11.0 MODEL BUILDING
(Updated Spring 2005)

Model Building Steps:

1. Postulation of a tentative model form:
 \[y = b_0 + b_1x_1 + b_2x_2 + b_{12}x_1x_2 + \varepsilon \]
 This is a linear model with interaction term. If we add second order terms, then a full second order model is
 \[y = b_0 + b_1x_1 + b_2x_2 + b_{12}x_1x_2 + b_{11}x_1^2 + b_{22}x_2^2 + \varepsilon \]

2. Design of an appropriate experiment - Supplies data to
 - Estimate model parameters
 - Place model in jeopardy

 Linear model \(\rightarrow 2^k \) factorial design

 2nd order model \(\rightarrow \) Central Composite Design (\(3^k \) factorial designs)

3. Fitting of the model to the data
 - Are all the terms necessary?

4. Diagnostic checking of the model
 - Are the model terms sufficient?
 - Lack of fit, model adequacy.

Diagnostic Checking of the fitted Model

- Plots of the model residuals, \(e = y - \hat{y} \)
- Should be centered about mean of zero
- Should be normally distributed
- Scatter in residuals should not be dependent on any of the x’s, time, y or \(\hat{y} \), or any of the variables related to the experiment.

- Normal Prob Plot of the Resids
- Resids vs. time order of the tests
- Resids vs. \(\hat{y} \)
- Resids vs. \(x_1, x_2, \ldots \)
- For a replicated expt. plot (\(y_{ij} - \bar{y}_i \)) vs. \(\bar{y}_i \)

In calculating a pooled sample variance (ANOVA, replicated factorial designs, independent t-test, etc.) we assumed that the variance was constant for all the responses. We use residual plots to check this, but there is an
analytical test for replicated experiments.

Bartlett’s test for Homogeneity of the Variance (M.S. Bartlett)

Previously, to calculate \(s_{eff}^2 = \frac{4}{N} s_P^2 \)

\[s_p^2 = \frac{\sum s_i^2}{m} \] uses H0: \(\sigma_1^2 = \sigma_2^2 = \ldots = \sigma_m^2 \)

To test this hypothesis,

\[\chi^2_{calc} = 2.3026 \frac{q}{c} \]

where

\[q = (N - m) \log_{10} s_P^2 - \sum_{i=1}^{m} (n_i - 1) \log_{10} s_i^2 \]

where \(N = n_1 + n_2 + \ldots + n_m \)

\[c = 1 + \frac{1}{3(m - 1)} \left(\frac{1}{\sum_{i=1}^{m} \frac{1}{n_i - 1}} - \frac{1}{n - m} \right) \]

Compare \(\chi^2_{calc} \) to \(\chi^2_{m - 1, 1 - \alpha} \). Sensitive to normality of y’s. n should be greater than 4.