of obstacles
embedded in waveguides. Recently this issue has drawn much attention. For example, in [10]
Xu et al. applied a method using generalized dual space indicator for imaging an obstacle in a
shallow water waveguide. They used the scattered field on a straight line and solved some ill-posed
integral equations. Dediu and McLaughlin [11] proposed an eigensystem decomposition to recover
weak inhomogeneities in a waveguide from far-field data. In [12], Bourgeois and Lunèville also use
far field data to reconstruct the inhomogeneity. Their method is based on the idea of the linear
sampling method and a factorization of the far field operator.

A major difficulty of the reconstruction of obstacles embedded in the waveguide is the compu-
tation of Greens functions. This is analogous to the case when applying linear sampling method to
characterize objects embedded in an inhomogeneous complex background in open space. Methods
of avoiding, at least partially, the computation of background Green function have been developed
in [5, 4]. Except some rare cases, the background Green function cannot be written as a closed
form in contrast to the free space case. This accounts for why most works on the reconstruction
of inhomogeneities in waveguide only consider the homogeneous waveguide, which motivates us to
develop a method to compute Greens function of a waveguide with arbitrary geometry. In this
paper, we employ the method develop in [2] to compute the background Green’s function.
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Figure 1: Schematic picture: scattering by an obstacle in a waveguide. The waveguide has a
complicate geometry. The obstacle is D. The point sources and measurement of the scattered field
are on Γ.

We assume that the incident field is due to a point source on a line Γ and the scattered field is
measured on the same line (see Fig. 1). For the inverse problem, we will use the near field version
of the linear sampling method, i.e., we solve linear integral equations and plot the solution norms
in a sampling domain. The major ingredient of the linear sampling method is the computation of
the Green function. Since we need the Greens functions for all the sampling points, we propose a
Fourier expansion method to significantly reduce the computational cost in the discrete case.

The rest of the paper is organized as follows. Section 2 discusses the scattering of inhomo-
geneities due to point source incident field in the waveguide. In Section 3, we present the inverse
method to characterize the inhomogeneities using the near field equations. In Section 4, we present
a fast Fourier expansion method to compute the Green functions. We present some numerical
examples in Section 5.

2 The direct problem

The inverse problem we consider is to imaging an object D embedded in a two-dimensional
periodic waveguide Ω (see Fig. 1). Let us indicate the top boundary of Ω as ∂Ω+ and the bottom
boundary of Ω as ∂Ω−. For simplicity, we assume that ∂Ω1 is a straight line and ∂Ω+ is a periodic
function of x. The top boundary ∂Ω+ is supposed sound-soft and the bottom boundary ∂Ω− soft-
hard. The point sources are located on a curve Γ above D. This implies that the incident field is
simply the background Green function at rs ∈ Γ which solves

∆rG(r, rs) + k2G(r, rs) = δ(r − rs), in Ω, (1a)

G(r, rs) = 0, on ∂Ω+, (1b)

∂νG(r, rs) = 0, on ∂Ω−. (1c)

Let Φ = 1
4i

H
(1)
0 (k|r − rs|) be the Green function in R

2. Then it is known [12] that

G(r, rs) ∼ Φ(r, rs) ∼
1

2π
log(k|r − rs|), r → rs.

Note that the above asymptotic relation also holds for any complex k with ℜk > 0, ℑk > 0 and
ℑk < ℜk. For a homogeneous waveguide, it is possible to derive an analytical series expansion for
G, see [12]. For a periodic waveguide with arbitrary geometric, this is not possible in general.
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We suppose the object D is sound-soft. This means that the scattered field us(·, rs) due to the
appearance of D solves the following equation

∆ru
s(r, rs) + k2us(r, rs) = 0, r ∈ Ω \ D̄, (2a)

us(r, rs) = 0, r ∈ ∂Ω+, (2b)

∂νu
s(r, rs) = 0, r ∈ ∂Ω−, (2c)

us(r, rs) = −G(r, rs), r ∈ ∂D. (2d)

To ensure the well-posedness, both G and us should also satisfy appropriate condition along the
longitudinal axis of the waveguide as |x| → ∞. For this purpose, we assume that the limiting

absorption principle (LAP) holds for the specific geometry Ω and the specific wave number k. The
precise meaning of this principle is as follows. For any δ > 0, replacing k2 with k2 + iδ in (2a)
we obtain a well-posed problem with damping. Let us denote by us

δ ∈ H1(Ω \ D) the solution of
the damped equation. The LAP implies that us

δ converges in H1
loc(Ω \ D) as δ → 0+. Though the

physical meaning of LAP is rather natural, the rigorous mathematical justification of this principle
for the considered problem, to the authors’ knowledge, is still an open problem.

