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Abstract

In this paper we consider the transmission eigenvalue problem corresponding to
acoustic scattering by a bounded isotropic inhomogeneous object in two dimensions.
This is a non self-adjoint eigenvalue problem for a quadratic pencil of operators. In
particular we are concerned with theoretical error analysis of a finite element method
for computing the eigenvalues and corresponding eigenfunctions. Our analysis of con-
vergence makes use of Osborn’s perturbation theory for eigenvalues of non self-adjoint
compact operators. Some numerical examples are presented to confirm our theoretical
error analysis.

1 Introduction

The transmission eigenvalue problem arises in inverse scattering theory for an inhomogeneous
object of bounded support [9]. The transmission eigenvalue problem is a quadratic and non
self-adjoint eigenvalue problem that is not covered by the standard theory of eigenvalue
problems for elliptic equations. Despite this, existence of a countable number of eigenvalues
has been proved [5]. Furthermore it has been shown theoretically and tested numerically
that transmission eigenvalues can be determined from typical scattering data [3, 16, 4]. In
addition, it has been suggested that such measured transmission eigenvalues can be used to
determine properties of the the scatterer [4]. These applications have lead to the need to
compute transmission eigenvalues, and it is the numerical computation of these eigenvalues
by finite elements that we shall analyze in this paper.

We start by describing the transmission eigenvalue problem. Given a bounded Lipschitz
domain Ω ⊂ R2 and a real valued function n ∈ L∞(Ω) such that n − 1 is strictly positive
(or strictly negative) almost everywhere in Ω we seek a scalar k ∈ C and a non trivial pair
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of functions (v, w) ∈ L2(Ω)× L2(Ω) such that w − v ∈ H2(Ω) satisfying

∆w + k2n(x)w = 0 in Ω, (1)

∆v + k2v = 0 in Ω, (2)

w = v on ∂Ω, (3)

∂w

∂ν
=
∂v

∂ν
on ∂Ω. (4)

Under the above assumption that n− 1 is strictly of one sign, it is possible to write (1)-(4)
as an equivalent eigenvalue problem for u = w − v ∈ H2

0 (Ω) [21]. In particular

(∆ + k2)u = ∆w + k2w = k2(1− n)w.

Dividing by (n− 1) and applying the operator (∆ + k2n) to the resulting equality we obtain
the problem of finding k ∈ C and u ∈ H2

0 (Ω) that satisfies the following fourth order equation
[21] (see also [5, 6]): (

∆ + k2n
) 1

n− 1

(
∆ + k2

)
u = 0 in Ω. (5)

In variational form this becomes the problem of finding a nontrivial transmission eigenfunc-
tion u ∈ H2

0 (Ω) and corresponding eigenvalue k ∈ C such that∫
Ω

1

n− 1
(∆u+ k2u)(∆v + k2nv) dA = 0 for all v ∈ H2

0 (Ω), (6)

where v denotes the complex conjugate of v. In the remainder of this paper we shall assume
n > n0 > 1 almost everywhere where n0 is constant, although, with obvious changes, the
theory also holds for n strictly less than 1.

The transmission eigenvalue problem first appeared in the analysis of inverse problems
in Kirsch [14] and in more generality in Colton and Monk [10]. The main goal at that time
was to show that transmission eigenvalues can be easily avoided. In particular Rynne and
Sleeman [21] showed that there is at most a countable set of real transmission eigenvalues with
the only possible accumulation point being infinity. More recently Päıvarinta and Sylvester
[20] proved the existence of at least one eigenvalue, and soon thereafter Cakoni, Gintides and
Haddar [5] proved the existence of infinitely many real transmission eigenvalues, together
with estimates that started the program of research on using transmission eigenvalues to
infer properties of the scatterer.

