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We consider the question of optimal shapes, e.g., those causing minimal extinction among
all shapes of equal volume. Guided by the isoperimetric property of a sphere, relevant in
the geometrical optics limit of scattering by large particles, we examine an analogous
question in the low frequency approximation, seeking to disentangle electric and
geometric contributions. To that end, we survey the literature on shape functionals and
focus on ellipsoids, giving a simple discussion of spherical optimality for the coated
ellipsoidal particle. Monotonic increase with asphericity in the low frequency regime for
orientation-averaged induced dipole moments and scattering cross-sections is also
shown. Additional physical insight is obtained from the Rayleigh–Gans (transparent) limit
and eccentricity expansions. We propose connecting low and high frequency regimes in a
single minimum principle valid for all size parameters, provided that reasonable size
distributions of randomly oriented aspherical particles wash out the resonances for
intermediate size parameters. This proposal is further supported by the sum rule for
integrated extinction.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The literature on light scattering by aspherical particles is
vast, e.g., [1], ranging from radiative transfer, climatology and
remote sensing of atmospheric aerosols [2,3] and microscopy
of bacteria [4] to astrophysics of interstellar dust [5] and
marine monitoring [6]. Any bounds that can be set on optimal
shapes, not only provide insight but can also be of great utility.
For example, in the geometrical optics limit, relevant to
optically large particles, twice the geometric cross-section is
a good approximation to the total extinction cross-section.
Combined with a remarkable theorem, due to Cauchy, that
orientation-averaged cross-sectional area of an ovaloid equals
one-quarter of its surface area, the geometrical limit implies
that spherical total cross-sections are always lower than those
All rights reserved.

ski),
for any randomly oriented convex particles of equal volume.
While perhaps not widely appreciated, this approximation
was discussed in important papers in optics and atmospheric
science [7,8]. The effect can be illustrated by considering
spheroidal surface area, normalized by that of an equal
volume sphere (denoted Sr), regarded as a function of the
aspect ratio, e.g., see p. 620 of [9], given by Sr ¼ ð1=2Þ
ð1�e2Þ�1=3þð1=4eÞð1�e2Þ2=3ln½ð1þeÞ=ð1�eÞ� where e2 � 1�
ðc=aÞ2 for oblate spheroids, and Sr ¼ ð1=2Þð1� e2Þ1=3þð1=2eÞ
ð1�e2Þ�1=6 sin �1ðeÞ where e2 � 1�ðb=aÞ2 for prolate spher-
oids. The function, plotted in Fig. 1 vs. the aspect ratio ρ (curve
labelled “geometric”), has a minimum at the spherical value of
ρ¼ 1. Note that the validity of the geometric limit, because of
the optical theorem, is rather broader than might at first be
expected [7].

The success of a simple geometric reasoning in the
large particle limit prompted us to ask an analogous
question for the small particle (low frequency) Rayleigh
scattering regime. Here the physics of scattering is entirely
different: governed by the magnitude of the induced
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Fig. 1. Optimality of the spherical shape: polarizabilities. Top panel (a): Relative (normalized by the equal-volume-sphere value) surface area Sr (solid line),
relative orientation-averaged polarizability (αr) of conducting spheroids (dashed-dotted line), αr of dielectric ellipsoids (dashed line), and αr of confocal
coated ellipsoid (dotted) vs. ρ, the aspect ratio. Bottom panel (b): Relative orientation-averaged polarizability of dielectric ellipsoids for two different values
of the dielectric contrast δ (see text) in the Rayleigh–Gans (transparent) regime. The ordinate is the logarithm of the spherical access (see Eq. (11) in text).
For both panels, oblate/prolate spheroids on left/right of unity.
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dipole moment. Yet, the classical picture of a dielectric
sphere placed in a uniform external electric field, resulting
in the displaced net positive and negative charges on the
opposing surfaces, evokes geometrical reasoning. Hence,
we ask: do convex aspherical particles scatter more
strongly than equivalent volume spheres? To render the
question well posed, we further specify that the particles
are randomly oriented and consider the magnitude of the
orientation-averaged induced dipole moment. Thus, the
question, apparently not raised before in the context of
scattering theory, becomes: do randomly oriented convex
aspherical particles (ovaloids) possess orientation-
averaged magnitude of an induced dipole moment larger
than that of equivalent volume spheres? By a way of
preview, the answer is in the affirmative for a wide variety
of circumstances. However, having conducted an extensive
literature survey of related questions about particle
shapes, we frequently encountered conflicting statements,
scattered across a variety of disciplines.