We have the following important reciprocity property of G(r, rs).

Lemma 2.1. The Green function has the following reciprocity relation:

G(rf , rs) = G(rs, rf ), ∀rf , rs ∈ Ω.

Proof. Let kδ =
√

k2 + iδ with δ > 0 and Gδ(r, rs) be the Green function of (2a) by replacing k2

with k2 + iδ, i.e.,
∆rGδ(r, rs) + (k2 + iδ)Gδ(r, rs) = δ(r − rs), ∀r ∈ Ω.

For any fixed rf , rs ∈ Ω, let ǫ > 0 be small enough and we define

Drs,ǫ = {r ∈ Ω : |r − rs| < ǫ},
Drf ,ǫ = {r ∈ Ω : |r− rf | < ǫ},

such that Drs,ǫ ∩ Drf ,ǫ = ∅. Set

Ωǫ = Ω \ (Drs,ǫ ∩ Drf ,ǫ).

Let us denote

(∗) def
= Gδ(r, rf )

∂Gδ(r, rs)

∂n
− Gδ(r, rs)

∂Gδ(r, rf )

∂n
.

Applying Green formula on Ωǫ, we obtain
∫

∂Ωǫ

(∗) ds =

∫

Ωǫ

[Gδ(r, rf )△Gδ(r, rs) − Gδ(r, rs)△Gδ(r, rf )] dr = 0.

Thus we have
∫

∂Drs,ǫ

(∗) ds +

∫

∂Drf ,ǫ

(∗) ds =

∫

∂Ω
(∗) ds.

The right hand side vanishes due to the boundary conditions on ∂Ω±, which implies
∫

∂Drs,ǫ

(∗) ds +

∫

∂Drf ,ǫ

(∗) ds = 0. (3)
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Figure 2: Schematic picture: inverse scattering by an inhomogeneity in waveguide.

On ∂Drs,ǫ, there exists a constant M1 depending on rs,f and δ such that

∣

∣

∣

∣

∂Gδ(r, rf )

∂n

∣

∣

∣

∣

= |∇rGδ(r, rf ) · n| ≤ M1.

Besides, by setting

h = Gδ(r, rs) −
1

2π
log(kδ|r − rs|),

there exists a constant M2 depending on rs,f and δ such that

‖h‖C1(∂Drs,ǫ) ≤ M2.

Hence
∣

∣

∣

∣

∣

∫

∂Drs,ǫ

(

Gδ(r, rs)
∂Gδ(r, rf )

∂n

)

ds

∣

∣

∣

∣

∣

≤
(

1

2π
| log kδǫ| + M2

)

M12πǫ → 0,

and
∫

∂Drs,ǫ

Gδ(r, rf )
∂Gδ(r, rs)

∂n
ds = ǫ

∫ 2π

0
Gδ(rs + ǫeiθ, rf )

(

1

2πǫ
+ ∇rh · n

)

dθ.

Since |∇h · n| ≤ 2M2, we have

lim
ǫ→0

ǫ

∫ 2π

0
Gδ(rs + ǫeiθ, rf ) (∇rh · n) dθ = 0.

Finally

lim
ǫ→0

∫

∂Drs,ǫ

Gδ(r, rf )
∂Gδ(r, rs)

∂n
ds =

1

2π
lim
ǫ→0

∫ 2π

0
Gδ(rs + ǫeiθ, rf ) dθ = Gδ(rs, rf ).

Similarly, we can show that the second term of the left hand side of (3) is −Gδ(rf , rs). Thus we
have

Gδ(rf , rs) = Gδ(rs, rf ).

Applying the LAP, we have G(rf , rs) = G(rs, rf ) by taking δ → 0+.

Similarly, the following lemma hold.

4



Lemma 2.2. Let u be the solution forward problem defined above. For all x ∈ Ω \ D,

u(x) =

∫

∂D

(

u(y)
∂G(x, y)

∂νy

− ∂u(y)

∂νy

G(x, y)

)

ds(y),

where νy is the outward unit normal.

