Course Summary

1. Evolution of Quality Design & Control
 - Quality revolution
 - Historical perspective
 - Modern Quality Philosophy
 - Quality & the Engineering Design Process
 - Strategic View of Quality Improvement: Variation, S/N
 - Contrasting approaches: increasing S versus reducing N
2. Conceptual Framework for Quality
 - Deming’s Philosophy
 14 Obligations of Top Management
 - Traditional view of quality
 Engineering Specifications
 - Taguchi’s definition of quality
 Loss function
 - Cost-of-quality
3. Statistics Review
- Characterizing data
- Probability distributions
- Normal distribution
- Calculating and working with probabilities
- Sampling distributions
 In particular for sample means
- Normal probability plot

- Hypothesis testing
 x’s and xbar’s; α and β risk; Type I and II errors
4. Concept of SPC
 - Origin & Characteristic Behavior of Variability
 - Process Behavior over time
 - Shewhart’s ideas - economic control
 - Control chart - process management
 - Process of SPC

5. Statistical Basis for Shewhart Control Charts
 - Control charts -- connection with hypothesis testing principle
 - X-bar control chart
 - R control chart
6. Control Chart Details
 - Mechanics of chart construction
 - Interpreting control charts
 - Example - cylinder boring process
 - Graphical techniques (Scatter diagram, Pareto chart, cause & effect diagram)

7. Rational Sampling
 - Sample size, frequency, selection considerations
 - Consecutive vs. distributed sampling
 - Stratification and Mixing

- Chapter 8 -- Workshop #1
9. Process Capability
 - Process capability vs. process control
 - Calculating capability: %, Cp, and Cpk
 - Boring example revisited
 - Variation in Assemblies
 - Statistical assignment of tolerances
 - Loss function
 - What happens when things go wrong....

10. Roll Mill Process Case Study

• Workshop #2
11. Control Charts for Individuals
 - X and Rm
 - EWMA Charts

 - Regression
 - Autocorrelated data -- time series
 - Reliability
 - 6 sigma
13. Control Charts - Attribute Data
- Definitions (defects, defectives, operational definitions)
- Binomial distribution
- p chart
- np chart
- p chart variable sample size charts
- Poisson distribution
- c chart
- u chart

14. Case Studies for Attributes
- Press 120 -- Molding process
- Accounts payable process
Final Thoughts

• Many of you will be leaving MTU -- good luck!!

• You have a great education -- your potential is unlimited -- don’t settle. Be ambitious -- aim high!!

• Never stop learning. A degree is only a first step.

• Got questions?? -- contact us.

• As time goes by, you will look back fondly on your days at MTU. Stop in one of these days (or drop us a note) & let us know how you are doing.