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Abstract

A covering array of size N, degree k, order v and strength t is a k X N array with
entries from a set of v symbols such that in any ¢ x N subarray every ¢ X 1 column
occurs at least once. Covering arrays have been studied for their applications to drug
screening and software testing. We present explicit constructions and give constructive
upper bounds for the size of a covering array of strength three.
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1 Introduction

A covering array of size N, degree k, order v and strength t is a k x N array with entries
from a set of v symbols such that in any ¢ x N subarray every ¢ x 1 column occurs at least
once. We denote such an array by CA(N;t,k,v). The covering array number CAN(t, k,v) is
the fewest columns N in a CA(N;t, k,v). An obvious lower bound is:

v' < CAN(t, k,v). (1)

*Designs, Codes and Cryptography, 16 235-242 (1999).



Suppose A is a covering array of type CA(N;t, k,v) and let ¢ be any row and = any symbol.
Then the £ — 1 x N’ subarray obtained by deleting row i from A and keeping only those
columns of A that had symbol z in row i is a CA(N';t — 1,k —1,v), where N’ is the number
of occurrences of z in row 7. Hence

CAN(t—1,k—1,0) < %CAN(t,k,v). 2)

We present new explicit constructions for covering arrays of strength three and obtain
a general upper bound on the covering number. Some of the techniques used are similar
to those used for constructing orthogonal arrays [5, 9]. Covering arrays have a number of
applications in experimental design [11], for example in software testing [2, 3] and in drug
screening [13]. In these applications, it is imperative that the interaction of all combinations
of ¢ parameters be tested, and hence that all such selections are covered by columns of the
array. This is complementary to standard error-correcting codes in which columns are not
to cover a selection more than once [11].

2 Some constructions

Let © be the set of v symbols on which we are to construct a CA(N;3,k,v). Let G be a
group acting on the set 2. If ¢ € G and M is a k x ¢ matrix with entries in (2, then MY
is the k£ x ¢ matrix whose [i, j]| entry is M[i, j|9, the image of M[i, j] under g. The matrix
obtained by developing M by G is the k x ¢|G| matrix

MY =[M‘:g€q].

Let C = C(k, Q) be the k x |Q| matrix that has a constant column with each entry equal to
z, for each € 2. When the k£ rows are indexed by a set X, the notation C'(X, ) is also
used. The goal is to choose the matrix M and group G so that [M%, C] or just [M¢] is a
CA(N;3,k,v). For example, when G = Sym{0, 1,2} (the symmetric group on {0, 1,2}), and
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[M¢Y C]is a CAN(3,4,3).

Theorem 2.1 Let v > 2 be a positive integer, and let ¢ > v — 1 be a prime power. Then
there is a CA((2v — 1)(¢® — q) + v; 3, 2v,v).

Proof: First we construct a CA(N; 3,2v,q+ 1), with
N=2v-1)(¢"—-q) +q+1.

Since ¢ is a prime power, the group G = PGL(q) is sharply 3-transitive on the projective
line Q = GF(¢) U {co}. Under this group there are precisely five orbits of 3-tuples. These
five orbits are determined by the pattern of the entries in their 3-tuples:
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1. {[a,a,a]" : a € Q}

2. {la,a,b]T 1 a,b € Q,a#b}

3. {[a,b,a]" : a,b € Q,a # b}

4. {b,a,a]” : a,b € Q,a#b}

5. {la,b,c]" s a,b,c€ Qa#b#c#a)

Let x1, 2,73 be any three rows of [MY%, C(X,Q)]. The 3-tuples with all equal entries oc-
cur on rows i, Tz, x3 of [M% C(X,Q)] since they occur in C(X,). Thus to construct a
CA(N;3,2v,q + 1) using this group we need only find a matrix M such that for each of the
orbits 2-5 and each set of 3 rows there is a column of M that contains an orbit representative
for the orbit on the chosen rows.

Let X be a 2v-element set of vertices and let

flaf27"'7f2v—1

be a one-factorization of the complete graph G on X. Let ¢ : E(G) — Qbe an arbitrary
function for which ¢(e) # £(e’) whenever e, ¢’ € F; for some j. Such a function exists since
2] = ¢+ 1 > v. Define the 2v x (2v — 1) matrix M with entries in Q by M[z, j] = £(e),
where e is the edge of F; that is incident to z € X.