For example, early influential developments in electro-
magnetics included statements such as one by Siegel [10,
p. 294], When the wavelength is much longer than the
dimensions of a body, one cannot discern details of the
structure of the body: the observed effect depends more on
the size of the body than on its shape. It is implied that, in
the long wavelength regime, particle shape is not essential.
Consider, for example, thermal IR remote sensing studies
of aerosols which commonly ignore asphericity and model
the scatterers by size-distributed Mie spheres, e.g., see
pp. 1213–1214, Section 3.2, and data in Fig.11 of [11]. This is
not a criticism as spherical modelling suffices for many
purposes and authors in the field of atmospheric optics are
well aware of the importance of asphericity, e.g., [2,3,12–
16]. Yet, integral statements of shape optimality are rare in
the small particle regime. Consider, for instance, an impor-
tant and insightful recent review in this journal [17] where
in the 2nd paragraph of the Abstract it is stated that “for
particles much smaller than the wavelength of incident light,
absorption is proportional to the particle volume and mass”.
This statement must be qualified by specifying particle
shape. Otherwise, as discussed below, spheroids absorb
and scatter more than equal-volume (mass) spheres.

Early literature in radar meteorology dealt with shape
effects but only for the case of backscatter, e.g., [18],
concluding numerical calculations with the conjecture that
spheroids do have larger echoes than equal volume
spheres. In applied optics, the question of optimal shape
for absorption in the visible was tackled almost at the
same time by Senior and by Bohren and Huffman [19,20],
arriving at seemingly conflicting results and ascribing the
spherical shape the minimal vs. the maximal absorption
cross-section status, respectively. As was argued in [20],
the discrepancy had to do with the chosen values of the
dielectric constant. Polarizability has also been studied in
material science where the emphasis is placed on effective
properties of materials and mixture rules rather than
on scattering. We note, in particular, a series of studies
by Sihvola and colleagues [21–23], computing scalar
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polarizabilities of platonic polyhedra and showing numeri-
cally that these exceed those of equal volume spheres.

Perhaps the earliest mention of the “spherical optim-
ality” occurred in the mathematics literature in the late
1940s [24–26], resulting in the Polya–Szego conjecture
regarding capacity and fluid-mechanical polarizability
minima attained by spherical shapes. Note that, in contrast
to this work, the Polya–Szego conjecture deals only with
geometric entities. The conjecture has only recently been
proven by mathematicians [27,28]. In the physics literature
on capacitance, intrinsic conductivity and other “shape
functionals” of conducting ellipsoids, e.g., see Fig. 1 of [29]
and [30,31], also purely geometric quantities were con-
sidered. Below our emphasis is on simple examples of the
interplay between electric and geometric contributions.

Our heuristic chain of reasoning is as follows. Among all
ellipsoidal particles of equal volume, for reasons symme-
try, it is likely that spherical shape is the one attaining
extrema, say, in the orientation-averaged magnitude of the
induced dipole moment. Also, ellipsoidal particles are the
only ones whose internal fields are uniform albeit not
necessarily aligned with the external electric field (the
Eshelby conjecture [27]). On the other hand, Laplace's
equation ∇2ϕ¼ 0 can be derived from the minimum of
the volume integral squared gradient

R
V j∇ϕj2 dV . This

suggests that any field gradients, and, in particular, field
singularities near edges and corners, tend to increase the
volume integral, causing non-ellipsoidal particles to have
larger polarizabilities than equal volume ellipsoids of the
same aspect ratio. Indeed, all numerical evidence we
encountered so far lends support to this view, e.g., the
correlation of Platonic solid polarizabilities with the num-
ber of faces, reported in [21].

Returning to electromagnetic scattering theory, we
shall deal with a total orientation-averaged cross-sections
of ellipsoidal particles, motivated by the high frequency
region but focusing on the low frequency region, with an
eye toward practical bounds for all size parameters [32].
En route, we consider shape optimality for orientation-
averaged polarizabilities and magnitudes of an induced
dipole moment. In particular, we examine the electro-
statics case as a stand-alone problem, establishing optim-
ality of the spherical bound and extending the discussion
to the case of coated triaxial ellipsoids. We also study the
dependence on the aspect ratio and the dielectric constant
and disentangle geometrical effects (larger specific surface
area) from the electric ones, e.g., conducting ellipsoids
(infinite dielectric constant) are treated vis-a-vis dielectric
and geometric ones. We use Taylor expansions in the
dielectric contrast and in eccentricity to gain further
physical insight. We also raise the question of the extent
of size parameters to which spherical optimality holds. To
that end, we use the T-matrix method to examine the
range of validity of the spherical optimality vs. the size
parameter for a variety of dielectric constants and aspect
ratios.

2. Optimality of the spherical shape

Within the framework of electrostatics, what is the
particle shape that attains minimal orientation-averaged
magnitude of the induced dipole moment, while keeping
volume (mass) and the dielectric function fixed? To that
end, let us consider ellipsoidal particles. Let the three
principal axes of a dielectric ellipsoid be along x, y and z
directions. We shall use an analytic solution in the nota-
tion as given in Bohren and Huffman [33] but “renorma-
lized” so that the vacuum permittivity is set to unity (see
also [34,35]). When the ellipsoid is placed in external
electric field E

!¼ E1bxþE2byþE3bz, components of the
induced dipole moment of the ellipsoid are given as
follows (εr ¼ relative permittivity):

pi ¼ 4πabc
εr�1

3þ3Liðεr�1ÞEi ð1Þ

where a, b and c are the principal semi-axes, and Lis are
the associated depolarization coefficients of the dielectric
ellipsoids as given, e.g., in [33,34].