Practically Cakoni, Colton and Haddar [3] and later Kirsch and Lechleiter [16] have
shown that transmission eigenvalues can be recovered from measurements of the scattered
field. In order to asses the reliability of this procedure Cakoni, Colton, Monk and Sun [4]
used finite element methods to compute transmission eigenvalues, but without a theoretical
error analysis. This paper addresses the theoretical justification of methods like those in
[22] (the method here is not the same as the one in [22]). Other techniques for computing
transmission eigenvalues have been proposed, including for example [13, 18, 1, 17]. Error
estimates for another finite element method for solving the interior transmission boundary
value problem (away from eigenvalues) are given in [23].

The outline of the paper is as follows. In the next section we propose a modified version
of Kirsch’s formulation of the transmission eigenvalue problem [15] that is well adapted
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to implementation by finite elements. We then apply Osborn’s perturbation theory for
eigenvalues of non self-adjoint compact operators to prove convergence [19]. Some numerical
results are presented in Sections 3 and some conclusions are drawn in the final section.

2 The Numerical Eigenvalue Problem

Mathematically, one proof of the discreteness of eigenvalues of (6) uses fractional powers of
certain compact operators [6] (see also [7]) to convert the problem to an eigenvalue problem
for a system of compact operators. These operators are not convenient for numerical compu-
tation since computing fractional powers of inverses of solution operators is time consuming,
and instead we first introduce related operators involving just the Laplacian that are easy
to implement.

Expanding (6) we obtain the problem of finding non-trivial u ∈ H2
0 (Ω) and k ∈ C such

that
(∆u,∆v)n−1 + k2(u,∆v)n−1 + k2(∆u, nv)n−1 + k4(nu, v)n−1 = 0

where

(u, v)n−1 =

∫
Ω

1

n− 1
uv dA.

Obviously k = 0 is not an eigenvalue of this problem since the sesquilinear form (∆u,∆v)n−1

is coercive on H2
0 (Ω). Now define τ = k2 and let w ∈ H1

0 (Ω) satisfy

∆w = τ
n

n− 1
u in Ω.

Then we may rewrite the above transmission eigenvalue problem as the problem of finding
a non trivial pair of functions (u,w) ∈ H2

0 (Ω)×H1
0 (Ω), and constant τ ∈ C such that

(∆u,∆v)n−1 = −τ ((u,∆v)n−1 + (∆u, nv)n−1 − (∇w,∇v)) for all v ∈ H2
0 (Ω),

(∇w,∇z) = −τ(nu, z)n−1 for all z ∈ H1
0 (Ω).

This is our new non self-adjoint eigenvalue problem.
To analyze the problem, let us define the following sesquilinear forms where u, v ∈ H2

0 (Ω)
and z, w ∈ H1

0 (Ω):

a(u, v) = (∆u,∆v)n−1,

b1(u, v) = (u,∆v)n−1 + (∆u, nv)n−1,

b2(w, v) = −(∇w,∇v),

c(u, z) = (nu, z)n−1,

d(w, z) = (∇w,∇z).

Then define the sesquilinear form A on (H2
0 (Ω)×H1

0 (Ω))× (H2
0 (Ω)×H1

0 (Ω)) by

A((u,w), (v, z)) = a(u, v) + d(w, z)

Note that A is an inner product on H2
0 (Ω)×H1

0 (Ω).
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The eigenvalue problem is then to find non trivial (u,w) ∈ H2
0 (Ω) × H1

0 (Ω) and λ ∈ C
such that

λA((u,w), (v, z)) = b1(u, v) + b2(w, v) + c(u, z) for all (v, z) ∈ H2
0 (Ω)×H1

0 (Ω)

where λ = −1/τ (recall that τ = k2 = 0 is not a transmission eigenvalue).
Now define the operator T : H2

0 (Ω)×H1
0 (Ω)→ H2

0 (Ω)×H1
0 (Ω) by

A(T (u,w), (v, z)) = b1(u, v) + b2(w, v) + c(w, z) for all (v, z) ∈ H2
0 (Ω)×H1

0 (Ω).

Then, in operator notation, we seek λ ∈ C and non-trivial (u,w) ∈ H2
0 (Ω) × H1

0 (Ω) such
that

λ(u,w) = T (u,w).