It must be shown that each of the orbits 2, 3, 4, and 5 has a representative on rows
T1, T2, z3. The edge e = {z1, 22} is an edge of some one-factor F; and x3 is incident to some
other edge e’ of F;. Thus 4(e) = a and ¢(¢') = b for some a # b in Q. Consequently

[M[z1, j], M[z2, j], M[x3, j]] = [a, a, b]

and so orbit (2) is represented. Similarly, orbits (3) and (4) are represented. There are 2v—4
one-factors that do not contain any of the edges {z1,z2}, {1, 23}, or {z9,z3}. Thus, since
2v > 5, there is a one-factor Fj in which z;, 2, and z3 are each incident to different edges.
Consequently, column j' of M has distinct entries on rows 1, 2, and x3 and thus orbit (5) is
represented. Therefore [M %, C(X,Q)]isa CA(N;3,2v,q+1), with N = (2v—1)(¢*—q)+q+1.
To obtain a CA(N';3,2v,v) with N’ = (2v — 1)(¢® — ¢) + v replace ¢ + 1 — v of the non-zero
symbols with 0 and delete the ¢ + 1 — v extra columns of 0’s in C'(X, Q). a

When g = 2, PGL(2, q) is isomorphic to Sym{0, 1,2}. Figure 1 depicts the CA(33; 3,6, 3)
array that is constructed using this group by Theorem 2.1.

Theorem 2.2 The covering number CAN(3,6,3) = 33.

Proof: Ostergard has shown that CAN(2,5,3) = 11 (see [11]). Thus by inequality (2),
CAN(3,6,3) > 33. But by Theorem 2.1, CAN(3, 6, 3) < 33. O

Example 2.3 illustrates a situation in which a good array is obtained without using 3-
transitive group.



01221]12002/20110002112(10220121001{012
1221022002101102{2112002201)10012/012
2210100212/11020/112022201000121/012
21012/0212010201j1202120102/01210/012
10122]2120002011]20211101022{121000012
0000011111112222200000/11111j22222/012

Figure 1: A minimal CA(33;3,6,3) covering array

Example 2.3 A CA(88;3,8,4) covering array.

Construction: Let X = GF(8) = Zy[z]/(2*+ 2 +1) be the points of the complete graph Kj.
Observe that x is a primitive root of X. Let F be the cosets of H = {0,1} as a subgroup of
the additive group of GF(8). Then

F={{0,1},{z,2°}, {a?, 2"}, {a",2"}}
is a one factor and the partition
{aF, 2*F, 0 F, o* F, 25 F, 2° F}

is a one-factorization of Kg. Let £ : E(Kg) — Q be any function such that ¢(e) # £(e’)
whenever e,e’ € z/F for some j and define the 8 x 7 matrix M with entries in Q by
Mz, j] = £(e) where e is the edge of z/F that is incident to x € X. One such matrix is
given in Figure 2.

Let G = AltQ be the alternating group of permutations of Q. Then [M%, C(X, Q)] is the
desired CA(88;3,8,4) covering array. To see this, consider any three rows z,zo,23. It must
be shown that, for each choice of a,b,c with a # b # ¢ # a, each of the patterns [a, a,a]”,
la,a,b]", [a,b,a]”, [b,a,a]”, and [a,b, c|” occurs on these rows. Patterns with three equal
entries occur in C' = C(X,2). Patterns with two equal entries and one different appear in
[M% C(X,)] on rows z1, s, 3 since G is 2-transitive on € and every pair occurs as an
edge. This leaves only patterns with three distinct entries. There are exactly two orbits of
such patterns under G since G is the alternating group on four symbols. Thus it suffices
that in M there are two triples [z,y, 2] and [z, 3/, 2']" on rows i, j, k for which the unique
permutation in the symmetric group that sends one on to the other is an odd permutation.
This is easily checked. O

Corollary 2.4 The covering number CAN(3,8,4) < 88 and CAN(2,7,4) < 22.

Proof: The construction in Example 2.3 and the inequality (2) establish this result. O

Stevens and Mendelsohn [12] give recursive techniques that can be used to establish the
bound CAN(2,7,4) < 25, upon which this improves. It is somewhat surprising that the
construction for ¢ = 3 is sufficiently strong to improve upon this bound for the derived
arrays when ¢t = 2.
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Figure 2: A matrix for the one-factorization in Construction 2.3

3 Constructive upper bounds

A (k,n; A)-difference matriz is a n x kA matrix D, with entries in Zg, in which the vector
difference of any pair of rows contains every member of Z; exactly A times. For example, if
ged((n — 1)1 k) = 1, then the n x k matrix D defined by D[i,j] = ij mod k is a (k,n;1)-
difference matrix.