For the special cases of prolate and oblate spheroids,
the depolarization factors are given by

L1 ¼ L2 ¼
gðeÞ
2e2

π

2
� tan�1 g eð Þ

h i
�g2ðeÞ

2
;

L3 ¼ 1�2L1 ð2Þ
where gðeÞ ¼ ðð1�e2Þ=e2Þ1=2.

L1 ¼
1�e2

e2
�1þ 1

2e
log

1þe
1�e

� �
;

L2 ¼ L3 ¼
ð1�L1Þ

2
ð3Þ

Then, the associated polarizabilities are given by, e.g.,
Eq. 5.32 of [33]:

αi ¼ 4πabc
εr�1

3þ3Liðεr�1Þ; ð4Þ

and the orientation-averaged polarizability is

α¼ 4πabc
3

εr�1ð Þ1
3

∑
3

i ¼ 1

1
1þLiðεr�1Þ ð5Þ

while the orientation-averaged polarizability, normalized
per volume ðαnÞ; is

αn ¼ εr�1ð Þ1
3

∑
3

i ¼ 1

1
1þLiðεr�1Þ ð6Þ

The coefficient of (1/3), arising from orientation aver-
aging, merits an explanation. Polarizability is a 2nd rank
tensor, linking the external electric field and the induced
dipole moment vectors. Eq. (1) above is a special (diag-
onal) case, written in the principal axes of the ellipsoid.
Orientation-averaged tensor is an isotropic one so its
components do not change with coordinate rotations
(there are rank 0 and 2 isotropic tensors but not rank 1).
But 2nd rank isotropic tensor has the form αI where
I� diagð1;1;1Þ is the identity matrix and α is the
orientation-averaged polarizability. One can find a by
observing that the only scalar invariant at one's disposal
is the tensor trace (Tr). As TrðIÞ ¼ 3, (1/3) delivers normal-
ization. The question of tensor isotropy is rather subtle in
this context, as it yields scalar polarizabilities not only for a
sphere but also for any 2nd rank isotropic tensor shapes
such as Platonic polyhedra (see also somewhat cryptic
remarks at the very conclusion of [21]). However, this is
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not so for spheroids until orientation-averaging is
performed.

To gain physical insight for the respective roles of
geometry and electrostatics, we examine the transparent
(Rayleigh–Gans) limit. To that end, define dielectric con-
trast as

δ� εr�1 ð7Þ
We can rewrite the average polarizability per volume of
dielectric ellipsoid in terms of δ. Then, upon expanding in
Taylor series for δ51 to O(δ3Þ, Eq. (6) yields the
orientation-averaged polarizability per volume

αnffi
δ

3
3�δ L1þL2þL3ð Þþδ2 L21þL22þL23

� �h i
ð8Þ

Using the constraint

gðL1; L2; L3Þ ¼ L1þL2þL3 ¼ 1 ð9Þ
which holds for ellipsoids at all aspect ratios, we obtain

αnffi δ

3
3�δþδ2 L21þL22þL23

� �h i
ð10Þ

which, for the sphere, reduces to αn;sphereffiðδ=3Þ
½3�δþδ2=3�. We now introduce the spheroidal access as
αr � αn;spheroid=αn;sphere. Adding and subtracting δ2=3 in the
numerator of αr then yield the following equation:

αr ¼ 1þδ2ðL21þL22þL23�1=3Þ
3�δþδ2=3

� 1þδ2ðL21þL22þL23�1=3Þ
3

ð11Þ

The separation of the geometrical ðL21þL22þL23�1=3Þ and
the electrical (δ2) effects is now evident and appears to be
a new insight. What shape attains minimal αn? The
question reduces to finding the minimum of L21þL22þL23,
subject to the constraint (9). A general proof is given
below, but an appealing geometrical argument can now
be given for spherical optimality, based on an isoperi-
metric inequality. Interpret the constraint (9) as a fixed
perimeter of a rectangular solid, whose surface area, which
is twice the quantity L21þL22þL23, is the one to optimize. As
the minimal surface area of all rectangular blocks of a
given perimeter is that of a cube, i.e., L1 ¼ L2 ¼ L3 ¼ 1=3 in
the space of depolarization factors, in real space the sphere
delivers optimal shape. In the bottom panel (b) of Fig. 1,
we illustrate this by plotting the logarithm of
αr ¼ αspheroid=αsphere ¼ 1þδ2ðL21þL22þL23�1=3Þ.

