To appear in JSPI (1999).

Orthogonal arrays of strength three from regular
3-wise balanced designs

Charles J. Colbourn
Department of Computer Science
University of Vermont
Burlington, Vermont 05405

D. L. Kreher
Department of Mathematical Sciences
Michigan Technological University
Houghton, Michigan 49931-1295

J. P. McSorley
Department of Mathematical Sciences
Southern Illinois University
Carbondale, Tllinois

D. R. Stinson
Department of Combinatorics and Optimization
University of Waterloo
Waterloo Ontario, N2L 3G1, Canada

October 26, 1999

Abstract

The construction given in [4] is extended to obtain new infinite families
of orthogonal arrays of strength 3. Regular 3-wise balanced designs play
a central role in this construction.

1 Introduction

An orthogonal array of size N, with k constraints (or of degree k), s levels
(or of order s), and strength t, denoted OA(N,k,s,t), is a k x N array with
entries from a set of s > 2 symbols, having the property that in every t x N



submatrix, every ¢ X 1 column vector appears the same number A = N/s? times.
The parameter A is the indez of the orthogonal array. An OA(N,k, s,t) is also
denoted by OA,(t, k, s); in this notation, if ¢ is omitted it is understood to be 2,
and if X is omitted it is understood to be 1. A parallel class in an OA,(t,k, s)
is a set of s columns so that each row contains all s symbols within these s
columns. A resolution of the orthogonal array is a partition of its columns into
parallel classes, and an OA with such a resolution is termed resolvable. An
OA\(t, k,n) is class-regular or regular if some group I' of order n acts regularly
on the symbols of the array. A class-regular OA,(t, k,n) is resolvable. See [1]
for a brief survey on orthogonal arrays of strength at least 3.

An ordered design OD(N, k, s,t) is a k X N array with entries from a set of
s > 2 symbols, having the property that in every ¢ x N submatrix, every ¢ x 1
column vector of distinct symbols appears the same number A of times, where
N =2xs(s—1)---(s—t+1). We also use the notation OD, (¢, k, s) to describe
such an array.

In [4] a construction for orthogonal arrays of strength 3 is given that starts
from resolvable 3-(v, k, \) designs and uses 3-transitive groups. The conditions
on the resolvable 3-design ingredient can be relaxed and a more general theorem
can be stated using a resolvable set system (X, B) such that:

1. the number of blocks containing three points z,y,2 € X, x #y # z # x,
is a constant A3 that does not depend on the choice of z,vy, z;

2. the number of blocks containing two points z,y € X but disjoint from a
third point z € X, x # y # 2 # =, is a constant b} that does not depend
on the choice of z, y, z.

We allow (X, B) to contain blocks of any size, including 1, 2, 3 and |X|.

If xz,y € X, z # y, then the number of blocks containing z and y is A2 =
b + A3 independent of the choice of x and y. These set systems need not be
balanced for points. For example, the set system

{{1, 2,3,4}, {1, 2, 00}, {1, 3, 00}, {1,4,00},{2,3, 00}, {2, 4, oo},}
{3,4,0},{1,2},{1,3},{1,4}, {2, 3}, {2,4}, {3,4}

has A3 = 1, Ay = 3, points 1,2, 3,4 each occur in 7 blocks, but oo in 6 blocks. If
resolvability is required, then every point must occur in the same number \; = r
of blocks. Kageyama [3] called a t-wise balanced design that is also i-balanced
for each ¢ < t a regular t-wise balanced design.

If A3 # 0, and the block size is constant, then such a design is a 3-design.
But these conditions are not necessary. For example, the edges of the complete
graph K, when v is even have A3 =0, A2 = 1, and A\; = v — 1. Furthermore K,
has a 1-factorization and so this set system is resolvable.

A 3-(v,K,A) design of width w is a pair (X, B) where X is a v-element set
of points and B is a collection of subsets of X called blocks satisfying:



1. the size of every block is in K;
2. A = [A1, A2, A3] and every i-element subset is in A; blocks, 1 = 1,2,3 and

3. the blocks can be partitioned into A; resolution classes using no more than
w blocks in any one class.

We further generalize the theorem from [4] by replacing the 3-transitive
group by a suitable ordered design. The revised theorem is as follows:

Theorem 1.1 Suppose there exists an OD,, (3, w,n+1). If a 3-(v, K, A) design
of width w ezists such that n = (A1 — A3)/(A2a — A3) — 2 and A3(n + 1) < Ay,
then an OAp(n—1)(ra—2s)(3,v,n + 1) also exists.

Proof: The proof is similar to the proof of Theorem 2.1 in [4]. Let (X,B)
be a 3-(v,K,A) design of width w, where X = {z; : 1 < i < v}. Denote the
resolution classes of this design by B;, 1 < j < A, and let the blocks in B; be
denoted B, 1 < k < w;j, where w; < w. Construct the matrix v by A; matrix
M as in [4]:

M(Z,j) =k&ux; € Bj,k,

1<i<u,1<j<A.

Now let rq,...,7y be the rows of an OD,, (3, w,n+1) on symbols 1,...,n+1.
Then replace every entry k of M by the row vector r;. Call the resulting matrix
M.

Finally, let C' be the matrix containing m(n — 1)(A2 — A3(n + 1)) copies of
each “constant” column zz ...z, for 1 <z <n+ 1. Then the matrix [M’,C]
can be shown to be the desired OA,,(,_1)(x,—15)(3,v,n + 1), as in [4].

