Lecture #42

Prof. John W. Sutherland

Dec. 13, 2002
Final
Course Summary

1. Evolution of Quality Design & Control
 - Quality revolution
 - Historical perspective
 - Modern Quality Philosophy
 - Quality & the Engineering Design Process
 - Strategic View of Quality Improvement: Variation, S/N
 - Contrasting approaches: increasing S versus reducing N
2. Conceptual Framework for Quality
 - Deming’s Philosophy
 14 Obligations of Top Management
 - Traditional view of quality
 Engineering Specifications
 - Taguchi’s definition of quality
 Loss function
 - Cost-of-quality
3. Statistics Review
 - Characterizing data
 - Probability distributions
 - Normal distribution
 - Calculating and working with probabilities
 - Sampling distributions
 In particular for sample means
 - Normal probability plot
 - Hypothesis testing
 x’s and xbar’s; α and β risk; Type I and II errors
4. Concept of SPC
- Origin & Characteristic Behavior of Variability
- Process Behavior over time
- Shewhart’s ideas - economic control
- Control chart - process management
- Process of SPC

5. Statistical Basis for Shewhart Control Charts
- Control charts -- connection with hypothesis testing principle
- X-bar control chart
- R control chart
6. Control Chart Details
 - Mechanics of chart construction
 - Interpreting control charts
 - Example - cylinder boring process
 - Graphical techniques (Scatter diagram, Pareto chart, cause & effect diagram)

7. Rational Sampling
 - Sample size, frequency, selection considerations
 - Consecutive vs. distributed sampling
 - Stratification and Mixing

• Chapter 8 -- Workshop #1
9. Process Capability
 - Process capability vs. process control
 - Calculating capability: %, Cp, and Cpk
 - Boring example revisited
 - Variation in Assemblies
 - Statistical assignment of tolerances
 - Loss function
 - What happens when things go wrong....

10. Roll Mill Process Case Study
 • Workshop #2
11. Control Charts for Individuals
 - X and Rm
 - EWMA Charts
 - Autocorrelated data -- time series

13. Control Charts - Attribute Data
 - Definitions (defects, defectives, operational definitions)
 - Binomial distribution
 - p chart
 - np chart
 - p chart variable sample size charts
 - Poisson distribution
 - c chart
 - u chart
14. Case Studies for Attributes
 - Press 120 -- Molding process
 - Accounts payable process
Final Thoughts

• Many of you will be leaving MTU -- good luck!!

• You have a great education -- your potential is unlimited -- don’t settle. Be ambitious -- aim high!!

• Never stop learning. A degree is only a first step.

• Got questions?? -- contact us.

• As time goes by, you will look back fondly on your days at MTU. Stop in one of these days (or drop us a note) & let us know how you are doing.