Note that if λ 6= 0, (0, w), w ∈ H1
0 (Ω), is not an eigenfunction of this system, so we have not

introduced spurious eigenvalues into the problem.
Now suppose we use conforming subspaces Xh ⊂ H2

0 (Ω) and Yh ⊂ H1
0 (Ω) to compute

a finite dimensional eigenproblem. To fix ideas we suppose Ω is a Lipschitz polyhedron.
Then we can cover Ω with a shape regular triangulation Th consisting of triangles K with
maximum diameter h. In this case an obvious choice is to use Argyris elements [8] to build
Xh, and this is the choice we shall use later in our numerical tests. To build Yh we could
use simple continuous piecewise polynomials, and in our code we use piecewise linear or
piecewise quadratic Lagrange elements.

The finite element problem is to seek non-trivial (uh, vh) ∈ Xh×Yh and λh ∈ C such that

λhA((uh, wh), (vh, zh)) = b1(uh, vh) + b2(wh, vh) + c(wh, zh) for all (vh, zh) ∈ Xh × Yh.

We next define an approximation to the operator T denoted Th : H2
0 (Ω)×H1

0 (Ω)→ Xh×Yh
such that for (p, q) ∈ H2

0 (Ω)×H1
0 (Ω), Th(p, q) ∈ Xh × Yh satisfies

A(Th(p, q), (vh, zh)) = b1(p, vh) + b2(q, vh) + c(q, zh) for all (vh, zh) ∈ Xh × Yh.

We seek to prove that the discrete problem of finding approximate transmission eigenvalues
λh ∈ C and non-trivial eigenfunctions (uh, wh) ∈ Xh × Yh satisfying

λh(uh, wh) = Th(uh, wh)

are close to the exact eigenvalues provided h is small enough.
To prove convergence we will apply a theorem due to Osborn [19, Theorem 3] (stated

here in terms of Hilbert spaces rather than Banach spaces as in Osborn’s paper). Let X
denote a complex Hilbert space with S : X → X a compact operator. For λ an non-zero
eigenvalue of S with algebraic multiplicity m and let Γ be a circle centered at λ containing
no other eigenvalues. Then denote by E the spectral projection

E =
1

2πi

∫
Γ

(z − S)−1 dz

and R(E) the range of E (the dimension of R(E) is m). Similarly, let R(E∗) denote the
range of the spectral projection E∗ for the Hilbert adjoint S∗ of S where now the eigenvalue
is λ.
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Let Sh : X → X denote a sequence of compact operators for h > 0 (in fact constructed by
finite elements). Osborn [19, Theorem 2] gives conditions under which the eigenvalues of Sh
converge to those of S. If λ is an eigenvalue of S with multiplicity m, suppose λh,1, · · · , λh,m
converge to λ then define

λ̂h =
1

m

m∑
j=1

λh,j.

Theorem 1 (Theorem 3 from [19]). Suppose Sh → S in norm and S∗h → S∗ in norm. Let
φ1, · · · , φm be a basis for R(E) and let φ∗1, · · · , φ∗m be the dual basis. Then there is a constant
C such that

|λ− λ̂h| ≤
1

m

m∑
j=1

|[(S − Sh)φj, φ∗j ]|+ C‖(S − Sh)|R(E)‖ ‖(S∗ − S∗h)|R(E∗)‖,

where [(S − Sh)φj, φ∗j ] denotes the Hilbert space duality pairing.

Our first goal is to prove the norm convergence of Th to T and T ∗h to T ∗:

Lemma 1. Under the standing conditions on the domain and finite element spaces and
provided n is smooth and n− 1 > 0 in Ω, Th → T as h→ 0 in norm. In particular

‖T − Th‖L(H2(Ω)×H1(Ω),H2(Ω)×H1(Ω)) ≤ Chmin (α,2s),

where min(α, 2s) > 0 and depends on the interior angles of the Lipschitz polyhedron as
described in the proof. Similarly T ∗h → T ∗ in norm, and the same estimate holds for ‖T ∗ −
T ∗h‖L(H2(Ω)×H1(Ω),H2(Ω)×H1(Ω)).