For the special case of a conducting ellipsoid, compo-
nents of the dipole moment are given by

pi ¼
EiV
4πLi

; ð12Þ

where i¼1, 2 and 3, V is volume of the ellipsoid and Li is
the depolarization coefficient of the conducting ellipsoid.
Then, the polarizability is αi ¼ V=ð4πLiÞ and the
orientation-averaged polarizability per volume is

αn ¼
1

12π
1
L1

þ 1
L2

þ 1
L3

� �
ð13Þ

Coated particles are ubiquitous in applications, e.g.,
[36,37]. Next, we pose the optimal shape question about
coated spheroids, apparently for the first time. Is the
concentric spherical configuration still the optimal one? To
that end, using the coated ellipsoid analytic solution,
e.g., Eq. (5.35) in [33], we write the components of
polarizability of a coated confocal ellipsoid as

αi ¼
V ðε2−1Þ ε2 þ ðε1−ε2Þ Lð1Þi −f Lð2Þi

� �h i
þ f ε2ðε1−ε2Þ

� �
ε2 þ ðε1−ε2Þ Lð1Þi −f Lð2Þi

� �h i
1þ ðε2−1ÞLð2Þi

h i
þ f Lð2Þi ε2ðε1−ε2Þ

ð14Þ
where V is total volume of the ellipsoid, f is the ratio of
volume of inner ellipsoid per total volume, ε1 and ε2 is the
relative permittivity of the inner and outer ellipsoids,
superscript (1) and (2) denotes inner and outer, respec-
tively. Then, the orientation-averaged polarizability per
volume of the coated ellipsoid is

αn ¼ 1
3
∑3

i¼1

�
ðε2−1Þ ε2 þ ðε1−ε2Þ Lð1Þi −f Lð2Þi

� �h i
þ f ε2ðε1−ε2Þ

�
ε2 þ ðε1−ε2Þ Lð1Þi −f Lð2Þi

� �h i
1þ ðε2−1ÞLð2Þi

h i
þ f Lð2Þi ε2ðε1−ε2Þ

ð15Þ
Results of our calculations for polarizabilities of dielec-

tric, conducting, transparent and coated confocal ellipsoids
vs. the (inner) aspect ratio ρ are shown in the two panels
of Fig. 1. Along with the evident spherical optimality, they
also include the monotonic dependence on the aspect
ratio. Also shown, for comparison, is the relative spher-
oidal surface area. It can now be readily understood why
the geometric case is the intermediate one between the
conducting and the dielectric one: as the relative permit-
tivity approaches unity, spheroidal excess disappears at all
aspect ratios. Note that the results hold for confocal coated
spheroids, regardless of the sign of δε¼ ε2�ε1 (Fig. 3).

In passing, we note that the minimum at the spherical
value of ρ¼ 1 is smooth for all curves so that in the near-
spherical expansion, the first non-zero term in the aspect
ratio is quadratic. Also, note that no qualitative change in
the plot would occur, if one were to move from ρ to δρ,
defined by ρ¼ 1þδρ and subtract off unity from all
abscissa values. Now, quadratic dependence in δρ implies
4th order dependence in eccentricity as e� ½2ðρ�1Þ�1=2 (we
used the prolate expression as an example). Calculations
show that this is, indeed, the case, e.g., eccentricity
expansions of the relative surface area of oblate and
prolate spheroids, respectively, are Oðe4Þ and contain even
powers as follows:

Srffi1þ2e4

45
þ136e6

2835
þ131e8

2835
þ12224e10

280665
þ⋯ ð16Þ

Srffi1þ2e4

45
þ116e6

2835
þ101e8

2835
þ8764e10

280665
þ⋯ ð17Þ

We now proceed to the scattering cross-sections. As the
orientation-averaged absorption cross-sections scale with
the product of the imaginary part of relative permittivity
and the arithmetic average of principal polarizabilities
(e.g., see Eq. (1) and Eq. (5.44) of [20,33], respectively),
shape optimization proceeds exactly as for polarizabilities.
Therefore, we next consider the orientation-averaged
scattering cross-section, given by (e.g., Eq. (5.45) in [33])

〈Csca〉¼
k4

18π
α1j2þ α2j2þ α3j2

�� ������ ð18Þ
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Substituting for the polarizability from Eq. (4) into the
above equation, we obtain

〈Csca〉¼
k4ð4πabcÞ2ðεr�1Þ2

18π
∑
3

i ¼ 1

1
1þLiðεr�1Þ

� �2
" #

ð19Þ

Similarly, substituting the polarizability of a conducting
ellipsoid in Eq. (18), for the scattering cross section of
conducting ellipsoid we obtain

