From last time...

- SE is an interdisciplinary approach and means to enable realization of successful systems

- It is very quantitative including tradeoff, optimization, selection, and integration of techniques/products from various engineering disciplines
SE Tools Taxonomy - Top Level

- Systems Engineering
 - Management
 - Engineering
 - Information Sharing
 - Infrastructure Support

Copyright 1998-2004 International Council on Systems Engineering
Configuration Management: managing system baselines, both products of the engineering process and the tools used to create those products/services. Version control, baseline control, change history, check-in/check-out control, change and archiving capabilities of both process and product/service.
Management Tools

- **Work Flow Management tools**: used to define and schedule tasks, and make work assignments. Monitor progress, task prioritization, and support task review/approval. Identify resource loads and critical paths. Automation can help enforce the Integrated Product Development Process through the use of pre-defined workflow models.

- **Risk Management tools** support qualitative risk identification and quantitative risk analysis and visualization. Manage technical, cost, and schedule risks. Supports management decisions, identifies risk prioritized by program impact, and generates risk mitigation plans.
Management Tools

- **Cost Estimation and Tracking tools:** estimate the cost of tasks and roll costs into total project cost. Track the cost of the project during development and interface with the organization's financial recording and reporting system.

- **Defect Tracking tools:** used to record system defects and change requests found in product testing and in the field. Track defect details.
Information Sharing Tools

Communication Tools
 - Interpersonal Communications Tools
 - Network Information Retrieval Tools

Data Analysis Tools

Electronic Publishing Tools

Electronic Viewing Tools

Tool Integration Facilities
Infrastructure Support Tools

- Tools that assist in the administration of computer-based systems.
System Modeling Tools

- Behavioral Modeling falls into two categories, static and dynamic – model the functional capabilities of a system and its response to events.
 - Static Behavior Modeling – static description of system behavior. Static implies that the model may represent dynamic behavior, but it is not executable. Examples of static behavioral models are Functional Flow Block Diagrams and State Transition Diagrams.
 - Dynamic Behavior Modeling – dynamic description of system behavior. These models are executable through simulation and prototyping.

- Prototyping techniques are used to develop or verify Human Machine Interface (HMI) design by modeling the interaction of operators or users with the system. Describe input/output screens, to depict parts of the system, and animate these presentations.
System Modeling – an important tool

- After overview of SE tools – evident that “modeling” is a crucial element.

Simulation Models to Analyze Complex Traffic Systems
Modeling

- The modeling step seeks to relate the inputs and outputs of a system. This step is complicated because of the variety of tools and methods that exist.

- 1st approach – first principles
- 2nd approach – work with data
Process Structure

- Given the variety in modeling tools and methods, some organizing structure is needed.
- Based on common characteristics, an appropriate classification system for processes may help decision-makers understand the nature of a process.
Process Classification System

Xue, Filipovic, Pandit and Sutherland, 2000
Classification Criteria

- **Mechanism**
 - Different processes rely on different mechanisms

- **Time-scale**
 - Processes can be viewed as operating discretely or continuously based on the interests of the modeler

- **Dynamics**
 - Static vs. dynamic
Classification Criteria

- **Uncertainty**
 - Deterministic vs. stochastic

- **Scope**
 - How much do we wish to describe
 - Single vs. multi-stage system

- **Quantity (duration)**
 - Long term – many outcomes
 - Short term – single outcome
Criteria

- Most of the criteria – adopt some perspective. Perspective ultimately impacts type of models developed.

- Remember: viewpoint of modeler is subjective since processes/systems tend to lie somewhere in between endpoints associated with each criterion.
Modeling Methods

- Modeling methods for processes can be broken down into two categories:
 - Analytical
 - Data-based (empirical)
Analytical Models

- They are developed based on natural laws (e.g., physics and chemistry).
- To develop an AM requires a fundamental understanding of the underlying mechanisms in the process.
- Model forms: algebraic eqs., differential eqs., difference eqs., etc.
It should be noted that data are almost always collected discretely (i.e., sampled data), leading to models of discrete form. If desired, and appropriate, these models can be converted into continuous time form.
Quantity Criterion

- It is noted that some situations may require additional variables/dimensionality – handled by:
 - Ignoring the additional dimensions
 - Applying statistical methods
 - Accounting for the added dimensions in the model
Uncertainty Criterion

- When a high level of uncertainty is present, model fitting methods must be employed to synch the models to the data
 - Least squares
Which criteria are left?

- **Dynamics**
 - Static
 - Dynamic
- **Scope**
 - Process
 - System description
- **So, 4 possible combinations and 4 principal model forms emerge**
1. Simple Function Model

- Static/single-stage.
- This model relates its output to a set of inputs through a function \(f \)
 \[Y = f(x_1, x_2, \ldots, x_m; b_1, b_2, \ldots, b_n) \]
- A special case of the SFM is the input-output model
 \[Y = B_0 + BX \]
2. Time Dependent Function Model

- Dynamic/single-stage process.
- Relates current value of response to past values of the response and process inputs.
- For continuous systems – differential eqs. to describe behavior; with focus on data-driven models, a difference equation model form is adopted:
 \[Y_k = g(y_{k-1}, y_{k-2}, \ldots, y_{k-n}; x_{1,k}, \ldots, x_{i,k-n}; \Phi_j) \]

 \[M_k = 1.01M_{k-1} + D_k \]
2. Time Dependent Function Model

- Models are often developed based on historical input and output data from a process (time series). For such cases, uncertainty is generally a consideration and least squares methods are typically employed to estimate the model parameters.
3. Discrete Event Simulation Model

- For a static/multi-stage situation several interconnected processes are considered.
- Modeling emphasis placed on behavior of system, rather than on details associated with individual processes.
- The processes can be viewed as discrete events.
 - SLAM
 - Monte Carlo
4. Continuous System Simulation Model

- Useful for describing systems in which interest is placed on both time behavior of individual process and system itself.
- State of the system – represented by variables that change over time.
- Constructed by developing equations for a set of state variables whose dynamic behavior simulates the real system.
 - ACSL
 - Matlab/Simulink
ServiceModel: simulation software for evaluating, planning, or designing service systems. Computer-based model of system – test variety of scenarios to find the best. Animation & graphical outputs for visualizing and understanding system behavior.

Typical applications of ServiceModel include:
- Financial Services
- Logistics
- Business Reengineering