Lemma 3.1 (Atici et. al. [1]) Suppose Ty, Ty, ..., T, C Zy, where T; #0, 1 < i < r and
> I =t
=1

Suppose also that D is a (k, (;) + 1;1)-difference matriz. Then there is an integer x such
that the r sets
T; = {t+ D[z, j] : t € T}}

1 <5 <r are all disjoint.

We use Lemma 3.1 to establish a slight generalization of Theorem 4.1 in [1]. Let Q be a
v-element set and let P be a first-order predicate concerning a collection C of t-tuples with
entries in € that is invariant under coordinate permutation. For example the predicate P
could be one of

1. The t-tuple [a, a,...,a] is in C, where a € Q is a fixed symbol.

2. The set of all t-tuples with exactly two distinct entries are in C.
3. There is a t-tuple in C with distinct entries.

4. All of the t-tuples with entries in €2 occur in C.

A kx N array A with entries in Q is called a (IV; ¢, k, v)-P array if each collection C of ¢-tuples
found among the columns of any ¢ x N subarray satisfies the predicate P. For example if P
is predicate 3 then the array A is a perfect hash family [1] or a ¢-separating family [10]. If
P is predicate 4, then A is a covering array.



Theorem 3.2 If gcd((;)!,k) =1 and a (N;t, k,v)-P array exists, then there is a (((;) +
1)N,t,k? v)-P array.

Proof: (This proof parallels one in [1].) Let A be a (N;t, k,v)-P array with rows labeled by
Zy and columns by {1,2,..., N}. Let D be a (&, (;) +1; 1)-difference matrix and for x € Zy,
let A, denote the array

Agli, j] = Ali + =, j], 1€ %, j=1,2,.,N

Consider the array B defined by

Boo | Boa e Bo,(;)
By | B e Bl,(;)
B =
Br1o | Bg-11| - Bk_lj(g)

where B; ; = Apj; ;) and the rows of B are indexed by Zj x Zj, so that the rows of

b

BiO Bil Bi,(t)

) ) 9

are indexed by {i} x Z. To see that B is the desired (((}) + 1)N;t, k,v)-P array consider
a set of t rows R of B. Set T; = {z € Zi : (i,x) € R}. Let T;,,T;,,...,T; denote the
T;’s that are nonempty. Then by Lemma 3.1 there is an integer x such that the r sets
TZ'] ={t+Dlz,j]: t € T;,} for 1 < j < r are all disjoint. Thus they comprise ¢ distinct rows
of the k x ((}) +1)N subarray

BzO le Bm’(t)

’ ) 9

Each component B, ; is a copy of A with the rows permuted. Thus the ¢ rows satisfy
predicate P. Therefore B is a (((}) + 1)N, ¢, k?, v)-P array. O

This theorem can be iterated:

Theorem 3.3 If ged((1)!, k) =1 and a (N;t, k,v)-P array ezists, then there is a (N((%) +
i ) 2 2
1)7,t, k¥ v)-P array.

Applying this to covering arrays we obtain:



Theorem 3.4 Let v > 2 be a positive integer, and let ¢ > v — 1 be a prime power. Then,
for all j, there is a CA(((2v — 1)(¢* — q) + v)4%;3, (2v — 1) ,v) if v = 0,1 mod 3, and a
CA(((20 — 1) (¢ — ¢) + v)47; 3, (2v — 3)%,v) if v = 2 mod 3.

Proof: There is, by Theorem 2.1, a CA((2v — 1)(¢® — q) + v; 3, 2v,v). Deleting rows leaves
a covering array. If v = 0,1 mod 3, then ged(6,2v — 1) = 1 and if v = 2 mod 3, then
ged(6,2v — 3) = 1. Apply Theorem 3.3 with ¢ = 3 and k¥ = 2v — 1 when v = 0,1 mod 3 or
k = 2v — 3 when v = 2 mod 3. O

With the parameters in Theorem 3.4, we have

%(bgk? if v =2mod 3

CAN(3,k,v) <

where ¢ > v — 1 is a prime power. In particular when v = 3 we have

CAN(3,k,3) < (logk)? ~ 6.1209(log k)2,

(log5)?

and when v = 4 we have
172
(log7)?

CAN(3,k,4) < (log k)? ~ 21.8240(log k).

For v = 4 we can improve this using the CA(88;3,8,4) from Example 2.3:

88
(log 7)?

The bound can be improved asymptotically to be on the order of v?logk using proba-
bilistic techniques [7]. However, the technique developed here is entirely constructive, and
hence can lead to useful small covering arrays for use in experimental design.

CAN(3,k,4) < (log k)* ~ 11.1658(log k)?
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