〈Csca〉¼
k4V2

288π2
1

L21
þ 1

L22
þ 1

L23

 !
ð20Þ

For the coated ellipsoid case, the average scattering cross
section is

〈Csca〉 ¼
k4V2

18π
∑3

i¼1

�
ðε2−1Þ

h
ε2 þ ðε1−ε2Þ

�
Lð1Þi −f Lð2Þi

�i
þ f ε2ðε1−ε2Þ

�
ε2 þ ðε1−ε2Þ Lð1Þi −f Lð2Þi

� �h i
1þ ðε2−1ÞLð2Þi

h i
þ f Lð2Þi ε2ðε1−ε2Þ

0@ 1A2

ð21Þ

The results are plotted in Fig. 2 and spherical optimality
is evident once more. We have been able to prove
spherical optimality of polarizabilities and cross-sections
for the conducting and dielectric spheroids. We use
dielectric ellipsoid family to illustrate the proof by employ-
ing the method of Lagrange multipliers.

Consider the space of depolarization factors, spanned
by L1, L2 and L3. While varying ellipsoidal shapes, the
relative permittivity is held constant and the objective
function is

FðL1; L2; L3Þ ¼ ∑3
i¼1

1
1þ Liðεr−1Þ

ð22Þ

with the constraint in (9). Following the method of
Lagrange multipliers, we write

∇
!

FðL1; L2; L3Þ ¼ λ∇
!

gðL1; L2; L3Þ ð23Þ
Then, we get

@

@Li

1
1þ Liðεr−1Þ

¼ λ ð24Þ

for i¼ 1;2;3. Insofar as this Equation is invariant w.r.t.
interchange of labels, that is, completely symmetric in L1,
L2, and L3, it follows that L1 ¼ L2 ¼ L3 delivers the minimum
and Li ¼ 1=3 is obtained from the constraint (9). This
represents spherical depolarization factors. We used the
same method to establish spherical optimality for Eqs.
(13), (19) and (20). We used the MATLAB numerical
optimization program ‘Genetic Algorithm’ to find the
aspect ratio of the inner spheroid, leading to the
minimum in orientation-averaged polarizability and scat-
tering cross-section of confocal coated spheroids. The
optimization was performed by setting the pairs of relative
permittivities of inner and outer ellipsoids ðε1; ε2Þ as
f1:1;1:5;2:0;2:1;4;10;99:5; 100:0g. The values of ε1 and
ε2 span the cases: (1) ε1oε2, (2) ε14ε2, (3) ε1 � ε2, (4)
ε1; ε2b1 and (5) ε1; ε2-1 and thus include all essential
possibilities. Moreover, we set the volume fraction of the
inner to the total ellipsoid as 1=5;1=2;4=5 in order to test
the thick, intermediate and thin shell cases. The numerical
results confirmed that minimum in orientation-averaged
polarizability and cross section occurs at the spherical
shape.

We note that symmetry arguments suggest spherical
optimality for coated particles; coated sphere attains
minimum numerically as Fig. 3 illustrates. The surprise is
that upon switching the sign of (ϵ1�ϵ2), orientation-
averaged polarizability value of the coated sphere does
not flip from minimum to maximum. Taking the limit of
empty interior (ϵ1 ¼ 1) and using superposition for cavities
help with interpretation via dielectric shell configurations.
However, symmetry arguments may not hold for the
general case of coated ellipsoids of arbitrary relative
orientation.
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presents the case of scattering by randomly oriented spheroids with a fixed aspect ratio ρ¼ 0:71 for three different values of the refractive index.
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3. Spherical optimality beyond the Rayleigh region

Having established the optimality of the spherical
shape in the low frequency regime and having discussed
it in the high frequency regime, one is naturally tempted to
bridge it for all size parameters. However, the underlying
physics renders it unlikely as resonances occur in the
intermediate region and spheroids are, in fact, known to
scatter less than spheres at some size parameters. One
may still hope that such a region is not wide when
orientation-averaged properties of spheroids are com-
pared to those of equivalent sphere and that in most
practical applications natural size distributions wash out
the resonances. As a first step toward this goal, we used
the T-matrix method to get a feel for the extent of the
range within which the spherical optimality holds. For
example, at what size parameter does the relative cross-
section drop below unity and ellipsoidal superiority
ceases? To that end, we computed the scattering cross-
section for a randomly oriented spheroids relative to one
for equivalent volume spheres.

The results are shown in the three panels of Fig. 4. All
the three panels show scattering cross-section vs. the size
parameter ka where k is the wave-number and a is the
radius of the equal volume sphere. The top (oblate) and
middle (prolate) panels show, for various values of the
aspect ratio ρ; that randomly oriented spheroids begin to
drop below the spherical value at size parameters such
that the particle diameter is about a quarter of the incident
wavelength. This seems reasonable as scattering from
parts of the particle can exhibit interference at these
parameters. The bottom panel presents the case for three
different values of the refractive index for randomly
oriented spheroids at a fixed aspect ratio. It is observed
that stronger dielectric effects (larger dielectric constant)
take longer to drop down to the spherical value in the size
parameter space and the crossing occurs on the order of
size parameter of unity. Note that while the effect looks
small (� 3%) for the chosen index of refraction and aspect
ratios, for this figure and for the other figures throughout
this paper, we obtained much larger effects for large aspect
ratios and large dielectric constants.