Lemma 2.3. Let us(·, y) be the scattered field of D due to a point source at y. Then

us(x, y) = us(y, x), ∀x, y ∈ Ω \ D̄.

To compute the Greens function G and the scattered field numerically, we employ the fast
algorithm based on the recursive doubling procedure in [2].

3 The inverse problem

The inverse problem is to reconstruct the support of the obstacle D, if we have the total scattered
field information on the same line Γ. With the reciprocity property of G, we can prove the following
uniqueness theorem similarly to the one in [12] and thus we omit its proof here.

Theorem 3.1. Denote by D1 and D2 two sound soft obstacles with Lipschitz continuous boundaries.

If for all incident waves G(·, rs) with rs ∈ Γ, the corresponding scattered fields us
1(·, rs) and us

2(·, rs)
coincide on Γ, then D1 = D2.

Since we measure the near field data, to apply the linear sampling method, we will need the
following near field operator N : L2(Γ) → L2(Γ) such that for any g ∈ L2(Γ),

(N g)(r) =

∫

Γ
us(r, rs)g(rs) ds(rs), ∀r ∈ Γ. (4)

Let S be a region containing the object D. The linear sampling type methods is the following.
For any rs ∈ S, we consider the following integral equation

N g = G(·, rs). (5)

It is well-known that the above equation does not have a solution in general. However, it is possible
to find an approximate solution to (5) except a discrete set of wavenumber k’s. The following type
of theorem justifies the linear sampling method.

Theorem 3.2. Suppose k2 is not a Dirichlet eigenvalue for D. Let N be the near-field operator

defined by (4) and us(·, rs) be the scattered field due to a point source at rs ∈ Γ.

1. If rs ∈ D, then for any ǫ > 0 there exists an approximate solution hǫ(·, rs) of (5) such that

‖(Nhǫ)(·, rs) − G(·, rs)‖L2(Γ) ≤ ǫ.

In addition, hǫ(·, rs) converges in an appropriate function space as ǫ → 0.

2. If rs → ∂D and hǫ(·, rs) satisfies

‖(Nhǫ)(·, rs) − G(·, rs)‖L2(Γ) ≤ ǫ,

then the norm of hǫ(·, rs) in an appropriate function space tends to infinity as ǫ → 0.
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Proof. We first assume D ⊂ C. Similar to [8], consider the linear equation

(Nφ)(r) = G(r, rs), ∀r ∈ ∂C. (6)

Note that (Nφ)(r) is the scattered field of D due to the incident field

(Sφ)(r) =

∫

∂C

G(r, rs)φ(rs) ds(rs). (7)

If rs ∈ D, φ is a solution to the near field equation (6) if Sφ solves

∆u + k2u = 0 in D, (8a)

u = −G(·, rs), on ∂D. (8b)

It is known that Sφ with φ ∈ L2(∂C) is dense in

H(D) = {u ∈ H1(D);△u + k2u = 0}.

Hence there exists a φ such that Sφ approximate the solution of (8) for z ∈ D. As z approaches
∂D, the norm of G(·, z) on ∂D blows up, hence the norm of the approxiamae solution of (8).

If Γ is a line segment, then Γ is a subset of ∂C for some domain C with D inside. Following
[7], it is suffices to show that the set of functions

(Sφ)(x) =

∫

∂C

Φ(x, y)φ(y) ds(y), φ ∈ L2(∂C) with support in Γ ⊂ ∂C

is complete in L2(∂). Then the approximation property follows Theorem 5.4 of [6]. Let ϕ ∈ L(∂C)
and suppose that for a fixed Γ ⊂ ∂C

∫

∂C

ϕ(x)

[
∫

Γ
φ(y)G(x, y) ds(y)

]

ds(x) = 0

for every φ ∈ L2(Γ). Interchanging the order of integration, we obain

∫

Γ
φ(y)

[
∫

∂C

ϕ(x)Φ(x, y) ds(x)

]

ds(y) = 0

for every φ ∈ L2(∂C). This implies the single-layer potential

(Sϕ)(y) =

∫

∂C

ϕ(x)G(x, y) ds(x)

is zero on ∂C. By analyticity we have (Sϕ)(y) = 0 on ∂C. Since the single-layer potential is a
solution to the Helmholtz equation and k2 is not a Dirichlet eigenvalue for Ω, we obtain ϕ = 0.

