Lecture #17

Prof. John W. Sutherland

February 20, 2006
A Transition

- Course title: “Service Processes and Systems”
- We have spent a good deal of time talking about the “process”
- We now need to spend some time talking about “systems”
What is a system?

- **Definition of a System**
 - A system is a set of interrelated components which interact with one another in an organized fashion toward a common purpose
 - NASA Systems Engineering Handbook

- **Our interest is “service systems” as opposed to complex product systems**
What is a system?

- The elements of a systems may be quite diverse:
 - People and Organizations
 - Software and Data
 - Equipment and Hardware
 - Facilities and Materials
 - Services and Techniques
Systems

Natural

Technical
 - Aircraft
 - Missile
 - ...

Man made

Technical

Non - Technical
 - Economic system
 - Societal systems
 - ...

M R Shankar
Examples of Systems

- A pen
 - A system for making marks on surfaces
- A bicycle
 - A system for human-powered personal transportation
- A library catalog
 - A system for providing information about the books in a library
- A space shuttle
 - A reusable system for moving people and goods from Earth into orbit
Emergent Properties

- Properties which are associated with the system AS A WHOLE rather than the collection of parts
- Dependent on the properties of the system parts AND the system structure
- Examples
 - Emergent property of a bicycle: a transportation system when parts assembled correctly
 - Emergent property of a cell phone: it is a communication device
Emergent Properties

- A property that surfaces when the parts are put together
- Emergence – unpredictable based on a lower level description
Emergent Properties

- Performance
- Reliability
- Safety
- Security
- Usability

- Some of these are non-functional properties – not relating to any specific functionality of the system
- These properties are often more important than detailed system functionality
Systems and their Environment

- Systems not independent – exist in physical, organizational, & political environment with other systems
- System function may be to change environment, e.g., heating system
- Environment affects function of system, e.g., system may require electrical supply from environment
- Organizational as well as physical environment may be important
System Hierarchies

Town

Street

Building

<table>
<thead>
<tr>
<th>Heating system</th>
<th>Power system</th>
<th>Water system</th>
</tr>
</thead>
<tbody>
<tr>
<td>Security system</td>
<td>Lighting system</td>
<td>Waste system</td>
</tr>
</tbody>
</table>

Sommerville 1997
What is Systems Engineering

- SE is an interdisciplinary approach and means to enable realization of successful systems
 - It is very quantitative including tradeoff, optimization, selection, and integration of products from various engineering disciplines
 - Can be considered as a separate engineering discipline
Systems Engineering Heritage

- Water Distribution Systems in Mesopotamia 4000 BC
- Irrigation Systems in Egypt 3300 BC
- Urban Systems such as Athens, Greece 400 BC
- Roman Highway Systems 300 BC
- Water Transportation Systems like Erie Canal 1800s
- Telephone Systems 1877
- Electrical Power Distribution Systems 1880
- Focus of Systems Engineering
 - From Original Need
 - To Final Product
 - The Whole System
 - The Full System Life Cycle

- Focus of Component Engineering
 - On Detailed Design
 - And Implementation

Need
- Operations Concept
- Functional Requirements
- System Architecture
- Allocated Requirements
- Detailed Design
- Implementation
- Test & Verification

Arunski et al. 1999
The “Vee” Model of System Development

User Requirements & Concept of Operations

System Requirements & Architecture

Component Design

Procure, Fabricate, & Assemble Parts

Component Integration & Test

System Integration & Test

System Demonstration & Validation

Systems Engineering Domain

Component Engineering Domain

Arunski et al. 1999

Michigan Tech

© John W. Sutherland

Service Processes & Systems
Dept. of Mechanical Engineering - Engineering Mechanics
Michigan Technological University
Systems Engineering Contributions

- Systems engineering brings together two elements that are not usually present
 - A disciplined focus on the
 - end product/service,
 - its enabling components, and
 - its internal and external operational environment (i.e., a System View)
 - A consistent vision of stakeholders’ expectations independent of daily demands (i.e., the System’s Purpose)
Role of SE in Development

- Integrates Technical Effort Across the Development Project
 - Functional Disciplines
 - Technology Domains
 - Specialty Concerns

Arunski et al. 1999
Building Blocks of SE

- **Math & Physical Sciences**
 - Qualitative modeling
 - Quantitative modeling
 - Physical modeling
 - Theory of Constraints
 - Physical Laws

- **Management Sciences**
 - Economics
 - Organizational Design
 - Business Decision Analysis
 - Operations Research

- **Social Sciences**
 - Multi-disciplinary Teamwork
 - Organizational Behavior
 - Leadership

- **Body of Knowledge**
 - Problem definition
 - Concept of operations
 - System boundaries
 - Objectives hierarchy
 - Originating requirements
 - Concurrent engineering
 - System life cycle phases
 - Integration/Qualification
 - Architectures
 - Functional/Logical
 - Physical/Operational
 - Interface
 - Trades
 - Concept-level
 - Risk management
 - Key performance parameters

Unique to Systems Engineering
Arunski et al. 1999
“Ethical” Considerations

- Achieving balance between inherent conflicts
 - System Functionality and Performance
 - Development Cost and Recurring Cost
 - Development Schedule (Time to Market)
 - Development Risk (Probability of Success)
 - Business Viability and Success

- System Optimization
 - Subsystems often suboptimal to achieve best balance at system level

- Ultimate system purpose must prevail against conflicting considerations
- Long-term considerations (e.g., disposal) may drive technical decisions

- Customer Interface
 - Often must act as “honest broker”
 - Carries burden of educating customer on hard choices
 - Must think ahead to the next customer and next application
 - Must “challenge” all requirements
Components of SE to Remember

- Decompose a complex system into manageable parts or subsystems
- Flow requirements down into each subsystem
- Consider verification of the system and subsystem from the beginning
- Model the system and subsystem performance
- Iterate! As you learn more, revisit your models and assumptions for refinement
- Don’t forget the interfaces between systems
Management Part of SE

- Requirements
- Work breakdown structure
- Scheduling
- Budget and resource planning
- Risk assessment
- Configuration management
- Reviews
Work Breakdown Structure

- **What is a WBS?**
 - A hierarchical breakdown of the work necessary to complete a project. The WBS should be “product” based. Each product should have a person responsible for delivery.

- **Common WBS errors**
 - The WBS describes function and not products
 - Branch points are inconsistent with products and verification
Scheduling

- Start with known milestones
- Consider each component in the WBS
 - Determine who will be responsible
 - Estimate the time required to complete
 - Consider dependencies (order of events)
 - Include subsystem integration and verification
- Don’t forget system testing
- Include a schedule margin to reduce risk
- Evaluate the schedule regularly
- Determine critical path – sequence of activities that will take longest to accomplish
Risk

- Risk should be actively managed

- Risk management components
 - Planning
 - Identification and characterization
 - Analysis
 - Mitigation and tracking
Configuration Management

- How to track changes in documents such as requirements, drawings, schematics, etc.
- Remember – the systems engineering process is iterative
- Methods
 - Assign one group member the responsibility of tracking documents (e.g., the librarian)
 - Can use a numbering system
 - Software is available to help
Words of Advice

- Optimal system – subsystems not necessarily optimal
- “Better” is the enemy of “good enough”
- Goal: meet the system requirements
- Systems engineering is a process. Follow the process to improve your probability of success.