Recalling that spherical optimality holds at the high
end (large particles) down to the size parameter of � 10
[7] and at the low end (small particles) up to size
parameter � 1, suggests that the intermediate region is
not overwhelmingly broad and that even narrow distribu-
tions of sizes may wash out the resonances, thereby
rendering spherical optimality broadly valid. Systematic
investigation of this conjecture is beyond the scope of this
paper but will be a subject of future work.

4. Concluding remarks

The question of optimal shape, e.g., that causing mini-
mal extinction among all shapes of equal volume, has been
examined. We focused on the low frequency approxima-
tion for ellipsoids, elucidating the roles of electric and



A.B. Kostinski, A. Mongkolsittisilp / Journal of Quantitative Spectroscopy & Radiative Transfer 131 (2013) 194–201200
geometric contributions and giving a simple proof of
spherical optimality for a ellipsoidal particle. Monotonic
increase with asphericity in the low frequency regime
for orientation-averaged induced dipole moments and
scattering cross-sections has been discussed. Even a
stand-alone remark in electrostatics that a sphere has
the least orientation-averaged dipole moment of all ran-
domly oriented particles of equal volume, merits a foot-
note in any text on electromagnetism, in authors opinion.
We also propose to bridge low and high frequency regimes
in a single minimum principle throughout the range of size
parameters, given realistic size distributions of randomly
oriented aspherical particles. A sceptical reader might
object that most of the above considerations have been
confined to the ellipsoidal group. We now suggest another
argument for the generality of the spherical optimum,
based on the sum rule for integrated extinction, and then
return to arbitrary particle shapes.

Consider the extinction cross-section, integrated over
all wavelengths. By dimensional analysis, the result has
units of volume. Thus, once the question is asked, one
might expect the result to depend on particle volume as
the only characteristic length scales in the problem are
particle size (a) and the wavelength λ but the latter is
integrated out. In [38], Purcell derived the following
integrated extinction result (see Eq. 4.81 in [33] for this
particular way of writing it):Z 1

0
Cext λð Þ dλ¼ 4π3a3

εð0Þ�1
εð0Þþ2

� �
ð25Þ

for a spherical particle. Remarkably, the integrated extinc-
tion involves only the static dielectric constant, arising
from using Kramers–Kronig relation in the derivation of
[38]. For randomly oriented spheroidal particles, the
integrated extinction has the same form as Eq. (25) but
with the pre-factor which depends on the depolarization
factors [38], Li as throughout this paper. By symmetry
arguments, again, the sphere has least integrated extinc-
tion among all ellipsoidal particles. This suggests that in
the integrated sense, spheres will be minimal, with ellip-
soids causing a bit more extinction and other shapes of
equal volume and aspect ratio, likely higher.

Why do we suspect that other shapes of equal volume
are likely to exceed ellipsoids? First, there is the numerical
evidence. The relative orientation-averaged polarizability
of icosahedron, dodecahedron, octahedron, cube and tet-
rahedron with relative permittivity εr ¼ 5:0 are 1.0147,
1.0207, 1.0538, 1.0661 and 1.1454, respectively [21]. Sec-
ondly, according to the weak Eshelby conjecture, ellipsoids
are the only particle shapes able to contain a uniform
electric field in their interiors [27] albeit not necessarily
aligned with the external electric field. The converse is also
true (strong Eshelby conjecture, e.g., see [39]). On the
other hand, as discussed in the Introduction, it was
suggested that any gradients and field singularities tend
to increase the volume integral, causing non-ellipsoidal
particles to have larger polarizabilities, etc., than those of
equal volume ellipsoids of comparable aspect ratio. Note
that one has to exercise caution when comparing ellip-
soids to polyhedra or finite cylinders because of funda-
mentally different limits of aspect ratio. Ellipsoids are
deformed spheres and convert to spheres at ρ¼ 1 but this
is not so for cubes, finite circular cylinders, tetrahedra, etc.