The implementation of the above method requires us to choose a sampling domain S containing
D. Then for each point rs ∈ S, we need to find an approximate solution grs of (5). According to
Theorem 3.2, the norm of grs is relative small if rs ∈ D and becomes larger as rs approaching ∂D.
The procedure is exactly the same as the linear sampling method or the reciprocity gap method
(see [4]).
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A major numerical difficulty we are facing is the evaluation of many Green functions. Since we
need G(x, z) for each x ∈ Γ and z ∈ S, the computation cost is prohibitive. This is similar to the
case of using LSM to characterize an object embedded in inhomogeneous complex background in
open space. Methods of (partially) speed up or avoiding the computation are discussed in [5, 4].

For our the problem in waveguide, we propose a Fourier expansion method to significantly
reduce the computation of G(r, rs) in the discrete case. Let {xi}, i = 1, 2, . . . , NΓ be a discrete
set of points on Γ and {zj}, j = 1, 2, . . . , NS be a discrete set of points on S. We need G(xi, zj),
i = 1, 2, . . . , NΓ, j = 1, 2, . . . , NS to implement the inverse scheme.

Suppose Γδ ⊂ Ω is a neighborhood of Γ satisfying Γδ ∩ S = ∅. Since

∆rG(r, rs) + k2G(r, rs) = 0, ∀r, rs ∈ Γδ ∪ S,

by reciprocity we have

∆rsG(r, rs) = ∆rsG(rs, r) = −k2G(rs, r) = −k2G(r, rs),

which implies that
∆rsG(r, rs) + k2G(r, rs) = 0.

Note that we need G(xi, z) for all z ∈ S for a fixed point xi ∈ Γ. By reciprocity, we need
G(z, xi) for all z ∈ S. It is easy to see that G(z, xi) satisfies the following Helmholtz equation:

∆zG(z, xi) + k2G(z, xi) = 0, in S. (9)

Thus if we know the value of G(z, xi) for z ∈ ∂S, we will have G(z, xi) for all z ∈ S by solving a
Dirichlet boundary problem of the above Helmholtz equation. To further simplify the computation,
we first choose S as a disk containing D. Let zk, k = 1, 2, . . . , N0

S be a discrete set of points S.
For a fixed point xi on Γ, we first compute G(xi, zk), k = 1, 2, . . . , N0

S . Since the solution of the
Helmholtz equation on a disk can be represented by a series of products of Hankel functions and
trigonometric functions [3], G(xi, z) can be obtained after a Fourier expansion of the Dirichlet data
on ∂S.

It is obvious the method is not restrict to the case of wave guide and can be applied to open
space problem. It is especially useful for three dimensional case since it reduce the computation of
Green functions in a three dimension sampling domain to a two dimension surface.

4 Numerical Examples

We consider a waveguide with period 1. The lower boundary of the waveguide is the x-axis.
The upper boundary is given by f(x) = 1+0.05 sin(x). In Fig. 4, we plot the bank structure of the
above waveguide. In Fig. 5, we show the computed background Greens functions for k = 1, k = 3,
and k = 9. Would you

please add
more details
about the
numerical
implemen-
tation?

A circular obstacle is located at (x, y) = (0.4, 0.4) with radius of 0.1. We compute the scattering
field and recorded on the same segment. We then employ the near field linear sampling method.
For the ill-posed integral equations, we use Tikhonov regularization with parameter α = 10−6.
Note that the choice of the regularization parameter is ad-hoc, i.e., trial and error. We show the
reciprocal of the norm of the linear integral equations on the left of Fig. 6. It can be seen that the
location and the size of the obstacle can be obtained. However, it seems difficult to recover the
exact shape of the obstacle.
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Figure 3: Schematic picture: computation of G(x, z) for all points in the sampling domain S (the
disk) due point sources on Γ.
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Figure 5: The background Greens functions for k = 1, k = 3, and k = 9.

Then we choose two circular obstacles are located at (x, y) = (0.4, 0.4), (0.6, 0.4) with radius of
0.05. Tikhonov regularization parameter is still α = 10−6. We show the reciprocal of the norm of
the linear integral equations on the right of Fig. 6. The construction is similar to the single obstacle
case. What is the

wavenum-
ber k you
are using
for the two
examples?
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