O

Results on ordered designs can be found in Teirlinck [5]. The only ordered
designs we use in this paper are those that arise from 3-transitive permutation
groups, as follows: Let G act 3-transitively on an (n + 1)-element set 2 and let
m(n®—n) be the order of G. Then it is clear that there is an OD,,(3,n+1,n+1).
In particular, if n = ¢ is a prime power, then the sharply 3-transitive group
PGLs(q) yields an OD;(3,q + 1,¢q + 1). Deleting any q + 1 — w rows of this
ordered design yields an ODy(3,w,q + 1). We therefore have the following
corollary:

Corollary 1.2 If a 3-(v,K,A) design of width w exists such that n = (A —
A3)/ (A2 — A3) — 2 is a prime power, A3(n +1) < Ay and w < n + 1, then an
OA(n—1)(ra—2s)(3,v,n + 1) also exists.

2 Applications of the Construction

Here is our first application of the construction.



Theorem 2.1 Let g be an odd prime power. Then there exists an OA,_1(3,q+
3,q+1).

Proof: Set v = ¢ + 3. Then a 1-factorization of K, is a 3-(v,{2},[v — 1,1,0])
design of width w = v/2 = (¢+3)/2. Then w—1 < gand (A —A3)/(A2—A3)—2 =
(v—1-0)/(1-0)—2=wv—3=gq, and the result follows from Corollary 1.2.
O

The next lemma gives a construction for regular 3-designs having more than
one block size.

Lemma 2.2 For all x > 2 there exists a 3-(4z,{2,4,2z},[1 + 2(z — 1)(2z —
1),2z — 1,1]) design of width 2(x — 1).

Proof: The construction is essentially the doubling construction for Steiner
quadruple systems (see [2], for example). Let A and B be two disjoint sets of
size 2z and let {a1,az,...,a2;—1} and {b1,ba,...,baz_1} be 1-factorizations of
A and B respectively. Take as blocks

1. the sets A and B each of size 2z;

2. the 22 4-element subsets in each of the 2z — 1 families: {aUB:a € a;,8 €
b}, foralli=1,2,...,2z —1; and

3. all the 2(%’) pairs that are either in A or in B each repeated  — 2 times.

It is not difficult to show that the blocks can be arrranged into resolution classes
with at most 2(x — 1) blocks each, to produce the required design. m|

If we use the 3-(v, K, A) designs constructed in Theorem 2.2 as ingredients
to Corollary 1.2 then

(A1 — A3)
(A2 — A3)
(142 —1)2z—1)—1)

- 2z —1) -2

-2

= 2z-3.
Consequently, the following orthogonal arrays are obtained.

Theorem 2.3 An OAp_4(3,2(q + 3),q + 1) ewists for every odd prime power
q.

If D; is a 3-(v,K;, A;) design of width w;, for i = 1,2,...,n then for nat-
ural numbers «a;, the union with repeated blocks U}, a;D; of a; copies of D;,
1,2,...,nis a 3-(v,U;Ks, ), a;A;) design of width w = max{w;}. We illustrate
this idea next.



Theorem 2.4 Let q be a prime power and choose integers a,b,m > 1 such that
1. ¢+3=m(a+b);
2. ma > 4;
3. m(a+2b) =0 (mod 4); and
4. (m(a+2b) —4)/4=0 (mod b).
a+2b

‘\a+b 3),q+1) emists.
(q—l-i—mb)(q_l)( <a+b)(q+ ),q+ 1) exists

Then an 0A(a+b)
4b

Proof: Let z = m(a + 2b)/4. Then z > 2 is a positive integer and by Theo-
rem 2.2 there is 3-(4z,{2,4,2z},[1+ 2(z — 1)(2z — 1),2z — 1,1]) design D; of
width 2(x — 1). Also the edges of the complete graph Ky, (see the proof of
Corollary 2.1) form a 3-(4z, {2}, [42 — 1,1, 0]) design D5 of width w = 2z. Take
one copy of Dy and §(x — 1) copies of Dy to form a

3- (4m,{2,4,2x}, [1+ (@ 1)(4(“+Z)“’— (at+20)) |,

(x —1)(a +2b) 1
b bl

design D of width w = 2z. The conditions of Theorem 1.1 are satisfied. O

The main applications of Theorem 1.1 rest on finding suitable regular 3-wise
balanced designs. We have illustrated in this section the applications of some
easily constructed designs of this type, but expect that further constructions
can lead to more existence results for orthogonal arrays. We close by observing
that, conversely, orthogonal arrays can be used to construct 3-(v, K, A) designs.

Theorem 2.5 If there exists an OA,(3,n,yw), then there ezists a 3-(n, K, A)
design of width w with
A = [py’v®, py’w®, pyPw).

Proof: Let A be an OA,(3,n,v), where v = yw. We think of A as an n x pv?
array defined on symbol set X, |X| = yw. Partition X into subsets Y;, i =
1,2,...,w with each |Y;| = y. We define a 3-(n, K, A) design of width w with

wpv® blocks, as follows: for i = 1,2,...,w and each column j of A, define a
block B; ; = {h : A[h,j] € Y;}. Then ({1,...,n},{B;s;}) is a 3-(n, K, A) design
of width w with A = [uyw?, pyPw?, pyw). O
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