It is an interesting fact that the polarizability tensor
reduces to a scalar (multiple of an identity matrix) not only
for spheres but for any particle possessing three mutually
orthogonal and identical symmetry axes, e.g., platonic
polyhedra. As an isotropic tensor is also of this form, no
orientation-averaging is necessary when examining low
frequency scattering of such particles. While regular poly-
hedra lack complete rotational symmetry to fit, say, a T-
matrix method, they nevertheless supply comparable
computational advantage for small size parameters, at
least, as only a single orientation has to be computed. As
an important possible application of the above seemingly
academic consideration, consider modelling and remote
sensing of fine dust. A micron size particle is just the right
size to interact strongly with visible and thermal radiation
but it is also just the right size to stay aloft for days
because it falls in a laminar regime, greatly sensitive to
particle shape. In this sedimentation problem the role of
the polarizability tensor is played by the resistance tensor
of microhydrodynamics. For the reasons of tensor sym-
metry, identical to just discussed above, regular polyhedra
have the resistance tensor which is a multiple of an
identity matrix [40]. This has the surprising consequence
that, say, cubes or tetrahedrons fall at the same speed,
regardless of orientation. Hence, modelling of, say, Saharan
dust for remote sensing purposes could be based on
regular polyhedra and variable aspect spheroids without
significant loss of generality.
Acknowledgments

This work was supported by the NSF Grant AGS-111916.
We wish to thank Gregory Ryskin, Sarah Kostinski, and
Elizabeth Chen for useful comments and Michael Mis-
hchenko for directing us to T-matrix Fortran computer
codes, publicly available at http://www.giss.nasa.gov/staff/
mmishchenko/t_matrix.html.

References

[1] Mishchenko MI, Hovenier JW, Travis LD. Light scattering by non-
spherical particles: theory, measurements, and applications. Aca-
demic Press; 1999.

[2] Dubovik O, Sinyuk A, Lapyonok T, Holben BN, Mishchenko M, Yang P,
et al. Application of spheroid models to account for aerosol particle
nonsphericity in remote sensing of desert dust. J Geophys Res Atmos
2006;1984–2012:111.

[3] Dubovik O, Herman M, Holdak A, Lapyonok T, Tanre D, Deuze JL,
et al. Statistically optimized inversion algorithm for enhanced
retrieval of aerosol properties from spectral multi-angle polari-
metric satellite observations. Atmos Meas Tech 2011;4:975–1018.

[4] Koch AL, Ehrenfeld E. The size and shape of bacteria by light
scattering measurements. Biochim Biophys Acta Gen Subj 1968;165:
262–73.

[5] Van De Hulst HC. Light scattering by small particles (structure of
matter series), 2010.

[6] Lehahn Y, Koren I, Boss E, Ben-Ami Y, Altaratz O. Estimating the
maritime component of aerosol optical depth and its dependency on
surface wind speed using satellite data. Atmos Chem Phys 2010;10:
6711–20.

[7] Chylek P. Extinction cross sections of arbitrarily shaped randomly
oriented nonspherical particles. J Opt Soc Am 1977;67:1348–50.

http://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html
http://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref1
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref1
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref1
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref2
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref2
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref2
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref2
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref3
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref3
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref3
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref3
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref4
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref4
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref4
http://refhub.elsevier.com/S0022-4073(13)00325-7/othref0005
http://refhub.elsevier.com/S0022-4073(13)00325-7/othref0005
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref6
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref6
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref6
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref6
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref7
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref7


A.B. Kostinski, A. Mongkolsittisilp / Journal of Quantitative Spectroscopy & Radiative Transfer 131 (2013) 194–201 201
[8] Pollack JB, Cuzzi JN. Scattering by nonspherical particles of size
comparable to wavelength—a new semi-empirical theory and its
application to tropospheric aerosols. J Atmos Sci 1980;37:868–81.

[9] Krotkov NA, Flittner D, Krueger A, Kostinski A, Riley C, Rose W, et al.
Effect of particle non-sphericity on satellite monitoring of drifting
volcanic ash clouds. J Quant Spectrosc Radiat Transfer 1999;63:
613–30.

[10] Siegel KM. Far field scattering from bodies of revolution. Appl Sci
Res, 1958 293–328.

[11] Haywood J, Johnson B, Osborne S, Mulcahy J, Brooks M, Harrison M,
et al. Observations and modelling of the solar and terrestrial
radiative effects of Saharan dust: a radiative closure case study over
oceans during the GERBILS campaign. Q J R Meteorol Soc 2011;137:
1211–26.

[12] Asano S, Yamamoto G. Light scattering by a spheroidal particle. Appl
Opt 1975;14:29–49.

[13] Asano S. Light scattering properties of spheroidal particles. Appl Opt
1979;18:712–23.

[14] Goncharenko A, Venger E, Zavadskii S. Effective absorption cross
section of an assembly of small ellipsoidal particles. J Opt Soc Am B
1996;13:2392–5.

[15] Goncharenko A, Semenov YG, Venger E. Effective scattering cross
section of an assembly of small ellipsoidal particles. J Opt Soc Am A
1999;16:517–22.

[16] Goncharenko A, Popelnukh V, Venger E. Effect of weak nonspheri-
city on linear and nonlinear optical properties of small particle
composites. J Phys D Appl Phys 2002;35:1833.

[17] Moosmller H, Chakrabarty R, Arnott W. Aerosol light absorption and
its measurement: a review. J Quant Spectrosc Radiat Transfer
2009;110:844–78.