Remark 1. If the domain is convex, we have at least first order convergence.

Proof. Of course we have Galerkin orthogonality:

A((T − Th)(u,w), (vh, zh)) = 0 for all (vh, zh) ∈ Xh × Yh.

Then as usual

A((T − Th)(u,w), (T − Th)(u,w)) = A((T − Th)(u,w), T (u,w)− (vh, zh))

for any vh, zh ∈ Xh × Yh. Hence

‖(T − Th)(u,w)‖H2(Ω)×H1(Ω) ≤ ‖T (u,w)− (vh, zh))‖H2(Ω)×H1(Ω). (7)

We can now complete the estimate using the regularity of u and v and standard finite
element error estimates. First let T (u,w) = (k1, k2) ∈ H2

0 (Ω) × H1
0 (Ω). Then k2 ∈ H1

0 (Ω)
satisfies

(∇k2,∇z) = (nu, z)n−1.

Since n/(n− 1) ∈ L∞(Ω) and Ω is a Lipschitz polygon, there is an α0 > 0 such that

‖k2‖H1+α(Ω) ≤ C‖nu/(n− 1)‖H−1+α(Ω)
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where α0 > α ≥ 1/2 and where α0 depends on the interior angles of the polygon. In
particular α0 > 1/2 and if the domain is convex α0 = 1 [12]. Choosing zh = P1,hk2 where
P1,h is the H1

0 (Ω) projection into Yh we have

‖k2 − zh‖H1(Ω) ≤ Chα‖k2‖H1+α(Ω) ≤ Chα‖nu/(n− 1)‖H−1+α(Ω) ≤ Chα‖u‖L2(Ω) (8)

for 1/2 < α < min(α0, 1), provided Yh contains polynomials of degree at least one (which
must hold since Yh is H1-conforming).

Now k1 ∈ H2
0 (Ω) satisfies

(∆k1,∆v)n−1 = (u,∆v)n−1 + (∆u, nv)n−1 − (∇w,∇v) for all v ∈ H2
0 (Ω).

The regularity of k1 is a bit more difficult to determine. In strong form k1 ∈ H2
0 (Ω) satisfies

∆

(
1

n− 1
∆k1

)
= ∆

(
u

n− 1

)
+

n

n− 1
∆u+ ∆w := F

If n is smooth, the right hand side is in H−1(Ω), and

‖u‖H2+2s(Ω) ≤ C‖F‖H−2+2s(Ω) ≤ C‖F‖H−1(Ω)

for 0 < s < min(1/2, s0/2) and where s0 > 0 is the regularity limit given by [2, Section 4].
If Ω is convex, s = 1/2. So k1 ∈ H2+2s(Ω) where s depends on the interior angles of the
domain.

Choosing vh = P2,hk1 where P2,h is the H2(Ω) projection into Xh we have

‖k1 − P2,hk1‖H2(Ω) ≤ Ch2s‖t1‖H2+2s(Ω) ≤ Ch2s‖F‖H−1(Ω)

≤ Ch2s
(
‖u‖H2(Ω) + ‖w‖H1+α(Ω)

)
. (9)

Putting together the estimates from (8) and (9) we have proved that

inf
vh,zh∈Xh×Yh

‖T (u,w)− (vh, zh))‖H2(Ω)×H1(Ω) ≤ Chmin(α,2s)
(
(‖u‖H2(Ω) + ‖w‖H1+α(Ω)

)
.

