Applications of Graphs/Networks

- Konigsberg bridge problem
- Kirchhoff circuit laws
- Four color map problem
- Shortest Path Problem
- Routing and Scheduling
- Products – Assembly/Disassembly
Paths

- An arc – represents a path (with distance)
- Node – represents a location
- What is best way to get from S to E?
Routing and Scheduling

- Scheduling of customer service and routing of service vehicles critical to many service operations
- Some services (e.g., school buses and repair businesses) delivery is critical to the performance of the service
- Other services (e.g., mass transit and trucking firms) timely delivery is the service
Service delivery example: Meals-for-ME

- Private, nonprofit meal delivery program for the elderly in Maine – Meals-for-ME – home delivery of hot meals
- For eligible individuals, program also supports a “congregate” program that provides daily transportation to group-meal sites
- Scheduling of volunteer delivery personnel and vehicles as well as construction of routes is done on a weekly to monthly basis.
Objectives

- Objective of most routing and scheduling problems – minimize service cost
 - Vehicle capital costs
 - Mileage
 - Personnel costs
- For public sector (e.g., schools) a typical objective is to minimize the total number of student-minutes on the bus
- For emergency services, minimizing response time is of primary importance
Routing Network Example

[Diagram showing a network with nodes labeled 1 to 5 and distances between nodes labeled (12 miles, 7 miles, 14 miles, 8 miles, 10 miles).]
Characteristics

- Arrows describe time, cost, or distance of traveling from one node to another.
- Given an average speed of travel or a distribution of travel times, distance can be easily converted to time.
- The solid lines in previous figure can be viewed as a route for a vehicle
 - Also called a Tour
 - 1 → 2 → 3 → 4 → 5 → 1 or
 - 1 → 5 → 4 → 3 → 2 → 1
 - Total distance = 51 miles
Characteristics

- The minimum-cost solution is subject to the tour being feasible:
 - A tour must include all nodes
 - A node must be visited only once
 - A tour must begin and end at a depot

- The route specifies the sequence in which the nodes (or arcs) are to be visited, and a schedule identifies when each node is to be visited.

- Traveling salesman problem
Activity Network

- An arc – represents an activity
- Node – represents an event – completing the activity
- When will E be reached?
Products: Assembly/Disassembly

- Liaison diagram
- Product hierarchies
- And/Or Diagram – Alternatives
- Assembly/Disassembly process
Liaison Diagram

Which parts are touching?
Termed a product hierarchy
Another Liaison Diagram – Product Hierarchy
Product Hierarchy

- Which type of hierarchy is preferred.
 - Taller – more modularity
 - Flatter – easier to replace individual components
How do we do the assembly?

In what order do we handle the parts?
Disassembly Process

- Remove C from A
- Remove A from B
- Remove D from A

or

- Remove D from A
- Remove A from B
- Remove C from A
Disassembly Alternatives
("and or" diagram)
Disassembly Sequence (Network Model) – shortest path problem

Separate subassemblies in []
Minimum Spanning Tree
Flow Network

How many units can we pass from s to t? How much flow??