[18] Atlas D, Kerker M, Hitschfeld W. Scattering and attenuation by non-
spherical atmospheric particles. J Atmos Terr Phys 1953;3:108–19.

[19] Senior T. Effect of particle shape on low frequency absorption. Appl
Opt 1980;19:2483–5.

[20] Bohren CF, Huffman DR. Absorption cross-section maxima and
minima in IR absorption bands of small ionic ellipsoidal particles.
Appl Opt 1981;20:959–62.

[21] Sihvola A, Yla-Oijala P, Jarvenpaa S, Avelin J. Polarizabilities of
platonic solids. IEEE Trans Antennas Propag 2004;52:2226–33.

[22] Sihvola A. Dielectric polarization and particle shape effects.
J Nanomater 2007:5.
[23] Venermo J, Sihvola A. Dielectric polarizability of circular cylinder.
J Electrostatics 2005;63:101–17.

[24] Polya G, Szego G. Inequalities for the capacity of a condenser. Am
J Math 1945;67:1–32.

[25] Polya G. A minimum problem about the motion of a solid through a
fluid. Proc Natl Acad Sci USA 1947;33:218.

[26] Jones D. Low frequency electromagnetic radiation. IMA J Appl Math
1979;23:421–47.

[27] Kang H, Milton GW. Solutions to the Polya–Szego conjecture and the
weak Eshelby conjecture. Arch Ration Mech Anal 2008;188:93–116.

[28] Kang H. Conjectures of Polya–Szego and Eshelby, and the Newtonian
potential problem: a review. Mech Mater 2009;41:405–10.

[29] Garboczi E, Snyder K, Douglas J, Thorpe M. Geometrical percolation
threshold of overlapping ellipsoids. Phys Rev E 1995;52:819.

[30] Douglas JF, Garboczi EJ. Intrinsic viscosity and the polarizability of
particles having a wide range of shapes. Adv Chem Phys 1995;91:
85–154.

[31] Garboczi E, Douglas J. Intrinsic conductivity of objects having
arbitrary shape and conductivity. Phys Rev E 1996;53:6169.

[32] Bi L, Yang P, Kattawar GW, Kahn R. Single-scattering properties of
triaxial ellipsoidal particles for a size parameter range from the
Rayleigh to geometric-optics regimes. Appl Opt 2009;48:114–26.

[33] Bohren CF, Huffman DR. Absorption and scattering of light by small
particles. Wiley; 1983.

[34] Landau LD, Lifshitz EM. Electrodynamics of continuous media.
Oxford: Pergamon Press; 1960.

[35] Stratton JA. Electromagnetic theory. McGraw-Hill Book Company;
1941.

[36] Erlick C. Effective refractive indices of water and sulfate drops
containing absorbing inclusions. J Atmos Sci 2006;63:754–63.

[37] Voshchinnikov NV. Electromagnetic scattering by homogeneous and
coated spheroids: calculations using the separation of variables
method. J Quant Spectrosc Radiat Transfer 1996;55:627–36.

[38] Purcell EM. On the absorption and emission of light by interstellar
grains. Astrophys J 1969;158:433–40.

[39] Moroz A. Depolarization field of spheroidal particles. J Opt Soc Am B
2009;26:517–27.

[40] Kim S, Karrila SJ. Microhydrodynamics: principles and selected
applications. Courier Dover Publications; 1991.

http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref8
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref8
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref8
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref9
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref9
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref9
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref9
http://refhub.elsevier.com/S0022-4073(13)00325-7/othref0010
http://refhub.elsevier.com/S0022-4073(13)00325-7/othref0010
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref11
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref11
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref11
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref11
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref11
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref12
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref12
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref13
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref13
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref14
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref14
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref14
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref15
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref15
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref15
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref16
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref16
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref16
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref17
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref17
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref17
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref18
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref18
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref19
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref19
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref20
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref20
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref20
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref21
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref21
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref22
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref22
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref23
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref23
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref24
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref24
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref25
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref25
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref26
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref26
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref27
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref27
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref28
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref28
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref29
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref29
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref30
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref30
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref30
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref31
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref31
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref32
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref32
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref32
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref33
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref33
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref34
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref34
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref35
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref35
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref36
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref36
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref37
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref37
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref37
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref38
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref38
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref39
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref39
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref40
http://refhub.elsevier.com/S0022-4073(13)00325-7/sbref40

	Minimum principles in electromagnetic scattering by small aspherical particles
	Introduction
	Optimality of the spherical shape
	Spherical optimality beyond the Rayleigh region
	Concluding remarks
	Acknowledgments
	References