Using this in (7) proves the first estimate of the lemma.
Now consider the adjoint T ∗ : H2

0 (Ω)×H1
0 (Ω)→ H2

0 (Ω)×H1
0 (Ω). For (v, z) ∈ H2

0 (Ω)×
H1

0 (Ω), This is defined by

A((u,w), T ∗(v, z)) = b1(u, v) + b2(w, v) + c(w, z) for all (u,w)) ∈ H2
0 (Ω)×H1

0 (Ω)

Letting T ∗(v, z) = (t∗1, t
∗
2), the strong form of the this equation is

∆

(
1

n− 1
∆t∗1

)
=

1

n− 1
∆v + ∆

n

n− 1
v +

n

n− 1
z := G (10)

∆t∗2 = ∆v (11)

In the same way as before, since v ∈ H2(Ω), we have that t∗2 ∈ H1+α(Ω) and so choosing
zh = P1,ht

∗
2 gives

‖t∗2 − zh‖H1(Ω) ≤ Chα‖t∗2‖H1+α(Ω) ≤ Chα‖v‖H2(Ω).

In addition since n/(n−1) is smooth, the right hand side of (10) has the regularity G ∈ L2(Ω),
and again

‖t∗1 − P2,ht
∗
1‖H2(Ω) ≤ Ch2s‖t∗1‖H2+2s(Ω) ≤ Ch2s‖G‖L2(Ω) ≤ Ch2s

(
‖v‖H2(Ω) + ‖w‖L2(Ω)

)
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Theorem 2. Under the assumptions of Lemma 1, there is a constant Cλ such that

|λ− λ̂h| = O(h2 min(α,2s))

where α and s are the exponents in Lemma 1.

Remark 2. From [2, Figure 1] we expect that s can be chosen so that s > 1/2 so the theorem
predicts at least O(h) convergence for the eigenvalues. If the domain is convex we predict
quadratic convergence.

Proof. Suppose we have m eigenfunctions

T (uj, vj) = λ(uj, vj)

together with a dual basis for R(E) denoted (u∗j , v
∗
j ) ∈ H2

0 (Ω)×H1
0 (Ω)

A((uj, vj), (u
∗
` , v
∗
` )) = δj,`.

We apply Theorem 1 using φ = (u, v) ∈ H2
0 (Ω) × H1

0 (Ω) and Sφ = T (u, v) (similarly for
T ∗). By Lemma 1 we have the norm convergence of the operators. It remains to estimate
the term [(S − Sh)φj, φ∗j ]. In our case

[(S − Sh)φj, φ∗j ] = A((T − Th)(uj, vj), (u∗j , v∗j )) = A((T − Th)(uj, vj), T ∗(u∗j , v∗j )).

By Galerkin orthogonality this implies that

[(S − Sh)φj, φ∗j ] = A((T − Th)(uj, vj), (T ∗ − T ∗h )(u∗j , v
∗
j )).

Using the error estimate from Lemma 1 completes the proof.

3 Numerical Examples

Now we show some simple examples. Let Vh be the finite element space generated by using
Argyris elements on a regular triangular mesh of Ω. Let Xh ⊂ Vh ∩ H2

0 (Ω). We choose Yh
to be the standard continuous piecewise linear Lagrange element such that Yh ⊂ H1

0 (Ω). To
describe the method in more detail, let {φi}Nhi=1 be the basis for Xh and {ψi}Mh

i=1 be the basis
for Yh. We define the following matrices

Aij = (4φj,4φi)n−1, S1
ij = (4φj, φi)n−1, S2

ij = (nφj,4φi),

Sij = (∇ψj,∇φi), S ′ij = (∇ψj,∇ψi), Mij = (ψj, nφi)n−1,

where u = (u1, . . . , uNh)T such that uh =
∑Nh

i=1 uiφi and w = (w1, . . . , wMh
)T such that

wh =
∑Mh

i=1wiψi. The matrix eigenvalue problem is given by Ax = τBx where

A =

(
A 0
0 S ′

)
, B = −

(
S1 + S2 −S
M 0

)
, x =

(
u
w

)
.

To compute the generalized eigenvaues of this system, we use the Matlab eigs command.
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Shape Base mesh 1 refinement 2 refinements 3 refinements

unit square 1.877313 1.879039 1.879455 1.879557
Number of DoFs 1587 6407 25767 103367

L-shaped 2.971278 2.964095 2.958426 2.955279
Number of DoFs 1187 4807 19367 77767

circle 1.989962 1.988407 1.988088 1.988017
Number of DoFs 1245 5023 20199 81031

Table 1: The first (real) transmission eigenvalues for the test domains on a series of uniformly
refined meshes. The index of refraction is n = 16. DoFs refers to the total number of degree
of freedoms (Mh +Nh).

We choose three test domains: the unit square, an L-shaped domain, and the disk with
radius 1/2 centered at the origin. The unit square and the L-shaped domain are given by

(−1/2, 1/2)× (−1/2, 1/2)

and
(−1/2, 1/2)× (−1/2, 1/2) \ ([0, 1/2]× [−1/2, 0])

respectively.
For simplicity, we choose the function n(x) = 16 since we can then compare the results

computed here to those in the literature [11, 22]. For each domain we generate a coarse
triangular mesh and then uniformly refine the mesh to perform a convergence study. In the
case of the circle each refinement gives a better and better polygonal approximation of the
curved boundary. So we do not use curved elements for the circular domain, and this may
have a major effect on the convergence rates in that case.

The computed transmission eigenvalues are shown in Table 1. They are consistent with
the values in [11, 22].

In Fig. 1, we plot the relative error in the first real transmission eigenvalue against the
mesh size h when linear elements are used to discretize H1

0 (Ω). For the circle we can compute
the true relative error using precise estimates of the transmission eigenvalue computed via
special functions. For the other domains we compare the difference between the eigenvalues
on successive meshes. The results then indicate convergence rates for each domain. The
convergence orders for the unit square and the circle are 2 and for the L-shaped domain
are less than 1/2. This is to be expected since even for smooth eigenfuctions the order of
convergence is limited by the piecewise linear space. An interesting observation is that the
eigenvalues converges from below for the unit square while from above for the L-shaped
domain and the circle.

Using linear elements to discretize H1
0 (Ω) and Argyris elements for the biharmonic terms

limits the maximum possible convergence rate to that of the lower order space. In Fig. 2
we show results using piecewise quadratic elements to discretize H1

0 (Ω). As expected, the
convergence rate for the first eigenvalue on the L-shaped domain does not change compared
to that in Fig. 1 because we expect this eigenfunction to be singular near the reentrant
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Figure 1: Relative errors in the first real transmission eigenvalue as a function of the mesh size
h in the discrete problem using piecewise linear elements to discretize H1

0 (Ω). As expected
the convergence rate for the circle and square is second order, while for the L-shaped domain
it is slower.

corner. For the square the convergence rate is now fourth order, again as might be expected
if the first eigenfunction is smooth. The convergence rate for eigenfunctions on the circular
domain does not increase to fourth order despite the fact that the eigenfunctions are smooth
in this case. This is likely because we approximate the circular domain with a mesh of
triangles so there is a geometric error that pollutes the eigenvalue calculation. This example
suggests that using a higher order space to discretize H1

0 (Ω) improves the convergence rate
for smooth eigenfunctions.

4 Conclusion

We have proved convergence of a new conforming finite element method for approximating
transmission eigenvalues. This was obtained by modifying an existing scheme to obtain
a computationally tractable problem. Numerical results suggest that our theory gives the
correct convergence rates at least for convex domains.

Obviously the use of conforming finite elements in H2 is quite complicated and would
be difficult to implement in R3 or for Maxwell’s equations. Instead we might prefer other
methods, for example discontinuous Galerkin schemes, that avoid using smoother elements.
Efforts to expand the theory in this paper to that case are a next step in providing a reliable
and convenient method for computing transmission eigenvalues.
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Figure 2: Relative errors in the first real transmission eigenvalue as a function of the total
number of degrees of freedom in the discrete problem using piecewise quadratic elements
to discretize H1

0 (Ω). Compared to Fig. 1 the convergence rate for the L-shaped domain is
unchanged reflecting the low regularity of the the eigenfunction in that case. For the square
domain the convergence rate increases to O(h4). For the circle a corresponding increase in
the convergence rate is not seen (see the text for more discussion).
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